Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.986
Filter
1.
Food Chem ; 459: 140333, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38996638

ABSTRACT

Colorants, especially synthetic colorants, play a crucial role in enhancing the aesthetic qualities of food owing to their cost-effectiveness and stability against environmental factors. Ensuring the safe and regulated use of colorants is essential for maintaining consumer trust in food safety. Various preparation and analytical technologies, which are continuously undergoing improvement, are currently used to quantify of synthetic colorants in food products. This paper reviews recent developments in analytical techniques for synthetic food colorants, detection and compares the operational principles, advantages, and disadvantages of each technology. Additionally, it also explores advancements in these technologies, discussing several invaluable tools of analysis, such as high-performance liquid chromatography, liquid chromatography-tandem mass spectrometry, electrochemical sensors, digital image analysis, near-infrared spectroscopy, and surface-enhanced Raman spectroscopy. This comprehensive overview aims to provide valuable insights into current progress and research in the field of food colorant analysis.

2.
Metabolomics ; 20(4): 73, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980450

ABSTRACT

INTRODUCTION: During the Metabolomics 2023 conference, the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) presented a QA/QC workshop for LC-MS-based untargeted metabolomics. OBJECTIVES: The Best Practices Working Group disseminated recent findings from community forums and discussed aspects to include in a living guidance document. METHODS: Presentations focused on reference materials, data quality review, metabolite identification/annotation and quality assurance. RESULTS: Live polling results and follow-up discussions offered a broad international perspective on QA/QC practices. CONCLUSIONS: Community input gathered from this workshop series is being used to shape the living guidance document, a continually evolving QA/QC best practices resource for metabolomics researchers.


Subject(s)
Mass Spectrometry , Metabolomics , Quality Control , Metabolomics/methods , Metabolomics/standards , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Mass Spectrometry/methods , Humans , Consensus , Liquid Chromatography-Mass Spectrometry
3.
JIMD Rep ; 65(4): 262-271, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974609

ABSTRACT

Givosiran is a subcutaneously administered, liver-targeted RNA interference (RNAi) therapeutic that has been approved for treating acute hepatic porphyria (AHP). Elevation in plasma homocysteine (hyperhomocysteinemia) has been reported in AHP patients, and treatment with givosiran has been reported to further increase homocysteine levels in some patients. The mechanism of homocysteine elevation during givosiran treatment is unknown, but has been hypothesized to be mediated by a reduction in activity of cystathionine ß-synthase (CBS), which uses homocysteine as a substrate. A liquid chromatography-tandem mass spectrometry-based assay was adapted to measure circulating CBS activity. Using plasma collected from the Phase III ENVISION study, CBS activity was measured to directly evaluate whether it is associated with elevated homocysteine levels in givosiran-treated patients. CBS activity was reduced following givosiran treatment and both homocysteine and methionine levels were inversely correlated with CBS activity. Following administration of a supplement containing vitamin B6, a cofactor for CBS, in four patients during the trial, plasma CBS activity was found to increase, mirroring a corresponding decrease in homocysteine levels. These results support the hypothesis that elevated homocysteine levels following givosiran treatment result from a reduction of CBS activity and that vitamin B6 supplementation lowers homocysteine levels by increasing CBS activity.

4.
Foods ; 13(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38998654

ABSTRACT

The aim of this study was to assess the nutraceutical qualities of extra virgin olive oil (EVOO) samples obtained from three Sicilian olive cultivars: Nocellara, Biancolilla, and Cerasuola. We also evidenced the relationship among biophenols, base parameters and panel test scores, and evaluated the stability of the biophenols in EVOO. The assessment also took into consideration variations in olive harvesting periods and the influence of four different milling methods. A statistical analysis of the collected data revealed that the cultivar and harvesting period were the primary factors influencing the bio-phenol content, while the milling methods employed did not significantly affect the levels of biophenols in the oils. The panel test results were also illuminating as they were strongly related to the cultivar and polyphenol content. Following the criteria outlined in EC Regulation 432/2012, we selected three samples, each representing one of the cultivars, which exhibited the highest bio-phenol content to evaluate the biophenol stability during a time span of 16 months.

5.
J Chromatogr A ; 1730: 465060, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38861823

ABSTRACT

Hydrophilic interaction (liquid) chromatography (HILIC) has become the first choice LC mode for the separation of hydrophilic analytes. Numerous studies reported the poor retention time repeatability of HILIC. The problem was often ascribed to slow equilibration and insufficient re-equilibration time to establish the sensitive semi-immobilized water layer at the interface of the polar stationary phase and the bulk mobile phase. In this study, we compare retention time repeatability in HILIC for borosilicate glass and PFA (co-polymer of tetrafluoroethylene and perfluoroalkoxyethylene) solvent bottles. During this study, we observed peak patterns shifting towards higher retention times (for metabolites and peptides) and lower retention times (oligonucleotide sample) with ongoing analysis time when standard borosilicate glass bottles were used as solvent reservoirs. It was hypothesized that release of ions (sodium, potassium, borate, etc.) from the borosilicate glass bottles leads to alterations (thickness and electrostatic screening effects) in the semi-immobilized water layer which is adsorbed to the polar stationary phase surface under acetonitrile-rich eluents in HILIC with concomitant shifts in retention. When PFA solvent bottles were employed instead of borosilicate glass, retention time repeatability was greatly improved and changed from average 8.4 % RSD for the tested metabolites with borosilicate glass bottles to 0.14 % RSD for the PFA solvent bottles (30 injections over 12 h). Similar improvements were observed for peptides and oligonucleotides. This simple solution to the retention time repeatability problem in HILIC might contribute to a better acceptance of HILIC, especially in fields like targeted and untargeted metabolomics, peptide and oligonucleotide analysis.

6.
Oral Dis ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852162

ABSTRACT

OBJECTIVE: This study focused on the metabolic characteristics of tongue coating in patients with intra-oral halitosis (IOH) to investigate potential diagnostic biomarkers for IOH. METHODS: Oral healthy participants were enrolled in this study. Halitosis was evaluated with an organoleptic assessment, a Halimeter®, and an OralChroma™. Tongue coating samples were collected from 18 halitosis patients and 18 healthy controls. Liquid chromatography-mass spectrometry was conducted to reveal the IOH-related metabolic variations in tongue coating. RESULTS: A total of 2214 metabolites were obtained. Most metabolites were shared between the two groups. A total of 274 upregulated metabolites, such as paramethasone acetate and indole-3-acetic acid, and 43 downregulated metabolites, including deoxyadenosine and valyl-arginine, were detected in the halitosis group. Functional analysis indicated that several metabolic pathways, including arginine biosynthesis, arginine and proline metabolism, histidine metabolism, and lysine degradation were significantly enriched in the IOH group. The least absolute shrinkage and selection operator logistic regression analysis revealed that paramethasone acetate, {1-[2-(4-carbamimidoyl-benzoylamino)-propionyl]-piperidin-4-yloxy}-acetic acid, indole-3-acetic acid, and valyl-arginine were remarkably associated with IOH. CONCLUSIONS: This study revealed the metabolites present in tongue coating and identified effective biomarkers, providing essential insights into the prediction, pathogenesis, and diagnosis of IOH.

7.
Molecules ; 29(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38930920

ABSTRACT

A promising method was established for the determination of nine halobenzoquinones (HBQs) in potable water by membrane solid-phase extraction (MSPE) pretreatment and the liquid chromatography-mass spectrometry (LC-MS) method. A 500 mL water sample was taken for enrichment by the SDB-RPS membrane, which was previously activated by methanol and ultrapure water. The sample was eluted with methanol and re-dissolved with the initial mobile phase after nitrogen blowing. Then, it was detected in negative ion mode using the working curve, and HBQs were quantified by the external standard method. The linearity was satisfactory in the concentration range of 4-1000 ng/L, with correlation coefficients of 0.9963~0.9994. The recoveries were 73.5~126.6% at three spiked levels, with relative standard deviations (RSDs) of 6.8~15.5%. The limits of detection (LOD, S/N = 3) values were 0.1~0.7 ng/L. The results demonstrate that the MSPE-LC-MS method is reliable, rapid, and sensitive for the simultaneous analysis of nine HBPs in potable water.


Subject(s)
Benzoquinones , Drinking Water , Solid Phase Extraction , Solid Phase Extraction/methods , Chromatography, Liquid/methods , Benzoquinones/chemistry , Benzoquinones/analysis , Drinking Water/analysis , Drinking Water/chemistry , Mass Spectrometry/methods , Limit of Detection , Water Pollutants, Chemical/analysis , Liquid Chromatography-Mass Spectrometry
8.
Fitoterapia ; 177: 106079, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38897252

ABSTRACT

This study aims to elucidate the potential targets and molecular mechanisms underlying the anticancer effects of Red fermented rice extract using molecular simulation techniques. The inhibitory effects of different elution fractions of Red fermented rice extract on A549 and MCF-7 cell proliferation were evaluated through CCK-8 assays. Liquid chromatography-mass spectrometry (LC-MS) was employed to elucidate the structural information of active components, while molecular simulation techniques aided in identifying target proteins based on small molecule structures. Protein immunoblotting was utilized to investigate the mechanisms of action of relevant targets. The study found that the petroleum ether-ethyl acetate and ethyl acetate elution fractions of Red fermented rice extract significantly inhibited A549 and MCF-7 cell proliferation, with stronger effects observed on A549 cells. LC-MS structural analysis identified 25 small molecule structures. Molecular simulations successfully revealed interaction between active elution fractions of Red fermented rice extract and the cancer-related protein FGFR1. Further investigation into the phosphorylation of FGFR1 and its downstream pathway targets PI3K/AKT demonstrated that the active elution fractions exerted their anticancer activity by inhibiting the phosphorylation of FGFR1, PI3K, and AKT proteins. This comprehensive study, integrating CCK-8 assays, LC-MS, molecular simulation techniques, and protein immunoblotting, provides a deep understanding of the anticancer mechanisms of Red fermented rice extract, guiding its further development and clinical application.

9.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928334

ABSTRACT

Vaults are eukaryotic ribonucleoproteins consisting of 78 copies of the major vault protein (MVP), which assemble into a nanoparticle with an about 60 nm volume-based size, enclosing other proteins and RNAs. Regardless of their physiological role(s), vaults represent ideal, natural hollow nanoparticles, which are produced by the assembly of the sole MVP. Here, we have expressed in Komagataella phaffi and purified an MVP variant carrying a C-terminal Z peptide (vault-Z), which can tightly bind an antibody's Fc portion, in view of targeted delivery. Via surface plasmon resonance analysis, we could determine a 2.5 nM affinity to the monoclonal antibody Trastuzumab (Tz)/vault-Z 1:1 interaction. Then, we characterized the in-solution interaction via co-incubation, ultracentrifugation, and analysis of the pelleted proteins. This showed virtually irreversible binding up to an at least 10:1 Tz/vault-Z ratio. As a proof of concept, we labeled the Fc portion of Tz with a fluorophore and conjugated it with the nanoparticle, along with either Tz or Cetuximab, another monoclonal antibody. Thus, we could demonstrate antibody-dependent, selective uptake by the SKBR3 and MDA-MB 231 breast cancer cell lines. These investigations provide a novel, flexible technological platform that significantly extends vault-Z's applications, in that it can be stably conjugated with finely adjusted amounts of antibodies as well as of other molecules, such as fluorophores, cell-targeting peptides, or drugs, using the Fc portion as a scaffold.


Subject(s)
Nanoparticles , Trastuzumab , Vault Ribonucleoprotein Particles , Humans , Vault Ribonucleoprotein Particles/metabolism , Vault Ribonucleoprotein Particles/chemistry , Nanoparticles/chemistry , Trastuzumab/chemistry , Cell Line, Tumor , Cetuximab/chemistry , Antibodies, Monoclonal/chemistry , Immunoconjugates/chemistry
10.
J Proteomics ; 303: 105215, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38843981

ABSTRACT

Automated methods for enzyme immobilization via 4-triethoxysilylbutyraldehyde (TESB) derived silicone-based coupling agents were developed. TESB and its oxidized derivative, 4-triethoxysilylbutanoic acid (TESBA), were determined to be the most effective. The resulting immobilized enzyme particles (IEPs) displayed robustness, rapid digestion, and immobilization efficiency of 51 ± 8%. Furthermore, we automated the IEP procedure, allowing for multiple enzymes, and/or coupling agents to be fabricated at once, in a fraction of the time via an Agilent Bravo. The automated trypsin TESB and TESBA IEPs were shown to rival a classical in-gel digestion method. Moreover, pepsin IEPs favored cleavage at leucine (>50%) over aromatic and methionine residues. The IEP method was then adapted for an in-situ immobilized enzyme microreactor (IMER) fabrication. We determined that TESBA could functionalize the silica capillary's inner wall while simultaneously acting as an enzyme coupler. The IMER digestion of bovine serum albumin (BSA), mirroring IEP digestion conditions, yielded a 33-40% primary sequence coverage per LC-MS/MS analysis in as little as 15 min. Overall, our findings underscore the potential of both IEP and IMER methods, paving the way for automated analysis and a reduction in enzyme waste through reuse, thereby contributing to a more cost-effective and timely study of the proteome. SIGNIFICANCE: This research introduces 4-triethoxysilylbutyraldehyde (TESB) and its derivatives as silicon-based enzyme coupling agents and an automated liquid handling method for bottom-up proteomics (BUP) while streamlining sample preparation for high-throughput processing. Additionally, immobilized enzyme particle (IEP) fabrication and digestion within the 96-well plate allows for flexibility in protocol where different enzyme-coupler combinations can be employed simultaneously. By enabling the digestion of entire microplates and reducing manual labor, the proposed method enhances reproducibility and offers a more efficient alternative to classical in-gel techniques. Furthermore, pepsin IEPs were noted to favor cleavage at leucine residues which represents an interesting finding when compared to the literature that warrants further study. The capability of immobilized enzyme microreactors (IMER) for rapid digestion (in as little as 15 min) demonstrated the system's efficiency and potential for rapid proteomic analysis. This advancement in BUP not only improves efficiency, but also opens avenues for a fully automated, mass spectrometry-integrated proteomics workflow, promising to expedite research and discoveries in complex biological studies.


Subject(s)
Enzymes, Immobilized , Proteomics , Proteomics/methods , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Silicon/chemistry , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/analysis , Serum Albumin, Bovine/metabolism , Workflow , Animals , Trypsin/chemistry , Trypsin/metabolism , Cattle
11.
Clin Transl Oncol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831193

ABSTRACT

BACKGROUND: This study aimed to investigate the serum metabolite profiles during neoadjuvant chemoradiotherapy (NCRT) in locally advanced rectal cancer (LARC) using liquid chromatography-mass spectrometry (LC-MS) metabolomics analysis. METHODS: 60 serum samples were collected from 20 patients with LARC before, during, and after radiotherapy. LC-MS metabolomics analysis was performed to identify the metabolite variations. Functional annotation was applied to discover altered metabolic pathways. The key metabolites were screened and their ability to predict sensitivity to radiotherapy was calculated using random forests and ROC curves. RESULTS: The results showed that NCRT led to significant changes in the serum metabolite profiles. The serum metabolic profiles showed an apparent separation between different time points and different sensitivity groups. Moreover, the functional annotation showed that the differential metabolites were associated with a series of important metabolic pathways. Pre-radiotherapy (3Z,6Z)-3,6-Nonadiena and pro-radiotherapy 1-Hydroxyibuprofen showed good predictive performance in discriminating the sensitive and non-sensitive group to NCRT, with an AUC of 0.812 and 0.75, respectively. Importantly, the combination of different metabolites significantly increased the predictive ability. CONCLUSION: This study demonstrated the potential of LC-MS metabolomics for revealing the serum metabolite profiles during NCRT in LARC. The identified metabolites may serve as potential biomarkers and therapeutic targets for the management of this disease. Furthermore, the understanding of the affected metabolic pathways may help design more personalized therapeutic strategies for LARC patients.

12.
Article in English | MEDLINE | ID: mdl-38842758

ABSTRACT

PURPOSE: The aim of this study was to explore the potential to profile and distinguish varying clinical severity grades of MIH, compared to normal enamel, using proteomics. METHODS: Liquid chromatography-mass spectrometry analyses were conducted on enamel samples of extracted teeth, from 11 children and adolescents, spanning an age range of 6-18 years. Enamel powder samples were collected from extracted, third molars (n = 3) and first permanent molars diagnosed with MIH (n = 8). The MIH tooth samples were categorized into subgroups based on clinical severity grade. The data were statistically analyzed using ANOVA and Welch's t test. RESULTS: Teeth affected by MIH exhibited a diverse array of proteins, each with different functions related to dental enamel, distinguishing them from their normal enamel counterparts. The application of microdissection combined with LC-MS techniques has revealed the potential to discern unique proteomic profiles among MIH-affected teeth, characterized by varying clinical severity grades. Both analyzed MIH groups displayed consistent trends in the presentation of biological processes, including underabundance of proteins primarily associated with cell organization and biogenesis. Furthermore, proteins linked to cell death were overabundant in both MIH groups. CONCLUSION: Proteomics enabled the detection and differentiation of various proteins across different clinical severity grades of MIH.

13.
Anal Chim Acta ; 1313: 342789, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38862206

ABSTRACT

BACKGROUND: Therapeutic drug monitoring of treatment with therapeutic antibodies is hampered by the application of a wide range of different methods in the quantification of serum levels. LC-MS based methods could significantly improve comparability of results from different laboratories, but such methods are often considered complicated and costly. We developed a method for LC-MS/MS based quantification of 11 therapeutic antibodies concomitantly measured in a single run, with emphasis on simplicity in sample preparation and low cost. RESULTS: After a single-step sample purification using caprylic acid precipitation to remove interfering proteins, the sample underwent proteolysis followed by LC-MS/MS analysis. Infliximab is used as internal standard for sample preparation while isotope-labeled signature peptides identified for each analyte are internal standards for the LC-MS/MS normalization. The method was validated according to recognized guidelines, and pipetting steps can be performed by automated liquid handling systems. The total precision of the method ranged between 2.7 and 7.3 % (5.1 % average) across the quantification range of 4-256 µg/ml for all 11 drugs, with an average accuracy of 96.3 %. Matrix effects were xamined in 55 individual patient samples instead of the recommended 6, and 147 individual patient samples were screened for interfering compounds. SIGNIFICANCE AND NOVELTY: Our method for simultaneous quantification of 11 t-mAb in human serum allows an unprecedented integration of robustness, speed and reduced complexity, which could pave the way for uniform use in research projects and clinical settings alike. In addition, the first LC-MS protocol for signature peptide-based quantification of durvalumab is described. This high throughput method can be readily adapted to a drug panel of choice.


Subject(s)
Caprylates , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/economics , Humans , Caprylates/chemistry , Caprylates/blood , Chemical Precipitation , Chromatography, Liquid/methods , High-Throughput Screening Assays/economics , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/chemistry , Liquid Chromatography-Mass Spectrometry
14.
Phytochem Anal ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923688

ABSTRACT

INTRODUCTION: Compound annotation is always a challenging step in metabolomics studies. The molecular networking strategy has been developed recently to organize the relationship between compounds as a network based on their tandem mass (MS2) spectra similarity, which can be used to improve compound annotation in metabolomics analysis. OBJECTIVE: This study used Bupleuri Radix from different geographic areas to evaluate the performance of molecular networking strategy for compound annotation in liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. METHODOLOGY: The Bupleuri Radix extract was analyzed by LC-quadrupole time-of-flight MS under MSe acquisition mode. After raw data preprocessing, the resulting dataset was used for statistical analysis, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA). The chemical makers related to the sample growth place were selected using variable importance in projection (VIP) > 2, fold change (FC) > 2, and p < 0.05. The molecular networking analysis was applied to conduct the compound annotation. RESULTS: The score plots of PCA showed that the samples were classified into two clusters depending on their growth place. Then, the PLS-DA model was constructed to explore the chemical changes of the samples further. Sixteen compounds were selected as chemical makers and tentatively annotated by the feature-based molecular networking (FBMN) analysis. CONCLUSION: The results showed that the molecular networking method fully exploits the MS information and is a promising tool for facilitating compound annotation in metabolomics studies. However, the software used for feature extraction influenced the results of library searching and molecular network construction, which need to be taken into account in future studies.

15.
Methods Mol Biol ; 2832: 171-182, 2024.
Article in English | MEDLINE | ID: mdl-38869795

ABSTRACT

Stress can affect different groups of plant metabolites and multiple signaling pathways. Untargeted metabolomics enables the collection of whole-spectrum data for the entire metabolite content present in plant tissues at that point in time. We present a thorough approach for large-scale, untargeted metabolomics of plant tissues using reverse-phase liquid chromatography connected to high-resolution mass spectrometry (LC-MS) of dilute methanolic extract. MZmine is a specialized computer software that automates the alignment and baseline modification of all derived mass peaks across all samples, resulting in precise information on the relative abundance of hundreds of metabolites reflected by thousands of mass signals. Further processing with statistic and bioinformatic techniques will provide a comprehensive perspective of the variations and connections among groups of samples.


Subject(s)
Metabolomics , Plants , Software , Stress, Physiological , Metabolomics/methods , Plants/metabolism , Metabolome , Mass Spectrometry/methods , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Computational Biology/methods
16.
Foods ; 13(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38890985

ABSTRACT

Factors influencing the sour taste of coffee and the properties of chlorogenic acid are not yet fully understood. This study aimed to evaluate the impact of roasting degree on pH-associated changes in coffee bean extract and the thermal stability of chlorogenic acid. Coffee bean extract pH decreased up to a chromaticity value of 75 but increased with higher chromaticity values. Ultraviolet-visible spectrophotometry and structural analysis attributed this effect to chlorogenic and caffeic acids. Moreover, liquid chromatography-mass spectrometry analysis identified four chlorogenic acid types in green coffee bean extract. Chlorogenic acid isomers were eluted broadly on HPLC, and a chlorogenic acid fraction graph with two peaks, fractions 5 and 9, was obtained. Among the various fractions, the isomer in fraction 5 had significantly lower thermal stability, indicating that thermal stability differs between chlorogenic acid isomers.

17.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891955

ABSTRACT

There is great concern in equine sport over the potential use of pharmaceutical agents capable of editing the genome or modifying the expression of gene products. Synthetic oligonucleotides are short, single-stranded polynucleotides that represent a class of agents capable of modifying gene expression products with a high potential for abuse in horseracing. As these substances are not covered by most routine anti-doping analytical approaches, they represent an entire class of compounds that are not readily detectable. The nucleotide sequence for each oligonucleotide is highly specific, which makes targeted analysis for these agents problematic. Accordingly, we have developed a non-targeted approach to detect the presence of specific product ions that are not naturally present in ribonucleic acids. Briefly, serum samples were extracted using solid-phase extraction with a mixed-mode cartridge following the disruption of protein interactions to isolate the oligonucleotides. Following the elution and concentration steps, chromatographic separation was achieved utilizing reversed-phase liquid chromatography. Following an introduction to a Thermo Q Exactive HF mass spectrometer using electrospray ionization, analytes were detected utilizing a combination of full-scan, parallel reaction monitoring and all ion fragmentation scan modes. The limits of detection were determined along with the accuracy, precision, stability, recovery, and matrix effects using a representative 13mer oligonucleotide. Following method optimization using the 13mer oligonucleotide, the method was applied to successfully detect the presence of specific product ions in three unique oligonucleotide sequences targeting equine-specific transcripts.


Subject(s)
Oligonucleotides , Animals , Horses/blood , Oligonucleotides/blood , Doping in Sports/prevention & control , Chromatography, Liquid/methods , Mass Spectrometry/methods , Solid Phase Extraction/methods , Limit of Detection
18.
Proc Natl Acad Sci U S A ; 121(25): e2404457121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865275

ABSTRACT

The fat mass and obesity-associated fatso (FTO) protein is a member of the Alkb family of dioxygenases and catalyzes oxidative demethylation of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 3-methylthymine (m3T), and 3-methyluracil (m3U) in single-stranded nucleic acids. It is well established that the catalytic activity of FTO proceeds via two coupled reactions. The first reaction involves decarboxylation of alpha-ketoglutarate (αKG) and formation of an oxyferryl species. In the second reaction, the oxyferryl intermediate oxidizes the methylated nucleic acid to reestablish Fe(II) and the canonical base. However, it remains unclear how binding of the nucleic acid activates the αKG decarboxylation reaction and why FTO demethylates different methyl modifications at different rates. Here, we investigate the interaction of FTO with 5-mer DNA oligos incorporating the m6A, m1A, or m3T modifications using solution NMR, molecular dynamics (MD) simulations, and enzymatic assays. We show that binding of the nucleic acid to FTO activates a two-state conformational equilibrium in the αKG cosubstrate that modulates the O2 accessibility of the Fe(II) catalyst. Notably, the substrates that provide better stabilization to the αKG conformation in which Fe(II) is exposed to O2 are demethylated more efficiently by FTO. These results indicate that i) binding of the methylated nucleic acid is required to expose the catalytic metal to O2 and activate the αKG decarboxylation reaction, and ii) the measured turnover of the demethylation reaction (which is an ensemble average over the entire sample) depends on the ability of the methylated base to favor the Fe(II) state accessible to O2.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Iron , Ketoglutaric Acids , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Ketoglutaric Acids/metabolism , Ketoglutaric Acids/chemistry , Iron/metabolism , Iron/chemistry , Humans , Substrate Specificity , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/chemistry , Protein Conformation , Uracil/metabolism , Uracil/analogs & derivatives , Uracil/chemistry , Molecular Dynamics Simulation , Thymine/analogs & derivatives
19.
Clin Chim Acta ; 562: 119832, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936535

ABSTRACT

BACKGROUND: Coronary atherosclerosis (CAS) is a prevalent and chronic life-threatening disease. However, the detection of CAS at an early stage is difficult because of the lack of effective noninvasive diagnostic methods. The present study aimed to characterize the plasma metabolome of early-stage CAS patients to discover metabolomic biomarkers, develop a novel metabolite-based model for accurate noninvasive diagnosis of early-stage CAS, and explore the underlying metabolic mechanisms involved. METHODS: A total of 100 patients with early-stage CAS and 120 age- and sex-matched control subjects were recruited from the Chinese Han population and further randomly divided into training (n = 120) and test sets (n = 100). The metabolomic profiles of the plasma samples were analyzed by an integrated untargeted liquid chromatography-mass spectrometry approach, including two separation modes and two ionization modes. Univariate and multivariate statistical analyses were employed to identify potential biomarkers and construct an early-stage CAS diagnostic model. RESULTS: The integrated analytical method established herein improved metabolite coverage compared with single chromatographic separation and MS ionization mode. A total of 80 metabolites were identified as potential biomarkers of early-stage CAS, and these metabolites were mainly involved in glycerophospholipid, fatty acid, sphingolipid, and amino acid metabolism. An effective diagnostic model for early-stage CAS was established, incorporating 11 metabolites and achieving areas under the receiver operating characteristic curve (AUCs) of 0.984 and 0.908 in the training and test sets, respectively. CONCLUSIONS: Our study not only successfully developed an effective noninvasive diagnostic model for identifying early-stage CAS but also provided novel insights into the pathogenesis of CAS.

20.
Eur J Pharm Biopharm ; 201: 114369, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38885909

ABSTRACT

Host cell proteins (HCPs) are process-related impurities generated during the production of biopharmaceuticals, which may contaminate the final product unless they are efficiently removed. Due to their potential impact on product safety, quality and efficacy, regulatory authorities require removal of HCPs during processing down to trace amounts in final manufactured biopharmaceuticals. The current standard method for detecting HCPs is enzyme-linked immunosorbent assay (ELISA), which should reveal the total amount of HCPs. A necessary orthogonal technique to get more granular information on HCPs is obtained by application of liquid chromatography-mass spectrometry (LC-MS) techniques that permit identification and quantification of individual HCPs. However, differences in sample preparation methods and MS acquisition techniques have led to discrepancies in detected HCPs between studies, which may compromise product safety, quality and efficacy. To address this issue, we have developed a novel and reproducible workflow for isolation, digestion, and mass spectrometry detection of HCPs that is applicable to downstream process characterization of therapeutic monoclonal antibodies (mAbs). This article describes a rapid and efficient workflow for the isolation, digestion and identification of HCPs. For the first time, Fc-receptor (FcγRIIIa) affinity chromatography is employed to isolate the HCP fraction from the mAb. Next, the HCPs are precipitated with acetone and digested using a newly developed "single-pot" method that improves digestion performance and prevents sample loss of problematic low-abundant HCPs. The new HCP isolation method outperforms protein A affinity chromatography for monitoring problematic HCPs.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Animals , CHO Cells , Chromatography, Liquid/methods , Mass Spectrometry/methods , Enzyme-Linked Immunosorbent Assay/methods , Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...