Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 517
Filter
1.
Clin Cosmet Investig Dermatol ; 17: 1815-1822, 2024.
Article in English | MEDLINE | ID: mdl-39139846

ABSTRACT

Introduction: Epidermoid cysts (E.C.s), also known as sebaceous cysts, are benign asymptomatic subepidermal nodules filled with keratin material. These cysts originate from the follicular infundibulum, which when obstructed by keratin, results in cyst formation. Conventionally, E.C.s have been managed surgically with a high success rate and minimal complications. In this report, we present the successful resolution of an E.C. using a minimally invasive technique involving the intralesional injection of recombinant hydrolytic enzymes like hyaluronidase, collagenase, and lipase. Case Presentation: A 44-year-old woman with no significant medical history presented to the clinic with a mass on her right cheek that had been evolving for over 10 years. Skin and soft tissue ultrasound confirmed the presence of an E.C. of 9.3×6.6 × 9.3 mm. Owing to the size and location of the cyst, a decision was made to infiltrate the lesion with recombinant enzymes. Remarkably, significant clinical improvement was observed on Day 21, and complete dissolution of the E.C. occurred 40 days after the initial intervention. Importantly, no recurrences were observed during the 4-year follow-up period. Conclusion: Intralesional administration of hydrolytic enzymes represents an innovative technique in the management of E.C.s. However, further controlled studies are required to determine the efficacy and safety of this procedure.

2.
Chempluschem ; : e202400442, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105675

ABSTRACT

Brazil has one of the greatest biodiversities on the planet, where various crops play a strategic role in the country's economy. Among the highly appreciated biomasses is babassu, whose oil extraction generates residual babassu mesocarp (BM), which still needs new strategies for valorization. This work aimed to use BM as a support for the immobilization of Thermomyces lanuginosus lipase (TLL) in an 8.83 mL packed-bed reactor, followed by its application as a biocatalyst for the synthesis of hexyl laurate in an integrated process. Initially, the percolation of a solution containing 5 mg of TLL at 25 °C and flows ranging from 1.767 to 0.074 mL min-1 was investigated, where at the lowest flow rate tested (residence time of 2 h), it was possible to obtain an immobilized derivative with hydrolytic activity of 504.7 U g-1 and 31.7 % of recovered activity. Subsequent studies of treatment with n-hexane, as well as the effect of temperature on the immobilization process, were able to improve the activities of the final biocatalyst BM-TLLF, achieving a final hydrolysis activity of 7023 U g-1 and esterification activity of 430 U ⋅ g-1 against 142 U g-1 and 113.5 U g-1 respectively presented by the commercial TLIM biocatalyst. Desorption studies showed that the TL IM has 18 mg of protein per gram of support, compared to 4.92 mg presented by BM-TLL. Both biocatalysts were applied to synthesize hexyl laurate, achieving 98 % conversion at 40 °C within 2 h. Notably, BM-TLLF displayed exceptional recyclability, maintaining catalytic efficiency over 12 cycles. This reflects a productivity of 180 mg of product ⋅ h-1 U-1 of the enzyme, surpassing 46 mg h-1 U-1 obtained for TLIM. These results demonstrate the efficacy of continuous flow technology in creating a competitive and integrated process offering an exciting alternative for the valorization of residual lignocellulosic biomass.

3.
Int J Biol Macromol ; 275(Pt 1): 133555, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38960240

ABSTRACT

Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.


Subject(s)
Enzymes, Immobilized , Eurotiales , Lipase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Esterification , Eurotiales/enzymology , Biocatalysis , Hydrolysis , Sulfones/chemistry , Sulfones/pharmacology , Temperature
4.
Plant Physiol Biochem ; 214: 108939, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029309

ABSTRACT

GDSL-type esterase/lipase protein (GELP) genes are crucial in the specialized lipid metabolism, in the responses to abiotic stresses, and in the regulation of plant homeostasis. R. communis is an important oilseed crop species that can sustain growth and productivity when exposed to harsh environmental conditions. Herein, we raised the question of whether the GELP gene family could be involved in the acquisition of R. communis tolerance to abiotic stresses during seed germination and seedling establishment. Thus, we used bioinformatics and transcriptomics to characterize the R. communis GELP gene family. R. communis genome possesses 96 GELP genes that were characterized by extensive bioinformatics, including phylogenetic analysis, subcellular localization, exon-intron distribution, the analysis of regulatory cis-elements, tandem duplication, and physicochemical properties. Transcriptomics indicated that numerous RcGELP genes are readily responsive to high-temperature and salt stresses and might be potential candidates for genome editing techniques to develop abiotic stress-tolerant crops.


Subject(s)
Gene Expression Regulation, Plant , Germination , Plant Proteins , Ricinus , Seedlings , Stress, Physiological , Seedlings/genetics , Seedlings/growth & development , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Germination/genetics , Ricinus/genetics , Ricinus/metabolism , Esterases/genetics , Esterases/metabolism , Phylogeny , Lipase/genetics , Lipase/metabolism , Multigene Family , Genome, Plant/genetics
5.
Int J Biol Macromol ; 275(Pt 2): 132985, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871103

ABSTRACT

Triacylglycerols (TAGs) are a primary energy source for marine mammals during lipid digestion. Walruses (Odobenus rosmarus divergens) consume prey with a high content of long-chain polyunsaturated fatty acids; however, their digestive physiology and lipid digestion remain poorly studied. The present study aims to model and characterize the gastric (PWGL) and pancreatic (PWPL) lipases of Pacific walruses using an in-silico approach. The confident 3D models of PWGL and PWPL were obtained via homology modeling and protein threading and displayed the structural features of lipases. Molecular docking analysis demonstrated substrate selectivity for long-chain TAG (Trieicosapentaenoin; TC20:5n-3) in PWGL and short-chain TAG (Trioctanoin; TC8:0) in PWPL. Molecular dynamics simulations demonstrate that PWGL bound to tridocosahexaenoin (TC22:6n-3), the protein is considerably stable at all three salinity conditions, but fluctuations are observed in the regions associated with catalytic sites and the lid, indicating the potential hydrolysis of the substrate. This is the first study to report on the digestion of TAGs in walruses, including modeling and lipases characterization and proposing a digestive tract for pinnipeds.


Subject(s)
Lipase , Molecular Docking Simulation , Molecular Dynamics Simulation , Pancreas , Animals , Lipase/metabolism , Lipase/chemistry , Pancreas/enzymology , Walruses/metabolism , Lipid Metabolism , Substrate Specificity , Triglycerides/metabolism , Digestion , Stomach/enzymology , Amino Acid Sequence
6.
Int J Biol Macromol ; 274(Pt 2): 133359, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914393

ABSTRACT

Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved. When increasing the enzyme load to 5 mg/g, the immobilization yield of SBAUC-TLL was 80 %, and the recovered activity was 50 %, while SBAC-TLL had a yield of 100 % and a recovered activity of 36 %. Crosslinking with glutaraldehyde (GA) was conducted to improve stability (SBAUC-TLL-GA and SBAC-TLL-GA). Although SBAC-TLL-GA lost 25 % of initial activity after GA modifications, it exhibited the highest thermal (t1/2 = 5.7 h at 65 °C), when compared to SBAC-TLL (t1/2 = 12 min) and the soluble enzyme (t1/2 = 36 min), and operational stability (retained 100 % activity after 5 cycles). Both biocatalysts presented high storage stability since they retained 100 % of initial activity for 30 days. These results highlight SBA-15's potential as an enzyme support and the protocol's efficacy in enhancing stability, with implications for industrial applications in the food, chemical, and pharmaceutical sectors.


Subject(s)
Biocatalysis , Enzyme Stability , Enzymes, Immobilized , Lipase , Silicon Dioxide , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Silicon Dioxide/chemistry , Porosity , Temperature , Adsorption , Hydrogen-Ion Concentration , Eurotiales/enzymology , Kinetics , Glutaral/chemistry
7.
Biotechnol Bioeng ; 121(9): 2728-2741, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38837223

ABSTRACT

Peroxyacid synthesis is the first step in Prilezhaev epoxidation, which is an industrial method to form epoxides. Motivated by the development of a kinetic model as a tool for solvent selection, the effect of solvent type and acid chain length on the lipase-catalyzed peroxyacid synthesis was studied. A thermodynamic activity-based ping-pong kinetic expression was successfully applied to predict the effect of the reagent loadings in hexane. The activity-based reaction quotients provided a prediction of solvent-independent equilibrium constants. However, this strategy did not achieve satisfactory estimations of initial rates in solvents of higher polarity. The lack of compliance with some assumptions of this methodology could be confirmed through molecular dynamics calculations i.e. independent solvation energies and lack of solvent interaction with the active site. A novel approach is proposed combining the activity-based kinetic expression and the free binding energy of the solvent with the active site to predict kinetics upon solvent change. Di-isopropyl ether generated a strong interaction with the enzyme's active site, which was detrimental to kinetics. On the other hand, toluene or limonene gave moderate interaction with the active site rendering improved catalytic yield compared with less polar solvents, a finding sharpened when peroctanoic acid was produced.


Subject(s)
Lipase , Molecular Dynamics Simulation , Solvents , Solvents/chemistry , Lipase/chemistry , Lipase/metabolism , Kinetics , Epoxy Compounds/chemistry , Epoxy Compounds/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism
8.
Nat Prod Res ; : 1-11, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712549

ABSTRACT

Herein, the manuscript presents a chemoenzymatic formal synthetic route of (+)-brazilin, a homoisoflavonoid natural product with a chroman skeleton cis-fused with a 2,3-dihydro-1H-indene unit, which is isolated from the traditional Chinese medicine, Caesalpinia sappan L. The key feature of the synthetic strategy includes an enzyme-mediated desymmetrization by employing lipase from Candida antarctica type B (CALB) and a one-pot SN2/hydrolysis reaction.

9.
Curr Pharm Des ; 30(17): 1307-1316, 2024.
Article in English | MEDLINE | ID: mdl-38629357

ABSTRACT

BACKGROUND: Surgical site infections are one of the major clinical problems in surgical departments that cost hundreds of millions of dollars to healthcare systems around the world. AIM: The study aimed to address the pressing issue of surgical site infections, which pose significant clinical and financial burdens on healthcare systems globally. Recognizing the substantial costs incurred due to these infections, the research has focused on understanding the role of lipase and protease production by multi-drug resistant bacteria isolated from surgical wounds in the development of post-surgical wound infections. METHODS: For these purposes, 153 pus specimens were collected from patients with severe post-surgical wound infections having prolonged hospital stays. The specimens were inoculated on appropriate culture media. Gram staining and biochemical tests were used for the identification of bacterial growth on suitable culture media after 24 hours of incubation. The isolated pathogens were then applied for lipase and protease, key enzymes that could contribute to wound development, on tributyrin and skimmed milk agar, respectively. Following the CSLI guidelines, the Kirby-Bauer disc diffusion method was used to assess antibiotic susceptibility patterns. The results revealed that a significant proportion of the samples (127 out of 153) showed bacterial growth of Gram-negative (n = 66) and Gram-positive (n = 61) bacteria. In total, isolated 37 subjects were declared MDR due to their resistance to three or more than three antimicrobial agents. The most prevalent bacteria were Staphylococcus aureus (29.13%), followed by S. epidermidis (18.89%), Klebsiella pneumoniae (18.89%), Escherichia coli (14.96%), Pseudomonas aeruginosa (10.23%), and Proteus mirabilis (7.87%). Moreover, a considerable number of these bacteria exhibited lipase and protease activity with 70 bacterial strains as lipase positive on tributyrin agar, whereas 74 bacteria showed protease activity on skimmed milk agar with P. aeruginosa as the highest lipase (69.23%) and protease (76.92%) producer, followed by S. aureus (lipase 62.16% and protease 70.27%). RESULTS: The antimicrobial resistance was evaluated among enzyme producers and non-producers and it was found that the lipase and protease-producing bacteria revealed higher resistance to selected antibiotics than non-producers. Notably, fosfomycin and carbapenem were identified as effective antibiotics against the isolated bacterial strains. However, gram-positive bacteria displayed high resistance to lincomycin and clindamycin, while gram-negative bacteria were more resistant to cefuroxime and gentamicin. CONCLUSION: In conclusion, the findings suggest that lipases and proteases produced by bacteria could contribute to drug resistance and act as virulence factors in the development of surgical site infections. Understanding the role of these enzymes may inform strategies for preventing and managing post-surgical wound infections more effectively.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Lipase , Microbial Sensitivity Tests , Peptide Hydrolases , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Lipase/metabolism , Lipase/biosynthesis , Anti-Bacterial Agents/pharmacology , Peptide Hydrolases/metabolism , Peptide Hydrolases/biosynthesis , Surgical Wound Infection/microbiology , Surgical Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/drug therapy , Male , Female , Adult , Middle Aged , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/isolation & purification
10.
Environ Sci Pollut Res Int ; 31(19): 28632-28643, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558334

ABSTRACT

Lipases represent versatile biocatalysts extensively employed in transesterification reactions for ester production. Ethyl oleate holds significance in biodiesel production, serving as a sustainable alternative to petroleum-derived diesel. In this study, our goal was to prospect lipase and assess its efficacy as a biocatalyst for ethyl oleate synthesis. For quantitative analysis, a base medium supplemented with Rhodamine B, olive oil, and Tween 80 was used. Solid-state fermentation utilized crambe seeds of varying particle sizes and humidity levels as substrates. In the synthesis of ethyl oleate, molar ratios of 1:3, 1:6, and 1:9, along with a total enzymatic activity of 60 U in n-heptane, were utilized at temperatures of 30 °C, 37 °C, and 44 °C. Reactions were conducted in a shaker at 200 rpm for 60 min. As a result, we first identified Penicillium polonicum and employed the method of solid-state fermentation using crambe seeds as a substrate to produce lipase. Our findings revealed heightened lipolytic activity (22.5 Ug-1) after 96 h of fermentation using crambe cake as the substrate. Optimal results were achieved with crambe seeds at a granulometry of 0.6 mm and a fermentation medium humidity of 60%. Additionally, electron microscopy suggested the immobilization of lipase in the substrate, enabling enzyme reuse for up to 4 cycles with 100% enzymatic activity. Subsequently, we conducted applicability tests of biocatalysts for ethyl oleate synthesis, optimizing parameters such as the acid/alcohol molar ratio, temperature, and reaction time. We attained 100% conversion within 30 min at 37 °C, and our results indicated that the molar ratio proportion did not significantly influence the outcome. These findings provide a methodological alternative for the utilization of biocatalysts in ethyl oleate synthesis.


Subject(s)
Fermentation , Lipase , Oleic Acids , Penicillium , Oleic Acids/biosynthesis , Oleic Acids/metabolism , Penicillium/metabolism , Lipase/metabolism , Esterification , Biocatalysis , Lipolysis
11.
Molecules ; 29(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38338371

ABSTRACT

This work presents a framework for evaluating hybrid nanoflowers using Burkholderia cepacia lipase. It was expanded on previous findings by testing lipase hybrid nanoflowers (hNF-lipase) formation over a wide range of pH values (5-9) and buffer concentrations (10-100 mM). The free enzyme activity was compared with that of hNF-lipase. The analysis, performed by molecular docking, described the effect of lipase interaction with copper ions. The morphological characterization of hNF-lipase was performed using scanning electron microscopy. Fourier Transform Infrared Spectroscopy performed the physical-chemical characterization. The results show that all hNF-lipase activity presented values higher than that of the free enzyme. Activity is higher at pH 7.4 and has the highest buffer concentration of 100 mM. Molecular docking analysis has been used to understand the effect of enzyme protonation on hNF-lipase formation and identify the main the main binding sites of the enzyme with copper ions. The hNF-lipase nanostructures show the shape of flowers in their micrographs from pH 6 to 8. The spectra of the nanoflowers present peaks typical of the amide regions I and II, current in lipase, and areas with P-O vibrations, confirming the presence of the phosphate group. Therefore, hNF-lipase is an efficient biocatalyst with increased catalytic activity, good nanostructure formation, and improved stability.


Subject(s)
Copper , Nanostructures , Enzyme Stability , Copper/chemistry , Lipase/chemistry , Molecular Docking Simulation , Nanostructures/chemistry , Enzymes, Immobilized/chemistry , Spectroscopy, Fourier Transform Infrared , Ions
12.
Enzyme Microb Technol ; 175: 110409, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335559

ABSTRACT

The solvent-free esterification of the free fatty acids (FFAs) obtained by the hydrolysis of castor oil (a non-edible vegetable oil) with 2-ethyl-1-hexanol (a branched fatty alcohol) was catalyzed by different free lipases. Eversa Transform 2.0 (ETL) features surpassed most commercial lipases. Some process parameters were optimized by the Taguchi method (L16'). As a result, a conversion over 95% of the FFAs of castor oil into esters with lubricants properties was achieved under optimized reaction conditions (15 wt% of biocatalyst content, 1:4 molar ratio (FFAs/alcohol), 30 °C, 180 rpm, 96 h). The substrates molar ratio had the highest influence on the dependent variable (conversion at 24 h). FFAs/2-ethyl-1-hexanol esters were characterized regarding the physicochemical and tribological properties. Interestingly, the modification of the FFAs with 2-ethyl-1-hexanol by ETL increased the oxidative stability of the FFAs feedstock from 0.18 h to 16.83 h. The biolubricants presented a lower friction coefficient than the reference commercial mineral lubricant (0.052 ± 0.07 against 0.078 ± 0.04). Under these conditions, ETL catalyzed the oligomerization of ricinoleic acid (a hydroxyl fatty acid) into estolides, reaching a conversion of 25.15% of the initial FFAs (for the first time).


Subject(s)
Castor Oil , Fatty Acids, Nonesterified , Hexanols , Esterification , Esters/chemistry , Fatty Acids/chemistry , Lipase/metabolism , Ethanol , Catalysis , Enzymes, Immobilized/chemistry
13.
Appl Microbiol Biotechnol ; 108(1): 106, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38217255

ABSTRACT

Glioblastoma is one of the most lethal tumors, displaying striking cellular heterogeneity and drug resistance. The prognosis of patients suffering from glioblastoma after 5 years is only 5%. In the present work, capsaicin analogues bearing modifications on the acyl chain with long-chain fatty acids showed promising anti-tumoral activity by its cytotoxicity on U-87 and U-138 glioblastoma multiforme cells. The capsaicin analogues were enzymatically synthetized with cross-linked enzyme aggregates of lipase B from Candida antarctica (CALB). The catalytic performance of recombinant CALB-CLEAs was compared to their immobilized form on a hydrophobic support. After 72 h of reaction, the synthesis of capsaicin analogues from linoleic acid, docosahexaenoic acid, and punicic acid achieved a maximum conversion of 69.7, 8.3 and 30.3% with CALB-CLEAs, respectively. Similar values were obtained with commercial CALB, with conversion yields of 58.3, 24.2 and 22% for capsaicin analogues from linoleic acid, DHA and punicic acid, respectively. Olvanil and dohevanil had a significant cytotoxic effect on both U-87 and U-138 glioblastoma cells. Irrespective of the immobilization form, CALB is an efficient biocatalyst for the synthesis of anti-tumoral capsaicin derivatives. KEY POINTS: • This is the first report concerning the enzymatic synthesis of capsaicin analogues from docosahexaenoic acid and punicic acid with CALB-CLEAs. • The viability U-87 and U-138 glioblastoma cells was significantly affected after incubation with olvanil and dohevanil. • Capsaicin analogues from fatty acids obtained by CALB-CLEAs are promising candidates for therapeutic use as cytotoxic agents in glioblastoma cancer cells.


Subject(s)
Capsaicin , Glioblastoma , Humans , Capsaicin/pharmacology , Enzymes, Immobilized/metabolism , Glioblastoma/drug therapy , Fungal Proteins/metabolism
14.
Biotechnol Lett ; 46(1): 85-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064041

ABSTRACT

The objective of this study was to obtain sufficient information on the thermal stabilization of a food-grade lipase from Thermomyces lanuginosus (TLL) using the immobilization technique. To do this, a new non-porous support was prepared via the sequential extraction of SiO2 from rice husks, followed by functionalization with (3-aminopropyl) triethoxysilane - 3-APTES (Amino-SiO2), and activation with glutaraldehyde - GA (GA-Amino-SiO2). We evaluated the influence of GA concentration, which varied from 0.25% v v-1 to 4% v v-1, on the immobilization parameters and enzyme thermal stabilization. The thermal inactivation parameters for both biocatalyst forms (soluble or immobilized TLL) were calculated by fitting a non-first-order enzyme inactivation kinetic model to the experimental data. According to the results, TLL was fully immobilized on the external support surface activated with different GA concentrations using an initial protein load of 5 mg g-1. A sharp decrease of hydrolytic activity was observed from 216.6 ± 12.4 U g-1 to 28.6 ± 0.9 U g-1 of after increasing the GA concentration from 0.25% v v-1 to 4.0% v v-1. The support that was prepared using a GA concentration at 0.5% v v-1 provided the highest stabilization of TLL - 31.6-times more stable than its soluble form at 60 °C. The estimations of the thermodynamic parameters, e.g., inactivation energy (Ed), enthalpy (ΔH#), entropy (ΔS#), and the Gibbs energy (ΔG#) values, confirmed the enzyme stabilization on the external support surface at temperatures ranging from 50 to 65 °C. These results show promising applications for this new heterogeneous biocatalyst in industrial processes given the high catalytic activity and thermal stability.


Subject(s)
Lipase , Oryza , Propylamines , Silanes , Lipase/metabolism , Silicon Dioxide , Glutaral , Enzymes, Immobilized/metabolism , Thermodynamics , Enzyme Stability
15.
Int J Biol Macromol ; 257(Pt 2): 128641, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061520

ABSTRACT

The present work reports an optimization of the synthesis of MLM-type (medium, long, medium) structured lipids (SL) through an acidolysis reaction of grape seed oil with capric acid catalyzed by Rhizopus oryzae lipase immobilized. At first, tests were carried out by preparing the biocatalysts using enzyme loadings (0.15 to 1 g of enzymatic powder) for each gram of support. Enzyme loading was used 0.3 g of enzymatic powder, and hydrolytic activity of 1860 ± 23.4 IU/g was reached. Optimized conditions determined by the Central Composite Rotatable Design (CCRD) revealed that the acidolysis reaction reached approximately 59 % incorporation degree (%ID) after 24 h, in addition to the fact that the biocatalyst could maintain the incorporation degree in five consecutive cycles. From this high incorporation degree, cell viability assays were performed with murine fibroblast cell lines and human cervical adenocarcinoma cell lines. Concerning the cytotoxicity assays, the concentration of MLM-SL to 1.75 and 2 % v/v were able to induce cell death in 56 % and 64 % of adenocarcinoma cells, respectively. Human cervical adenocarcinoma cells showed greater sensitivity to the induction of cell death when using emulsions with MLM-SL > 1.75 % v/v compared to emulsions with lower content indicating a potential for combating carcinogenic cells.


Subject(s)
Adenocarcinoma , Decanoic Acids , Humans , Animals , Mice , Powders , Decanoic Acids/metabolism , Lipase/metabolism , Enzymes, Immobilized/metabolism
16.
Article in English | MEDLINE | ID: mdl-38042331

ABSTRACT

Rhodnius prolixus is a hematophagous insect, which feeds on large and infrequent blood meals, and is a vector of trypanosomatids that cause Chagas disease. After feeding, lipids derived from blood meal are stored in the fat body as triacylglycerol, which is recruited under conditions of energy demand by lipolysis, where the first step is catalyzed by the Brummer lipase (Bmm), whose orthologue in mammals is the adipose triglyceride lipase (ATGL). Here, we investigated the roles of Bmm in adult Rhodnius prolixus under starvation, and after feeding. Its gene (RhoprBmm) was expressed in all the analyzed insect organs, and its transcript levels in the fat body were not altered by nutritional status. RNAi-mediated knockdown of RhoprBmm caused triacylglycerol retention in the fat body during starvation, resulting in larger lipid droplets and lower ATP levels compared to control females. The silenced females showed decreased flight capacity and locomotor activity. When RhoprBmm knockdown occurred before the blood meal and the insects were fed, the females laid fewer eggs, which collapsed and showed low hatching rates. Their hemolymph had reduced diacylglycerol content and vitellogenin concentration. The chorion (eggshell) of their eggs had no difference in hydrocarbon amounts or in dityrosine crosslinking levels compared to control eggs. However, it showed ultrastructural defects. These results demonstrated that Bmm activity is important not only to guarantee lipid mobilization to maintain energy homeostasis during starvation, but also for the production of viable eggs after a blood meal, by somehow contributing to the right formation of the egg chorion.


Subject(s)
Lipase , Rhodnius , Animals , Female , Lipase/genetics , Lipase/metabolism , Rhodnius/genetics , Egg Shell/metabolism , Lipid Mobilization , Reproduction , Triglycerides/metabolism , Locomotion , Insect Vectors , Mammals/metabolism
17.
Braz. j. biol ; 84: e267508, 2024. tab, graf
Article in English | VETINDEX | ID: biblio-1420701

ABSTRACT

Current analysis were performed to investigate the activity of various digestive enzymes, such as lipases, proteases and amylases in gut and their relationship to the other morphometric variables in a wild marine fish, Terapon jarbua. The descriptive data of the studied traits included fish weight, fish total length, gut weight, gut length, relative gut length, relative gut mass, Fulton's condition factor, standard length and Zihler's index. Gut length showed positive correlation with fish total length and gut weight, relative gut length (RGL) showed positive correlation with gut length. Relative gut mass (RGM) also showed positive correlation with total length (TL), gut weight (GW) and gut length (GL). Fulton's condition factor showed positive correlation with fish weight, while negative correlation with fish total length and relative gut mass. Standard length displayed positive correlation with gut weight and gut length while, it showed negative correlation with Fulton's factor. Zihler's Index displayed positive correlation with gut length, RGL and Zihler's RGM while, while showed negative correlation with Fulton's factor and fish weight. Lipase showed negative correlation with gut weight. Amylase and protease activity have no correlation with other studied traits. Lipase activity displayed negative significant correlation with gut weight. Lipase activity showed significantly negative effect on gut-weight. Amylase activity on y-axis (PC2) contributed 13% in variation but not significantly correlated with first two principal components. It showed non-significant negative correlation with fish weight, fish length and Fulton's factor while positive but not-significant correlation with other traits. Protease has positive and non-significant correlation with fish weight, RGL, Fulton's factor, lipase and amylase while non-significant negative correlation with all other traits.


No presente estudo, as análises atuais foram realizadas para investigar a atividade de várias enzimas digestivas, como lipases, proteases e amilases no intestino e sua relação com as outras variáveis morfométricas em um peixe marinho selvagem denominado "Terapon jarbua". Os dados descritivos das características estudadas incluíram o peso e o comprimento total do peixe, o peso e o comprimento do intestino, o comprimento e a massa relativos do intestino, o fator de condição de Fulton, o comprimento padrão e o índice de Zihler. O comprimento do intestino apresentou correlação positiva com o comprimento total e o peso do intestino dos peixes, o comprimento relativo do intestino (RGL) mostrou correlação positiva com o comprimento do intestino. A massa relativa do intestino (RGM) também apresentou correlação positiva com comprimento total (TL), peso do intestino (GW) e comprimento do intestino (CG). O fator de condição de Fulton apresentou correlação positiva com o peso do peixe, enquanto correlação negativa com o comprimento total do peixe e a massa relativa do intestino. O comprimento padrão apresentou correlação positiva com o peso e o comprimento do intestino, enquanto apresentou correlação negativa com o fator de Fulton. O índice de Zihler apresentou correlação positiva com o comprimento do intestino, RGL e RGM de Zihler, enquanto apresentou correlação negativa com o fator de Fulton e o peso do peixe. A lipase mostrou correlação negativa com o peso do intestino. A atividade de amilase e protease não tem correlação com outras características estudadas. Já a atividade da lipase apresentou correlação negativa em relação ao peso do intestino. A atividade da lipase mostrou um efeito significativamente negativo no peso do intestino. A atividade da amilase no eixo y (PC2) contribuiu com 13% na variação, mas não se correlacionou significativamente com os dois primeiros componentes principais, demonstrando correlação negativa e não significativa em relação ao peso e comprimento e fator de Fulton, enquanto correlação positiva, mas não significativa com outras características. A protease tem correlação positiva e não significativa com o peso do peixe, RGL, fator de Fulton, lipase e amilase, enquanto correlação negativa não significativa com todas as outras características.


Subject(s)
Animals , Peptide Hydrolases , Enzymes , Fishes , Amylases , Lipase , Pakistan
18.
BioTech (Basel) ; 12(4)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38131679

ABSTRACT

Ionic additives affect the structure, activity and stability of lipases, which allow for solving common application challenges, such as preventing the formation of protein aggregates or strengthening enzyme-support binding, preventing their desorption in organic media. This work aimed to design a biocatalyst, based on lipase improved by the addition of ionic additives, applicable in the production of ethyl esters of fatty acids (EE). Industrial enzymes from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML), Candida antárctica B (CALB) and Lecitase®, immobilized in commercial supports like Lewatit®, Purolite® and Q-Sepharose®, were tested. The best combination was achieved by immobilizing lipase TLL onto Q-Sepharose® as it surpassed, in terms of %EE (70.1%), the commercial biocatalyst Novozyme® 435 (52.7%) and was similar to that of Lipozyme TL IM (71.3%). Hence, the impact of ionic additives like polymers and surfactants on both free and immobilized TLL on Q-Sepharose® was assessed. It was observed that, when immobilized, in the presence of sodium dodecyl sulfate (SDS), the TLL derivative exhibited a significantly higher activity, with a 93-fold increase (1.02 IU), compared to the free enzyme under identical conditions (0.011 IU). In fatty acids ethyl esters synthesis, Q-SDS-TLL novel derivatives achieved results similar to commercial biocatalysts using up to ~82 times less enzyme (1 mg/g). This creates an opportunity to develop biocatalysts with reduced enzyme consumption, a factor often associated with higher production costs. Such advancements would ease their integration into the biodiesel industry, fostering a greener production approach compared to conventional methods.

19.
Bioprocess Biosyst Eng ; 46(11): 1665-1676, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37815609

ABSTRACT

This study aimed to develop and investigate the synthesis of 2-ethylhexyl oleate catalyzed by Candida antarctica lipase immobilized on magnetic poly(styrene-co-divinylbenzene) (STY-DVB-M) particles in a magnetically stabilized fluidized bed reactor (MSFBR) operated in continuous mode. The physical properties of the copolymer were characterized by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The glass transition temperature was 85.68 °C, and the onset of thermal degradation occurred at 406.66 °C. Syntheses were performed at 50 °C using a space time of 12 h and a bed porosity of 0.892. Assays were conducted to assess the influence of magnetic field intensity (5 to 15 mT) on reaction yield, ester concentration, and productivity. The highest productivity was 0.850 ± 0.023 mmol g-1 h-1, obtained with a magnetic field intensity of 15 mT. An operational stability test was performed under these conditions, revealing a biocatalyst half-life of 2148 h (179 operation cycles) and a thermal deactivation constant of 3.23 × 10-4 h-1 (R2 = 0.9446). Computational simulations and mathematical modeling were performed using Scilab based on ping-pong bi-bi kinetics and molar balances of reaction species. The model provided consistent results of interstitial velocity and good prediction of reaction yields, with R2 = 0.926. These findings demonstrate that the studied technique can provide improvements in biocatalytic processes, representing a promising strategy for the enzymatic synthesis of 2-ethylhexyl oleate.


Subject(s)
Enzymes, Immobilized , Oleic Acid , Enzymes, Immobilized/chemistry , Bioreactors , Biocatalysis , Lipase/chemistry , Esterification
20.
Foods ; 12(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37835184

ABSTRACT

Medicinal plants offer a valuable source of natural compounds with specific and selective bioactivity. These compounds have been isolated since the mid-nineteenth century and are now commonly used in modern medications. L. octovalvis (Jacq.) P.H.Raven, C. aconitifolius, and C. longirostrata are Mexican medicinal plants consumed regularly, and research has shown that they contain bioactive compounds capable of promoting the inhibition of digestive enzymes. This is noteworthy since enzyme inhibitors are bioactive substances that interact with enzymes, diminishing their activity and thereby contributing to the management of diseases and metabolic disturbances. To investigate the activity of these plants, individual analyses were conducted, assessing their proximal composition, bioactive compounds, and inhibition of α-Amylase, α-Glucosidase, lipase, and pepsin. The results revealed that all three plants exhibited enzymatic inhibition. When comparing the plants, it was determined that C. aconitifolius had the lowest concentration required for a 50% inhibition in α-Amylase, α-Glucosidase, and lipase, as indicated by the IC50 values. For pepsin, C. longirostrata demonstrated the lowest IC50 value. By understanding the bioactive compounds present in these plants, we can establish the relationship they have with enzymatic inhibition, which can be utilized for future investigations.

SELECTION OF CITATIONS
SEARCH DETAIL