Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Huan Jing Ke Xue ; 43(7): 3562-3574, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791540

ABSTRACT

Through the investigation and detection of the surface water and sediments of Luoma Lake, the structure and occurrence characteristics of PFASs (perlyfluoroalkyl substances) in the two types of media were analyzed, and the principal component analysis method was used to analyze the characteristics of such substances in the surface water. The source was analyzed, and the potential health risks of such substances were evaluated using the risk quotient method. The results showed that a total of 13 PFASs were detected in the surface sediments of Luoma Lake, and one more species was detected in the surface water (PFTeA); ρ(ΣPFASs) in the surface water ranged from 46.09 to 120.34 ng·L-1, and ω(ΣPFASs) in sediments ranged from 2.22 to 9.55 ng·g-1. PFPeA was the major component in surface water, and the mass fraction of PFPeA was 38%. PFBA was the major component in sediment, and the mass fraction of PFPeA was 61%. The multi-media PFASs in Luoma Lake were mainly short-chain substances; the high concentration area of PFASs in the surface water of Luoma Lake was concentrated and distributed at the mouth of the northern rivers. Its concentration showed a decreasing trend from north to south, and the content of PFASs in the sediments showed a decreasing trend from southwest to northeast. The distribution of ΣPFASs, PFBA, and PFOS in the sediments of Luoma Lake and the TOC content in the sediment were related; the principal component analysis showed that the PFASs in the surface water of Luoma Lake were mainly from textile flame retardant, rubber product emulsification, food packaging processes and paper surface treatment industries, the metal electroplating industry, and leather and textile manufacturing industries. PFASs in the surface water of Luoma Lake were at a relatively low health risk level.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Environmental Monitoring , Fluorocarbons/analysis , Geologic Sediments/chemistry , Lakes , Risk Assessment , Water/analysis , Water Pollutants, Chemical/analysis
2.
Huan Jing Ke Xue ; 43(3): 1384-1393, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258202

ABSTRACT

The concentration levels of 39 antibiotics, including sulfonamides (SAs), quinolones (QUs), tetracyclines (TCs), macrolides (MLs), and penicillins (PLs), in the surface water of Luoma Lake, and its main inflow rivers were analyzed using SPE-UPLC-MS/MS. The contribution rates of pollution of major rivers entering the lake were analyzed, and the potential ecological and health risks of antibiotics were assessed. The results showed that ρ(antibiotics)in 42 sampling sites was between 30.10 ng·L-1 and 582.37 ng·L-1, and a total of four classes of 23 antibiotics were detected. Among them, the average detection concentration of enrofloxacin (ERX) was the highest (88.05 ng·L-1), and the detection rate of lincomycin (LIN) was the highest (100%). The average concentration of antibiotics in the northern region of Luoma Lake was higher than that in the south, and among the two main rivers entering the lake, Yihe River was the main river contributing to the pollution of antibiotics in Luoma Lake, with a contribution rate of 53.91%. The results of risk assessment showed that ERX had the largest risk quotient. For the cumulative risk quotient (RQcum), RQcum of L6, R30, R31, R32, R33, and R42 was between 0.1 and 1, which is considered medium risk, and RQcum of other points was>1, which is considered high risk. The health risk assessment of 11 antibiotics showed that the health risk quotient (RQH) of adults and children ranged from 4.16×10-6 to 2.46×10-3, and there was no health risk to the human body.


Subject(s)
Rivers , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Child , China , Chromatography, Liquid , Environmental Monitoring , Humans , Lakes , Risk Assessment , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 29(1): 1430-1445, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34351581

ABSTRACT

Bisphenol analogs (BPs) are widely used in industrial and commercial products and have been detected in surface water, sediment, sewage, and sludge. The presence of BPs in the natural environment poses threats to the aquatic ecosystem and human health. The concentration, distribution, seasonal variation, and risk assessment of BPA and BPA structural analogs including BPB, BPF, BPS, BPZ, BPAF, and BPAP in surface water and sediment during dry season and flood season in Luoma Lake and its inflow rivers in Jiangsu Province, China, were investigated in this study. The detection frequency of BPA and BPF was 100%. Although the use of BPA is restricted, BPA is still the dominant BPs in surface water and sediment. The concentration of BPs in surface water during flood season was higher than that in dry season. The concentrations of BPs in Fangting River, Zhongyun River, and Bulao River were higher than those in Luoma Lake. The average concentrations of BPs in surface water were in the order of BPA > BPF> BPS> BPB > BPZ > BPAF> BPAP. Compared with other studies, the concentration of BPs in Luoma Lake was moderate. There is no significant spatial distribution and difference in seasonal variation of BPs concentration in sediment (p > 0.05). Compared with other studies, the contamination of BPs in sediment of Luoma Lake was relatively low. Risk quotient (RQ) was used to evaluate the ecological risk of BPs in water environment, and the 17ß estradiol equivalent (EEQ) method was used to estimate the estrogenic activity of BPs. The risk assessment showed no high ecological risk (RQ < 1.0) and estrogenic risk (EEQ < 1.0 ng/L) in dry season and flood season. The estimated RQ and EEQt indicated that the ecological and human health impacts were negligible in the short term.


Subject(s)
Rivers , Water Pollutants, Chemical , Benzhydryl Compounds/analysis , China , Ecosystem , Humans , Lakes , Risk Assessment , Water Pollutants, Chemical/analysis
4.
Environ Res ; 194: 110733, 2021 03.
Article in English | MEDLINE | ID: mdl-33434608

ABSTRACT

Perfluoroalkyl acids (PFAAs) are ubiquitous in various environments. This has caused great public concern, particularly in the shallow freshwater lake region, where the lake, rivers, and estuaries form a highly interconnected continuum. However, little is known about the environmental behaviors of PFAAs in the continuum. For the first time, a high-resolution monitoring framework covering the river-estuary-lake continuum of Luoma Lake was built, and the concentrations, sources, and environmental fates of PFAAs were identified and analyzed. The results revealed that the total concentration of PFAAs was at a moderate level in the water and at a high level in the sediment compared to global levels respectively. Perfluorooctanesulfonate (PFOS) was the most abundant PFAA in the continuum. In particular, the ∑PFAA concentration in the particle phase was much higher than that in the sediment phase. Distinct spatial heterogeneities were observed in the behaviors of distribution and the multiphase fate of PFAAs in the continuum, mainly driven by the turbulent mixing during transport, dilution of lake water, and spatial differences of hydrodynamic features and sedimentary properties among the sub-regions. Interestingly, the pH of the sediment and water had significant effects on the water-sediment portioning of PFAAs in contrasting ways. Furthermore, based on the composition of the sediments, four possible migration paths for PFAAs were deduced and the main sources of PFAAs were identified as sewage, domestic, and industrial effluents using the positive matrix factorization model. During the human health assessment, no risk was found under the median exposure scenario; however, under the high exposure scenario, PFAAs posed uncertain risks to human health, which cannot be ignored. This study provides basic information for simulating the fate and transport of PFAAs in the continuum and is significant for developing cost-effective control and remediation strategies in the near future.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , China , Environmental Monitoring , Fluorocarbons/analysis , Humans , Lakes , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
5.
J Environ Manage ; 280: 111738, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33272658

ABSTRACT

With rapid improvements in industrialization and urbanization, antibiotics are now extensively used to prevent and treat human and animal diseases and husbandry and aquaculture. Some research has been conducted to assess the environmental distribution and risk level of antibiotics, but their distribution remains largely uncharacterized. Thus, this study investigated the distribution and abundance of 39 antibiotics belonging to five groups, and their associated risks in surface water around Luoma Lake in the north of Jiangsu province, China. Nineteen antibiotics were detected, at a detection frequency (DF) ranging from 2.27% to 100%. The total antibiotics (ΣABs) concentrations ranged from 34.91 to 825.93 ng/L, with a median concentration of 195.45 ng/L. Among these antibiotics, chlortetracycline (DF: 100%; median: 172.02 ng/L) was the dominant antibiotic, accounting for a median percentage of 91.0% of ΣABs concentrations. Spearman rank correlation method found a significant correlation between clindamycin (DF: 72.7%; median: 2.01 ng/L) and lincomycin (DF: 79.5%; median: 4.58 ng/L). The ecological risk quotient (RQ) values for two out of 44 sampling sites were higher than 1, indicating a high risk; 11.4% of the RQ values fell between 0.1 and 1, indicating a medium risk. Moreover, roxithromycin was found to be the dominant contributor to the ecological risk, accounting for a median of 79.7% of ΣABs. However, the total non-carcinogenic (<6.54 × 10-4) and carcinogenic risks (<1.64 × 10-7) of ΣABs were negligible at the detected concentrations.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Animals , Anti-Bacterial Agents/analysis , China , Drinking Water/analysis , Environmental Monitoring , Humans , Lakes , Risk Assessment , Water Pollutants, Chemical/analysis
6.
Sci Total Environ ; 636: 632-640, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29723836

ABSTRACT

Organophosphate esters (OPEs) are ubiquitous in the environment and pose a potential threat to ecosystem and human health. This study investigated the concentrations, distributions and risk of 12 OPEs in surface water and sediment from Luoma Lake, Fangting River and Yi River. Solid-phase extraction (SPE) method were used to extract OPEs from water samples, ultrasonic process and SPE method were used to extract OPEs from sediment samples, and the extracts were finally analyzed using the HPLC-MS/MS. The results revealed that the median and maximum concentrations of ΣOPEs were 73.9 and 1066 ng/L in surface water, and were 28.7 and 35.9 ng/g in sediment, respectively. Tris(2-chloroethyl) phosphate (TCEP) and trimethyl phosphate (TMP) were the most abundant OPEs in the surface water with median concentrations of 24.3 and 16.4 ng/L in Luoma Lake, respectively. Triethyl phosphate (TEP) was the most abundant OPE in the sediment with a median concentrations of 28.9 ng/g. However, tricresyl phosphate (TCrP) and ethylhexyl diphenyl phosphate (EHDPP) predominantly contributed to the ecological risk with respective median risk quotients 0.07 and 0.01 for surface water in Luoma Lake. TEP and TCrP were the most significant contributors to the ecological risk with respective median risk quotients of 6.4 × 10-4 and 5.6 × 10-4 for sediment. It was also found that inflowing Fangting River could be the major pollution source to Luoma Lake. The no-cancer and carcinogenic risks of OPEs were lower than the theoretical threshold of risk. The study found that the ecological and human health risks due to the exposure to OPEs were currently acceptable. In other words, the Luoma Lake was relatively safer to use as a drinking water source in urban areas in the context of OPEs pollution.


Subject(s)
Environmental Monitoring , Organophosphates/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , China , Esters , Humans , Lakes , Tandem Mass Spectrometry , Water
7.
Chemosphere ; 184: 318-328, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28601665

ABSTRACT

Compared to Bisphenol A (BPA), current knowledge on the spatial distribution, potential sources and environmental risk assessment of other bisphenol analogues (BPs) remains limited. The occurrence, distribution and sources of seven BPs were investigated in the surface water and sediment from Taihu Lake and Luoma Lake, which are the Chinese shallow freshwater lakes. Because there are many industries and living areas around Taihu Lake, the total concentrations of ∑BPs were much higher than that in Luoma Lake, which is away from the industry-intensive areas. For the two lakes, BPA was still the dominant BPs in both surface water and sediment, followed by BPF and BPS. The spatial distribution and principal component analysis showed that BPs in Luoma Lake was relatively homogeneous and the potential sources were relatively simple than that in Taihu Lake. The spatial distribution of BPs in sediment of Taihu Lake indicated that ∑BPs positively correlated with the TOC content. For both Taihu Lake and Luoma Lake, the risk assessment at the sampling sites showed that no high risk in surface water and sediment (RQt < 1.0, and EEQt < 1.0 ng E2/L).


Subject(s)
Benzhydryl Compounds/analysis , Geologic Sediments , Lakes/chemistry , Phenols/analysis , Water Pollutants, Chemical/analysis , China , Ecology , Environmental Monitoring , Geologic Sediments/analysis , Humans , Principal Component Analysis , Risk Assessment , Water/analysis , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL