Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.711
Filter
1.
Neurotox Res ; 42(5): 42, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365372

ABSTRACT

The 5-lipoxygenase/leukotriene system has been implicated in both physiological and pathological states within the central nervous system. Understanding how this system interacts with the dopaminergic system could provide valuable insights into dopamine-related pathologies. This study focused on examining both motor and non-motor dopamine-related responses in 5-lipoxygenase/leukotriene-deficient mice. We used pharmacological agents such as amphetamine, apomorphine, and reserpine to challenge the dopaminergic system, evaluating their effects on prepulse inhibition reaction (PPI), general motor activity, and oral involuntary movements. Additionally, we analyzed striatal glial marker expression (GFAP and Iba-1) in reserpine-treated mice. The 5-lipoxygenase/leukotriene-deficient mice exhibited increased spontaneous locomotor activity, including both horizontal and vertical exploration, along with stereotyped behavior compared to wild-type mice. This hyperactivity was reduced by acute apomorphine treatment. Although basal PPI responses were unchanged, 5-lipoxygenase/leukotriene-deficient mice displayed a significant reduction in susceptibility to amphetamine-induced PPI disruption. Conversely, these mice were more vulnerable to reserpine-induced involuntary movements. There were no significant differences in the basal expression of striatal GFAP and Iba-1 positive cells between 5-lipoxygenase/leukotriene-deficient and wild-type mice. However, reserpine treatment significantly increased GFAP immunoreactivity in wild-type mice, an effect not observed in 5-lipoxygenase-deficient mice. Additionally, the percentage of activated microglia was significantly higher in reserpine-treated wild-type mice, an effect absents in 5-lipoxygenase/leukotriene-deficient mice. Our findings suggest that 5-lipoxygenase/leukotriene deficiency leads to a distinctive dopaminergic phenotype, indicating that leukotrienes may influence the modulation of dopamine-mediated responses.


Subject(s)
Amphetamine , Apomorphine , Arachidonate 5-Lipoxygenase , Dopamine , Mice, Knockout , Reserpine , Animals , Arachidonate 5-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/deficiency , Arachidonate 5-Lipoxygenase/genetics , Dopamine/metabolism , Reserpine/pharmacology , Apomorphine/pharmacology , Amphetamine/pharmacology , Mice , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Glial Fibrillary Acidic Protein/metabolism , Prepulse Inhibition/drug effects , Prepulse Inhibition/physiology , Microfilament Proteins/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/deficiency , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Stereotyped Behavior/drug effects
2.
Pflugers Arch ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347835

ABSTRACT

Human 5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes, mediators of the innate immune system that also play an important role in inflammatory diseases and cancer. In this study, we present compounds, containing a Michael-reactive cyanoacrylate moiety as potent inhibitors of 5-LO. Representatives of the tyrosine kinase inhibitor family called tyrphostins, structurally related to known 5-LO inhibitors, were screened for their 5-LO inhibitory properties using recombinant human 5-LO, intact human PMNL (polymorphonuclear leukocytes), and PMNL homogenates. Their mode of action was characterized by the addition of glutathione, using a fourfold cysteine 5-LO mutant and mass spectrometry analysis. SAR studies revealed several members of the tyrphostin family containing a Michael-reactive cyanoacrylate to efficiently inhibit 5-LO. We identified degrasyn (IC50 0.11 µM), tyrphostin A9 (IC50 0.8 µM), AG879 (IC50 78 nM), and AG556 (IC50 64 nM) as potent 5-LO inhibitors. Mass spectrometry analysis revealed that degrasyn and AG556 covalently bound to up to four cysteines, including C416 and/or C418 which surround the substrate entry site. Furthermore, the 5-LO inhibitory effect of degrasyn was remarkably impaired by the addition of glutathione or by the mutation of cysteines to serines at the surface of 5-LO. We successfully identified several tyrphostins as potent inhibitors of human 5-LO. Degrasyn and AG556 were able to covalently bind to 5-LO via their cyanoacrylate moiety. This provides a promising mechanism for targeting 5-LO by Michael acceptors, leading to new therapeutic opportunities in the field of inflammation and cancer.

3.
Iran J Immunol ; 21(3): 212-224, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39342455

ABSTRACT

Background: Investigating the impacts of plant-based substances on the regulation of pro-inflammatory M1 and anti-inflammatory M2 cytokines could have significant implications for immune-related health conditions. Seven Persicaria plant species from sub-Saharan Africa were specifically selected for analysis, based on their traditional use in treating inflammation. Objective: To investigate the inhibitory effects of methanol leaf extracts from selected plants on enzymes involved in chronic inflammation. Methods: The inhibition of nitric oxide production, acetylcholinesterase activity, and 15-lipoxygenase activity was assessed using the Griess reagent method, Ellman's colorimetric method, and the ferrous oxidation-xylenol orange assay. The quantity of M1/M2 cytokines released was quantified using a flow cytometer. Results: At a concentration of 50 µg/mL, the methanol extracts of P. limbata exhibited the highest NO inhibition (97.67%), followed by P. nepalensis (93.06%) and P. setosula (92.78%). The NO inhibition caused by the plant extracts was correlated directly with the decrease in NO release by the LPS-stimulated macrophages. Furthermore, the pro-inflammatory enzyme assays indicated that the methanol extracts of P. setosula exhibited the highest enzyme inhibitory activity (LOX 89.59%, AChE 72.12 %). This was followed by P. limbata (with 92.76% for LOX and 56.93% for AChE) and P. nepalensis (with 88.16% for LOX and 47.17% for AChE). Cytokine assays revealed that the extracts of P. limbata had significant dose-dependent suppressive effects on IFN-γ and TNF-α expression while promoting the secretion of IL-2, IL-4, IL-6, and IL-10. Conclusion: Extracts of P. limbata contain immunomodulatory compounds that could be further explored as potential remedies to target the molecular drivers of chronic inflammation.


Subject(s)
Cytokines , Lipopolysaccharides , Macrophages , Plant Extracts , Plant Leaves , Plant Extracts/pharmacology , Plant Extracts/chemistry , Mice , Animals , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Plant Leaves/chemistry , RAW 264.7 Cells , Inflammation Mediators/metabolism , Nitric Oxide/metabolism , Anti-Inflammatory Agents/pharmacology , Inflammation/immunology , Inflammation/drug therapy
4.
FASEB J ; 38(18): e70064, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39295162

ABSTRACT

12-hydroxyeicosatetraenoic acid (12-HETE), a major metabolite of arachidonic acid, is converted by 12/15-lipoxygenase and implicated in diabetic retinopathy (DR). Our previous study demonstrated a positive correlation between 12-HETE and the prevalence of DR. However, reasons for the increased production of 12-HETE are unclear, and the underlying mechanisms through which 12-HETE promotes DR are unknown. This study aimed to elucidate the correlation between 12-HETE and DR onset, investigate potential mechanisms through which 12-HETE promotes DR, and seek explanations for the increased production of 12-HETE in diabetes. We conducted a prospective cohort study, which revealed that higher serum 12-HETE levels could induce DR. Additionally, G protein-coupled receptor 31 (GPR31), a high-affinity receptor for 12-HETE, was expressed in human retinal microvascular endothelial cells (HRMECs). 12-HETE/GPR31-mediated HRMEC inflammation occurred via the p38 MAPK pathway. 12-HETE levels were significantly higher in the retina of mice with high-fat diet (HFD)- and streptozotocin (STZ)-induced diabetes than in those with only STZ-induced diabetes and healthy controls. They were positively correlated with the levels of inflammatory cytokines in the retina, indicating that HFD could induce increased 12-HETE synthesis in patients with diabetes in addition to hyperglycemia. Conclusively, 12-HETE is a potential risk factor for DR. The 12-HETE/GPR31 axis plays a crucial role in HRMEC dysfunction and could be a novel target for DR prevention and control. Nevertheless, further research is warranted to provide comprehensive insights into the complex underlying mechanisms of 12-HETE in DR.


Subject(s)
12-Hydroxy-5,8,10,14-eicosatetraenoic Acid , Diabetes Mellitus, Experimental , Diabetic Retinopathy , Mice, Inbred C57BL , Receptors, G-Protein-Coupled , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/etiology , Diabetic Retinopathy/pathology , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , Humans , Animals , Receptors, G-Protein-Coupled/metabolism , Mice , Male , Diabetes Mellitus, Experimental/metabolism , Female , Endothelial Cells/metabolism , Middle Aged , Prospective Studies , Cells, Cultured
5.
Angle Orthod ; 94(5): 566-573, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39230015

ABSTRACT

OBJECTIVES: To investigate whether the inhibition of 12/15-lipoxygenase (12/15-LOX), one of the core enzymes of the arachidonic acid cascade, suppresses orthodontically induced root resorption (OIRR), and examine the involvement of the hyaline degeneration of periodontal ligament cells and odontoclast differentiation. MATERIALS AND METHODS: The left maxillary first molars of 10-week-old male Wistar rats were moved mesially for 14 days using a closed-coil spring (25 cN) inserted between the first molar and incisor. The rats were intraperitoneally administered with a 12/15-LOX specific inhibitor (ML-351; 0.05 mmol/kg) daily in the experimental group or vehicle (dimethyl sulfoxide) in the control group. Tooth movement was measured using microcomputed tomography on day 14. The appearance of OIRR, hyaline degeneration, osteoclasts, and odontoclasts was evaluated via histological analysis. Immunohistochemical staining for receptor-activated NF-kB ligand (RANKL) and osteoprotegerin was performed. RESULTS: OIRR observed on day 14 in the control group was strongly suppressed by ML-351 treatment. Hyaline degeneration observed on the compression side on day 3 and the appearance of osteoclasts and odontoclasts on days 3 and 14 were significantly suppressed by ML-351. RANKL expression on day 3 was significantly suppressed by ML-351. These key processes in OIRR were substantially suppressed by ML-351 treatment. CONCLUSIONS: Inhibition of 12/15-LOX reduced OIRR by suppressing hyaline degeneration and subsequent odontoclast differentiation.


Subject(s)
Arachidonate 12-Lipoxygenase , Arachidonate 15-Lipoxygenase , Lipoxygenase Inhibitors , Osteoclasts , Rats, Wistar , Root Resorption , Tooth Movement Techniques , Animals , Male , Tooth Movement Techniques/methods , Root Resorption/etiology , Root Resorption/prevention & control , Root Resorption/pathology , Rats , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/therapeutic use , Osteoclasts/drug effects , X-Ray Microtomography , RANK Ligand/metabolism , Cell Differentiation/drug effects , Periodontal Ligament/drug effects , Periodontal Ligament/pathology , Osteoprotegerin/metabolism , Molar
6.
Methods Enzymol ; 704: 59-87, 2024.
Article in English | MEDLINE | ID: mdl-39300657

ABSTRACT

This Chapter describes methods for the biosynthetic substitution of the mononuclear, non-heme iron in plant and animal lipoxygenases (LOXs). Substitution of this iron center for a manganese ion results in an inactive, yet faithful structural surrogate of the LOX enzymes. This metal ion substitution permits structural and dynamical studies of enzyme-substrate complexes in solution and immobilized on lipid membrane surfaces. Representative procedures for two LOXs, soybean lipoxygenase (SLO) from plants and human epithelial 15-lipoxygenase-2 (15-LOX-2) from mammals, are described as examples.


Subject(s)
Arachidonate 15-Lipoxygenase , Glycine max , Iron , Humans , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/chemistry , Glycine max/enzymology , Iron/chemistry , Iron/metabolism , Lipoxygenase/chemistry , Lipoxygenase/metabolism , Animals , Lipoxygenases/metabolism , Lipoxygenases/chemistry , Manganese/chemistry , Manganese/metabolism
7.
Biochemistry (Mosc) ; 89(8): 1519-1530, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39245459

ABSTRACT

The lipoxygenase cascade in plants is a source of oxylipins (oxidized fatty acid derivatives), which play an important role in regulatory processes and formation of plant response to stress factors. Some of the most common enzymes of the lipoxygenase cascade are 13-specific hydroperoxide lyases (HPLs, also called hemiacetal synthases) of the CYP74B subfamily. In this work, we identified and cloned the CYP74B34 gene from carrot (Daucus carota L.) and described the biochemical properties of the corresponding recombinant enzyme. The CYP74B34 enzyme was active towards 9- and 13-hydroperoxides of linoleic (9-HPOD and 13-HPOD, respectively) and α-linolenic (9-HPOT and 13-HPOT, respectively) acids. CYP74B34 specifically converted 9-HPOT and 13-HPOT into aldo acids (HPL products). The transformation of 13-HPOD led to the formation of aldo acids and epoxyalcohols [products of epoxyalcohol synthase (EAS) activity] as major and minor products, respectively. At the same time, conversion of 9-HPOD resulted in the formation of epoxyalcohols as the main products and aldo acids as the minor ones. Therefore, CYP74B34 is the first enzyme with a double HPL/EAS activity described in carrot. The presence of these catalytic activities was confirmed by analysis of the oxylipin profiles for the roots from young seedlings and mature plants. In addition, we substituted amino acid residues in one of the catalytically essential sites of the CYP74B34 and CYP74B33 proteins and investigated the properties of the obtained mutant enzymes.


Subject(s)
Aldehyde-Lyases , Cytochrome P-450 Enzyme System , Daucus carota , Plant Proteins , Daucus carota/enzymology , Daucus carota/genetics , Daucus carota/metabolism , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/genetics , Aldehyde-Lyases/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/chemistry , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Lipid Peroxides/metabolism , Substrate Specificity , Amino Acid Sequence , Linoleic Acids
8.
N Biotechnol ; 84: 64-76, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39341453

ABSTRACT

Lipoxygenases (LOXs) catalyze the regioselective dioxygenation of polyunsaturated fatty acids (PUFAs), generating fatty acid hydroperoxides (FAHPs) with diverse industrial applications. Bacterial LOXs have garnered significant attention in recent years due to their broad activity towards PUFAs, yet knowledge about the structural factors influencing their substrate preferences remains limited. Here, we characterized a bacterial LOX from Burkholderia thailandensis (Bt-LOX), and identified key residues affecting its substrate preference and regioselectivity through site-directed mutagenesis. Bt-LOX preferred ω-6 PUFAs and exhibited regioselectivity at the ω-5 position. Mutations targeting the substrate binding pocket and the oxygen access channel led to the production of three active variants with distinct catalytic properties. The A431G variant bifurcated dioxygenation between the ω-5 and ω-9 positions, while F446V showed reduced regioselectivity with longer PUFAs. Interestingly, L445A displayed altered substrate specificity, favoring ω-3 over ω-6 PUFAs. Furthermore, L445A shifted the regioselectivity of dioxygenation to the ω-2 position in ω-3 PUFAs, and, for some substrates, facilitated dioxygenation closer to the carboxylic acid terminus, suggesting an altered substrate orientation. Among these variants, L445A represents a significant milestone in LOX research, as these alterations in substrate specificity, dioxygenation regioselectivity, and substrate orientation were achieved by a single mutation only. These findings illuminate key residues governing substrate preference and regioselectivity in Bt-LOX, offering opportunities for synthesizing diverse FAHPs and highlighting the potential of bacterial LOXs as biocatalysts with widespread applications.

9.
J Sci Food Agric ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254304

ABSTRACT

BACKGROUND: The present study explored the effects of pre-harvest methyl jasmonates spraying on the volatiles of 'Cabernet Gernischt' grapes through the lipoxygenase pathway. Headspace solid-phase microextraction combined with gas chromatography-mass spectrometry and an enzyme-linked immunosorbent assay were utilized to analyze volatile metabolites and key enzyme activities following methyl jasmonates application. Total RNA extraction and cDNA library construction were followed by transcriptome sequencing. RESULTS: The application of 0.1 mmol L-1 methyl jasmonate and 5 mmol L-1 methyl dihydrojasmonate significantly increased the levels of C6 compounds in 'Cabernet Gernischt' berries, and also enhanced the utilization of unsaturated fatty acids as precursors in the lipoxygenase-hydroperoxides lyase pathway. The up-regulated expression of VvADH1, VvADH2, VvHPL and VvLOX2S genes led to modulations in enzyme activity, thereby enhancing the berries's aromatic profile. There was a significant correlation between linoleic and linolenic acids (i.e. the precursors of the lipoxygenase pathway) and the activities and metabolites of key enzymes. CONCLUSION: The optimal concentration of methyl jasmonates treatment favorably influences the accumulation of green leaf volatiles in 'Cabernet Gernischt' grape. © 2024 Society of Chemical Industry.

10.
Front Pharmacol ; 15: 1472396, 2024.
Article in English | MEDLINE | ID: mdl-39268466

ABSTRACT

Many drugs can act on multiple targets or disease pathways, regardless of their original purpose. Drug repurposing involves reevaluating existing compounds for new medical uses. This can include repositioning approved drugs, redeveloping unapproved drugs, or repurposing any chemical, nutraceutical, or biotherapeutic product for new applications. Traditional drug development is slow, expensive, and has high failure rates. Drug repurposing can speed up the process, costing less and saving time. This approach can save 6-7 years of early-stage research time. Drug repurposing benefits from existing compounds with optimized structures and approved for clinical use with associated structure-activity relationship publications, supporting the development of new effective compounds. Drug repurposes can now utilize advanced in silico screening enabled by artificial intelligence (AI) and sophisticated tissue and organ-level in vitro models. These models more accurately replicate human physiology and improve the selection of existing drugs for further pre-clinical testing and, eventually, clinical trials for new indications. This mini-review discusses some examples of drug repurposing and novel strategies for further development of compounds for targets of the arachidonic acid cascade. In particular, we will delve into the prospect of repurposing antiplatelet agents for cancer prevention and addressing the emerging noncanonical functionalities of 5-lipoxygenase, potentially for leukemia therapy.

11.
J Exp Bot ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39207270

ABSTRACT

Aroma volatiles, essential for tomato fruit flavor, were previously reported to accumulate more abundantly in fruits cultivated with compost tea. However, the underlying molecular mechanisms by which compost tea regulates aroma volatile synthesis in tomato fruit remains elusive. Here, we found that compost tea treatment significantly increased the content of volatiles derived from fatty acids in tomato fruit. Transcriptional analysis revealed that compost tea application upregulated the expression of linolenic acid metabolic pathway gene LOXs (SlLOXD and SlLOXE). Furthermore, overexpression of SlLOXD and SlLOXE enhanced the volatiles in fruit, while compost tea treatment failed to increase volatiles content in loxd and loxe mutants. Interestingly, compost tea application increased the level of ACC, a precursor of ethylene. Treatment with an ethylene signaling inhibitor 1-methylcyclopropene (1-MCP) negated the aroma enhancement effect of compost tea on tomato fruits. SlERF.E4, a transcription factor responsive to ethylene signaling, bound to the promoters of SlLOXD and SlLOXE. Overexpression of SlERF.E4 led to increased expression of SlLOXD and SlLOXE, as well as elevated fruit volatile content. Indeed, aroma enhancement in the SlERF.E4-overexpressed tomatoes was not affected by 1-MCP. These findings shed light on the molecular mechanisms underlying the improvement of flavor in organic fruits and provide valuable insights for the development of strategies in organic agriculture.

12.
Metabolites ; 14(8)2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39195516

ABSTRACT

In the current study, two commercial industrial hemp (IH) fiber varieties (V1: CFX-2 and V2: Henola) were assessed for their ability to regulate salt-induced oxidative stress metabolism. For 30 days, plants were cultivated in greenhouse environments with five different salinity treatments (0, 50, 80, 100, 150, and 200 mM NaCl). Hydrogen peroxide (H2O2), malondialdehyde (MDA), and lipoxygenase (LOX) and antioxidant enzymes (superoxide dismutase (SOD), catalase, guaiacol peroxidase (GPOD), ascorbate peroxidase (APX), glutathione reductase (GR), and glutathione-S-transferase (GST)) were assessed in fully expanded leaves. At 200 and 100 mM NaCl concentrations, respectively, 30 days after saline treatment, plants in V1 and V2 did not survive. At 80 mM NaCl, the leaves of V2 showed higher concentrations of H2O2, MDA, and LOX than those of V1. Higher SOD, CAT, GPOD, APX, GR, and GST activity in the leaves of V1 up to 100 mM NaCl resulted in lower levels of H2O2 and MDA. At 80 mM NaCl, V2 demonstrated the total failure of the antioxidant defense mechanism. These results reveal that V1 demonstrated stronger salt tolerance than V2, in part due to better antioxidant metabolism.

13.
J Nanobiotechnology ; 22(1): 479, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39134988

ABSTRACT

The prevention and treatment of gastrointestinal mucosal injury caused by a plateau hypoxic environment is a clinical conundrum due to the unclear mechanism of this syndrome; however, oxidative stress and microbiota dysbiosis may be involved. The Robinia pseudoacacia L. flower, homologous to a functional food, exhibits various pharmacological effects, such as antioxidant, antibacterial, and hemostatic activities. An increasing number of studies have revealed that plant exosome-like nanoparticles (PELNs) can improve the intestinal microbiota and exert antioxidant effects. In this study, the oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles (RFELNs) significantly ameliorated hypoxia-induced gastric and small intestinal mucosal injury in mice by downregulating hypoxia-inducible factor-1α (HIF-1α) and HIF-2α expression and inhibiting hypoxia-mediated ferroptosis. In addition, oral RFELNs partially improved hypoxia-induced microbial and metabolic disorders of the stomach and small intestine. Notably, RFELNs displayed specific targeting to the gastrointestinal tract. In vitro experiments using gastric and small intestinal epithelial cell lines showed that cell death caused by elevated HIF-1α and HIF-2α under 1% O2 mainly occurred via ferroptosis. RFELNs obviously inhibited HIF-1α and HIF-2α expression and downregulated the expression of NOX4 and ALOX5, which drive reactive oxygen species production and lipid peroxidation, respectively, suppressing ferroptosis under hypoxia. In conclusion, our findings underscore the potential of oral RFELNs as novel, naturally derived agents targeting the gastrointestinal tract, providing a promising therapeutic approach for hypoxia-induced gastric and small intestinal mucosal ferroptosis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Exosomes , Ferroptosis , Flowers , Gastric Mucosa , Hypoxia-Inducible Factor 1, alpha Subunit , Intestinal Mucosa , Intestine, Small , Lipid Peroxidation , Nanoparticles , Animals , Ferroptosis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Exosomes/metabolism , Exosomes/drug effects , Lipid Peroxidation/drug effects , Intestine, Small/drug effects , Intestine, Small/metabolism , Intestine, Small/pathology , Administration, Oral , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Flowers/chemistry , Nanoparticles/chemistry , Hypoxia/drug therapy , Hypoxia/metabolism , Humans , Mice, Inbred C57BL
14.
Int J Mol Sci ; 25(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125865

ABSTRACT

Inflammation is a protective stress response triggered by external stimuli, with 5-lipoxygenase (5LOX) playing a pivotal role as a potent mediator of the leukotriene (Lts) inflammatory pathway. Nordihydroguaiaretic acid (NDGA) functions as a natural orthosteric inhibitor of 5LOX, while 3-acetyl-11-keto-ß-boswellic acid (AKBA) acts as a natural allosteric inhibitor targeting 5LOX. However, the precise mechanisms of inhibition have remained unclear. In this study, Gaussian accelerated molecular dynamics (GaMD) simulation was employed to elucidate the inhibitory mechanisms of NDGA and AKBA on 5LOX. It was found that the orthosteric inhibitor NDGA was tightly bound in the protein's active pocket, occupying the active site and inhibiting the catalytic activity of the 5LOX enzyme through competitive inhibition. The binding of the allosteric inhibitor AKBA induced significant changes at the distal active site, leading to a conformational shift of residues 168-173 from a loop to an α-helix and significant negative correlated motions between residues 285-290 and 375-400, reducing the distance between these segments. In the simulation, the volume of the active cavity in the stable conformation of the protein was reduced, hindering the substrate's entry into the active cavity and, thereby, inhibiting protein activity through allosteric effects. Ultimately, Markov state models (MSM) were used to identify and classify the metastable states of proteins, revealing the transition times between different conformational states. In summary, this study provides theoretical insights into the inhibition mechanisms of 5LOX by AKBA and NDGA, offering new perspectives for the development of novel inhibitors specifically targeting 5LOX, with potential implications for anti-inflammatory drug development.


Subject(s)
Arachidonate 5-Lipoxygenase , Lipoxygenase Inhibitors , Markov Chains , Molecular Dynamics Simulation , Arachidonate 5-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/chemistry , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase Inhibitors/chemistry , Humans , Catalytic Domain , Protein Binding , Masoprocol/pharmacology , Masoprocol/chemistry , Protein Conformation
15.
Eur J Med Chem ; 277: 116763, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39146834

ABSTRACT

5-Methoxy-3-(5-methoxyindolin-2-yl)-1H-indole (3), whose structure was unambiguously elucidated by X-ray analysis, was identified as a multi-target compound with potential application in neurodegenerative diseases. It is a low nanomolar inhibitor of QR2 (IC50 = 7.7 nM), with greater potency than melatonin and comparable efficacy to the most potent QR2 inhibitors described to date. Molecular docking studies revealed the potential binding mode of 3 to QR2, which explains its superior potency compared to melatonin. Furthermore, compound 3 inhibits hMAO-A, hMAO-B and hLOX-5 in the low micromolar range and is an excellent ROS scavenger. In phenotypic assays, compound 3 showed neuroprotective activity in a cellular model of oxidative stress damage, it was non-toxic, and was able to activate neurogenesis from neural stem-cell niches of adult mice. These excellent biological properties, together with its both good in silico and in vitro drug-like profile, highlight compound 3 as a promising drug candidate for neurodegenerative diseases.


Subject(s)
Melatonin , Molecular Docking Simulation , Neurogenesis , Neuroprotective Agents , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/chemical synthesis , Melatonin/pharmacology , Melatonin/chemistry , Animals , Mice , Humans , Structure-Activity Relationship , Neurogenesis/drug effects , Molecular Structure , Drug Discovery , Quinone Reductases/antagonists & inhibitors , Quinone Reductases/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Dose-Response Relationship, Drug
16.
Int J Biol Macromol ; 278(Pt 1): 134379, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098692

ABSTRACT

The structural and digestive properties of indica rice starch-fatty acid complexes and the effects of lipoxygenase on the structural and digestive properties of the complexes were examined in this study. The complexes were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy and Raman spectroscopy. The results showed that indica rice starch had the highest molecular chain order and the highest crystallinity, and the crystallization disappeared after gelatinization, and the formation of indica rice starch-fatty acid complexes promoted the transformation of starch crystal structure from A-type to V-type. Lipoxygenase reduced the regularity of starch molecular crystal structure in the complexes, while enzyme protein improved the order of starch molecular structure in the complexes. The regularity of starch crystal structure in the complexes could improve with the increase of composite temperature and the increase of fatty acid unsaturation. In vitro digestibility and in vitro digestion kinetics showed that the formation of indica rice starch-fatty acid complexes reduced the digestibility of indica rice starch to a certain extent. The RDS content of indica rice starch was 66.42 ± 0.39 %, and lipoxygenase reduced the reduction of rapidly digested starch content during complexes digestion, while enzyme protein increased the content of resistant starch.


Subject(s)
Digestion , Fatty Acids , Oryza , Starch , Oryza/chemistry , Starch/chemistry , Starch/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Lipoxygenase/metabolism , Lipoxygenase/chemistry , X-Ray Diffraction , Spectroscopy, Fourier Transform Infrared , Kinetics
17.
mBio ; 15(9): e0185624, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39120139

ABSTRACT

Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant threefold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin, triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased the release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier-disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.IMPORTANCEStreptococcus pneumoniae (Sp), a leading cause of pneumonia, can spread from the lung into the bloodstream to cause systemic disease. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that limit pathologic host immune responses to Sp. Excessive polymorphonuclear leukocyte (PMN) infiltration into Sp-infected airways promotes systemic disease. Using stem cell-derived respiratory cultures that reflect bona fide lung epithelium, we identified eicosanoid hepoxilin A3 as a critical pulmonary PMN chemoattractant that is sufficient to drive PMN-mediated epithelial damage by inducing the release of neutrophil elastase. Inhibition of the release or activity of this protease in mice limited epithelial barrier disruption and bacterial dissemination, suggesting a new host-directed treatment for Sp lung infection.


Subject(s)
Bacteremia , Leukocyte Elastase , Neutrophils , Streptococcus pneumoniae , Animals , Mice , Streptococcus pneumoniae/immunology , Leukocyte Elastase/metabolism , Bacteremia/microbiology , Neutrophils/immunology , Neutrophils/metabolism , 8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/metabolism , Lung/microbiology , Lung/immunology , Humans , Epithelial Cells/microbiology , Epithelial Cells/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/microbiology , Disease Models, Animal , Mice, Inbred C57BL , Streptolysins/metabolism , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 12-Lipoxygenase/genetics
18.
Inflammopharmacology ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167313

ABSTRACT

Leukotrienes (LTs) are a group of substances that cause inflammation. They are produced by the enzyme 5-lipoxygenase (5-LOX) from arachidonic acid. Cysteinyl LTs are a group of lipid molecules that have a prominent role in inflammatory signaling in the allergic diseases. Although they are traditionally known for their role in allergic disease, current advancements in bio-medical research have shed light on the involvement of these inflammatory mediators in diseases such as in the inflammation related to central nervous system (CNS) disorders. Among the CNS diseases, LTs, along with 5-LOX and their receptors, have been shown to be associated with multiple sclerosis (MS), Alzheimer's disease (AD), and Parkinson's disease (PD). Through a comprehensive review of current research and experimentation, this investigation provides an insight on the biosynthesis, receptors, and biological effects of LTs in the body. Furthermore, implications of leukotriene signaling in CNS and its intricate role in neurodegeneration are also studied. Through the revelation of these insights, our aim is to establish a foundation for the development of enhanced and focused therapeutic approaches in the continuous endeavor to combat neurodegeneration. Furthermore, the pharmacological inhibition of leukotriene signaling with selective inhibitors offers promising prospects for future interventions and treatments for neurodegenerative diseases.

19.
J Lipid Res ; 65(9): 100614, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098585

ABSTRACT

Ischemic stroke remains a leading cause of mortality and long-term disability worldwide, necessitating efforts to identify biomarkers for diagnosis, prognosis, and treatment monitoring. The present study aimed to identify novel plasma biomarkers of neurodegeneration and inflammation in a mouse model of stroke induced by distal middle cerebral artery occlusion. Using targeted lipidomic and global untargeted metabolomic profiling of plasma collected from aged male mice 24 h after stroke and weekly thereafter for 7 weeks, we discovered distinct acute and chronic signatures. In the acute phase, we observed elevations in myelin-associated lipids, including sphingomyelin (SM) and hexosylceramide (HCER) lipid species, indicating brain lipid catabolism. In the chronic phase, we identified 12-hydroxyeicosatetraenoic acid (12-HETE) as a putative biomarker of prolonged inflammation, consistent with our previous observation of a biphasic pro-inflammatory response to ischemia in the mouse brain. These results provide insight into the metabolic alterations detectable in the plasma after stroke and highlight the potential of myelin degradation products and arachidonic acid derivatives as biomarkers of neurodegeneration and inflammation, respectively. These discoveries lay the groundwork for further validation in human studies and may improve stroke management strategies.


Subject(s)
Biomarkers , Disease Models, Animal , Ischemic Stroke , Lipidomics , Metabolomics , Animals , Biomarkers/blood , Mice , Male , Ischemic Stroke/blood , Ischemic Stroke/metabolism , Mice, Inbred C57BL , Aging/blood , Aging/metabolism
20.
Biochem Biophys Res Commun ; 737: 150533, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39142138

ABSTRACT

Enzyme-mediated lipid oxidation is an important regulatory event in cell signaling, with oxidized lipids being potent signaling molecules that can illicit dramatic changes in cell behavior. For example, peroxidation of an arachidonoyl poly-unsaturated fatty acid by the human enzyme 15-lipoxygenase-2 (15-LOX-2) has been associated with formation of atherosclerotic plaques. Previous work on synthetically oxidized membranes has shown that oxidized lipid tails will change their conformation to facilitate interactions between the peroxide group and the lipid headgroups. However, this phenomenon has not been directly observed for a lipid membrane that has undergone enzyme-catalyzed oxidation. In this study, we report on the structure of a model lipid membrane before and after oxidation by 15-LOX-2. A model lipid membrane monolayer at the air-liquid interface was constructed from 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC) in a Langmuir trough, and X-ray reflectivity measurements were conducted to determine the electron density profile of the system. Exposure to 15-LOX-2 caused a dramatic change in the SAPC structure, namely a blurred distinction between the lipid tail/head layers and shortening of the average lipid tail length by ∼3 Å. The electron density profile of the oxidized SAPC monolayer is similar to that of a synthetically oxidized substrate mimic. Overall, this reported observation of an enzymatically-oxidized membrane structure in situ is helping to bridge a gap in the literature between structural studies on synthetically oxidized membranes and cellular studies aiming to understand physiological responses.

SELECTION OF CITATIONS
SEARCH DETAIL