Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Chem Phys Lipids ; 250: 105259, 2023 01.
Article in English | MEDLINE | ID: mdl-36400123

ABSTRACT

In some dermal diseases with evident skin dehydration and desquamation, the natural ratio of CER[NP]:CER[AP] is altered in the extracellular matrix of the stratum corneum by increasing the concentration of CER[AP]. The extracellular matrix of the stratum corneum is composed of several stacked lipid bilayers. Molecular dynamics simulations were used to investigate the molecular nanostructure of CER[NP], CER[AP], cholesterol and lignoceric acid models of the extracellular matrix of the stratum corneum with a nativelike CER[NP]:CER[AP] 2:1 ratio and a CER[NP]:CER[AP] ratio of 1:2. Despite the very minor chemical difference between CER[NP] and CER[AP], which is only a single OH group, it was possible to observe differences between the structural influence of the two ceramides. In the models with 1:2 ratio, the higher CER[AP] content leads to a larger inclination of the acyl chains and a smaller overlap in the lamellar midplane, with a small increase of the repeat distance compared to the model with higher CER[NP] concentration. Because CER[AP] forms more H-bonds than CER[NP], the total number of hydrogen bonds in the headgroup region is larger in the models with higher CER[AP] concentration, reducing the mobility of the lipids towards the centre of the bilayer and resulting in less overlap and increased tilt angles.


Subject(s)
Epidermis , Molecular Dynamics Simulation , Epidermis/chemistry , Skin/chemistry , Lipid Bilayers/chemistry , Ceramides/chemistry
2.
Membranes (Basel) ; 12(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35629860

ABSTRACT

Membranes are essential to cellular organisms, and play several roles in cellular protection as well as in the control and transport of nutrients. One of the most critical membrane properties is fluidity, which has been extensively studied, using mainly single component systems. In this study, we used Fourier transform infrared spectroscopy to evaluate the thermal behavior of multi-component supported lipid bilayers that mimic the membrane composition of tumoral and non-tumoral cell membranes, as well as microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. The results showed that, for tumoral and non-tumoral membrane models, the presence of cholesterol induced a loss of cooperativity of the transition. However, in the absence of cholesterol, the transitions of the multi-component lipid systems had sigmoidal curves where the gel and fluid phases are evident and where main transition temperatures were possible to determine. Additionally, the possibility of designing multi-component lipid systems showed the potential to obtain several microorganism models, including changes in the cardiolipin content associated with the resistance mechanism in Staphylococcus aureus. Finally, the potential use of multi-component lipid systems in the determination of the conformational change of the antimicrobial peptide LL-37 was studied. The results showed that LL-37 underwent a conformational change when interacting with Staphylococcus aureus models, instead of with the erythrocyte membrane model. The results showed the versatile applications of multi-component lipid systems studied by Fourier transform infrared spectroscopy.

3.
Methods Mol Biol ; 2402: 243-256, 2022.
Article in English | MEDLINE | ID: mdl-34854049

ABSTRACT

The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.


Subject(s)
Lipid Bilayers , Cyclodextrins , Membrane Microdomains , Microscopy, Atomic Force
4.
Int J Mol Sci ; 21(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957654

ABSTRACT

Artificial membranes are models for biological systems and are important for applications. We introduce a dry two-step self-assembly method consisting of the high-vacuum evaporation of phospholipid molecules over silicon, followed by a subsequent annealing step in air. We evaporate dipalmitoylphosphatidylcholine (DPPC) molecules over bare silicon without the use of polymer cushions or solvents. High-resolution ellipsometry and AFM temperature-dependent measurements are performed in air to detect the characteristic phase transitions of DPPC bilayers. Complementary AFM force-spectroscopy breakthrough events are induced to detect single- and multi-bilayer formation. These combined experimental methods confirm the formation of stable non-hydrated supported lipid bilayers with phase transitions gel to ripple at 311.5 ± 0.9 K, ripple to liquid crystalline at 323.8 ± 2.5 K and liquid crystalline to fluid disordered at 330.4 ± 0.9 K, consistent with such structures reported in wet environments. We find that the AFM tip induces a restructuring or intercalation of the bilayer that is strongly related to the applied tip-force. These dry supported lipid bilayers show long-term stability. These findings are relevant for the development of functional biointerfaces, specifically for fabrication of biosensors and membrane protein platforms. The observed stability is relevant in the context of lifetimes of systems protected by bilayers in dry environments.


Subject(s)
Lipid Bilayers/chemistry , Membranes, Artificial , Microscopy, Atomic Force/methods , Silicon/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Phase Transition , Phospholipids/chemistry , Temperature , Vacuum , Volatilization
5.
Eur Biophys J ; 49(5): 401-408, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32632743

ABSTRACT

The lipid bilayer is the basis of the structure and function of the cell membrane. The study of the molecular phenomena that affect biological membranes has a great impact on the understanding of cellular physiology. To understand these phenomena, it has become increasingly necessary to develop simple synthetic models that allow the most basic details of such processes to be reproduced. In this short communication, we took advantage of the properties of two well-established lipid model systems, GUVs and SLBs, with compositions mimicking the cell membrane present in mammals and bacteria, to study the thermotropic phase behavior of lipids as well as the effect of daptomycin, a cyclic lipopeptide used as an antibiotic. The study of mechanical and thermodynamical properties of these model systems could contribute to establish a theoretical framework to develop more efficient strategies for biological control.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/chemistry , Cell Membrane/drug effects , Daptomycin/pharmacology , Mechanical Phenomena/drug effects , Models, Molecular , Unilamellar Liposomes/chemistry , Biomechanical Phenomena/drug effects , Molecular Conformation
6.
Biophys Chem ; 257: 106275, 2020 02.
Article in English | MEDLINE | ID: mdl-31790909

ABSTRACT

We performed molecular dynamics simulations of a lipid bilayer consisting of POPC and cholesterol at temperatures from 283 to 308K and cholesterol concentrations from 0 to 50% mol/mol. The purpose of this study was to look for the existence of structural differences in the region delimited by these parameters and, in particular, in a region where coexistence of liquid disordered and liquid ordered phases has been proposed. Our interest in this range of concentration and temperature responds to the fact that polyene ionophore activity varies considerably along it. Two force fields, CHARMM36 and Slipids, were compared in order to determine the most suitable. Both force fields predict non-monotonic behaviors consistent with the existence of phase transitions. We found the presence of lateral structural heterogeneity, statistical in nature, in some of the bilayers occurring in this range of temperatures and sterol concentrations. This heterogeneity was produced by correlated ordering of the POPC tails and not due to cholesterol enrichment, and lasts for tens of nanoseconds. We relate these observations to the action of polyenes in these membranes.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Microscopy, Atomic Force , Phase Transition , Temperature
7.
Biochim Biophys Acta Biomembr ; 1862(2): 183101, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31672540

ABSTRACT

The effect of cholesterol and ergosterol on supported lipid bilayers composed of 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and egg sphingomyelin (eSM) in a 1/1 M ratio was studied using atomic force microscopy. The addition of ergosterol or cholesterol to these membranes considerably modifies both the structure and the dynamics of the domains present in them. The height of the eSM enriched domains increases with concentration of both sterols, but more markedly with ergosterol. The height of the POPC enriched domains increases with concentration in a similar manner for both sterols. This effect is larger for eSM than for POPC when ergosterol, not cholesterol, is present. Domain coverage increases with both sterols at 5 mol% but decreases at 20 mol% and almost disappears at 40 mol%. The size of the eSM enriched domains decreases with sterol concentration, more markedly with cholesterol. Bilayer rupture forces show that overall stiffness increases with the addition of 5 mol% cholesterol, but only for the eSM enriched domains with ergosterol at the same concentration. At larger sterol concentrations the stiffness of both regions becomes reduced. At 40 mol% sterol concentration, both membranes present the same rupture force value. To gain mechanistic insight into these observations we performed Quantum Mechanical calculations and Molecular Dynamics simulations of the sterol molecules. We found that conformational freedom for the sterol molecules is quite different. This difference might be behind the observed phenomena. Finally, the different action of sterols on membrane properties is related to the sterol-dependent ionophoretic activity of polyene antibiotics.


Subject(s)
Cholesterol/chemistry , Ergosterol/chemistry , Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Membrane Microdomains/ultrastructure , Phosphatidylcholines/chemistry , Sphingomyelins/chemistry , Unilamellar Liposomes/chemistry
8.
J Membr Biol ; 252(2-3): 131-157, 2019 06.
Article in English | MEDLINE | ID: mdl-31098678

ABSTRACT

Several experimental and theoretical studies have extensively investigated the effects of a large diversity of antimicrobial peptides (AMPs) on model lipid bilayers and living cells. Many of these peptides disturb cells by forming pores in the plasma membrane that eventually lead to the cell death. The complexity of these peptide-lipid interactions is mainly related to electrostatic, hydrophobic and topological issues of these counterparts. Diverse studies have shed some light on how AMPs act on lipid bilayers composed by different phospholipids, and how mechanical properties of membranes could affect the antimicrobial effects of such compounds. On the other hand, cyclic lipopeptides (cLPs), an important class of microbial secondary metabolites, have received comparatively less attention. Due to their amphipathic structures, cLPs exhibit interesting biological activities including interactions with biofilms, anti-bacterial, anti-fungal, antiviral, and anti-tumoral properties, which deserve more investigation. Understanding how physicochemical properties of lipid bilayers contribute and determining the antagonistic activity of these secondary metabolites over a broad spectrum of microbial pathogens could establish a framework to design and select effective strategies of biological control. This implies unravelling-at the biophysical level-the complex interactions established between cLPs and lipid bilayers. This review presents, in a systematic manner, the diversity of lipidated antibiotics produced by different microorganisms, with a critical analysis of the perturbing actions that have been reported in the literature for this specific set of membrane-active lipopeptides during their interactions with model membranes and in vivo. With an overview on the mechanical properties of lipid bilayers that can be experimentally determined, we also discuss which parameters are relevant in the understanding of those perturbation effects. Finally, we expose in brief, how this knowledge can help to design novel strategies to use these biosurfactants in the agronomic and pharmaceutical industries.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Lipid Bilayers/chemistry , Lipopeptides/pharmacology , Peptides, Cyclic/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/chemistry , Bacteria/chemistry , Bacteria/drug effects , Bacteria/ultrastructure , Cell Membrane/chemistry , Cell Membrane/ultrastructure , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/metabolism , Lipopeptides/biosynthesis , Lipopeptides/chemistry , Peptides, Cyclic/biosynthesis , Peptides, Cyclic/chemistry , Static Electricity , Structure-Activity Relationship
9.
J Comput Aided Mol Des ; 32(11): 1259-1271, 2018 11.
Article in English | MEDLINE | ID: mdl-30259387

ABSTRACT

We present a new coarse-grained (CG) model of cholesterol (CHOL) for the electrostatic-based ELBA force field. A distinguishing feature of our CHOL model is that the electrostatics is modeled by an explicit point dipole which interacts through an ideal vacuum permittivity. The CHOL model parameters were optimized in a systematic fashion, reproducing the electrostatic and nonpolar partitioning free energies of CHOL in lipid/water mixtures predicted by full-detailed atomistic molecular dynamics simulations. The CHOL model has been validated by comparison to structural, dynamic and thermodynamic properties with experimental and atomistic simulation reference data. The simulation of binary DPPC/cholesterol mixtures covering the relevant biological content of CHOL in mammalian membranes is shown to correctly predict the main lipid behavior as observed experimentally.


Subject(s)
Cholesterol/chemistry , Molecular Dynamics Simulation , Cell Membrane/chemistry , Diffusion , Lipid Bilayers/chemistry , Molecular Structure , Static Electricity , Thermodynamics
10.
Article in English | MEDLINE | ID: mdl-29973521

ABSTRACT

Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.


Subject(s)
Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Polymers/chemical synthesis
11.
Molecules ; 22(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29053635

ABSTRACT

In this work; we investigated the differential interaction of amphiphilic antimicrobial peptides with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid structures by means of extensive molecular dynamics simulations. By using a coarse-grained (CG) model within the MARTINI force field; we simulated the peptide-lipid system from three different initial configurations: (a) peptides in water in the presence of a pre-equilibrated lipid bilayer; (b) peptides inside the hydrophobic core of the membrane; and (c) random configurations that allow self-assembled molecular structures. This last approach allowed us to sample the structural space of the systems and consider cooperative effects. The peptides used in our simulations are aurein 1.2 and maculatin 1.1; two well-known antimicrobial peptides from the Australian tree frogs; and molecules that present different membrane-perturbing behaviors. Our results showed differential behaviors for each type of peptide seen in a different organization that could guide a molecular interpretation of the experimental data. While both peptides are capable of forming membrane aggregates; the aurein 1.2 ones have a pore-like structure and exhibit a higher level of organization than those conformed by maculatin 1.1. Furthermore; maculatin 1.1 has a strong tendency to form clusters and induce curvature at low peptide-lipid ratios. The exploration of the possible lipid-peptide structures; as the one carried out here; could be a good tool for recognizing specific configurations that should be further studied with more sophisticated methodologies.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Amphibian Proteins/chemistry , Amphibian Proteins/pharmacology , Computer Simulation , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation
12.
Biophys Rev ; 9(5): 633-647, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28836112

ABSTRACT

Cationic bilayers have been used as models to study membrane fusion, templates for polymerization and deposition of materials, carriers of nucleic acids and hydrophobic drugs, microbicidal agents and vaccine adjuvants. The versatility of these membranes depends on their structure. Electron spin resonance (ESR) spectroscopy is a powerful technique that employs hydrophobic spin labels to probe membrane structure and packing. The focus of this review is the extensive structural characterization of cationic membranes prepared with dioctadecyldimethylammonium bromide or diC14-amidine to illustrate how ESR spectroscopy can provide important structural information on bilayer thermotropic behavior, gel and fluid phases, phase coexistence, presence of bilayer interdigitation, membrane fusion and interactions with other biologically relevant molecules.

SELECTION OF CITATIONS
SEARCH DETAIL