Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Regen Ther ; 26: 792-799, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39309399

ABSTRACT

Introduction: Tendon-derived stem cells (TDSCs) play a critical role in tendon repair. N5-methylcytosine (m5C) is a key regulator of cellular processes such as differentiation. This study aimed to investigate the impact of m5C on TDSC differentiation and the underlying mechanism. Methods: TDSCs were isolated from rats and identified, and a tendon injury rat model was generated. Tenogenic differentiation in vitro was evaluated using Sirius red staining and quantitative real-time polymerase chain reaction, while that in vivo was assessed using immunohistochemistry and hematoxylin‒eosin staining. m5C methylation was analyzed using methylated RNA immunoprecipitation, dual-luciferase reporter assay, and RNA stability assay. Results: The results showed that m5C levels and NSUN2 expression were increased in TDSCs after tenogenic differentiation. Knockdown of NSUN2 inhibited m5C methylation of KLF2 and decreased its stability, which was recognized by YBX1. Moreover, interfering with KLF2 suppressed tenogenic differentiation of TDSCs, which could be abrogated by KLF2 overexpression. Additionally, TDSCs after NSUN2 overexpression contributed to ameliorating tendon injury in vivo. In conclusion, NSUN2 promotes tenogenic differentiation of TDSCs via m5C methylation of KLF2 and accelerates tendon repair. Conclusions: The findings suggest that overexpression of NSUN2 can stimulate the differentiation ability of TDSCs, which can be used in the treatment of tendinopathy.

2.
Front Cell Dev Biol ; 12: 1440143, 2024.
Article in English | MEDLINE | ID: mdl-39175875

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disorder caused by a variety of factors, including age, genetic susceptibility, cardiovascular disease, traumatic brain injury, and environmental factors. The pathogenesis of AD is largely associated with the overproduction and accumulation of amyloid-ß peptides and the hyperphosphorylation of tau protein in the brain. Recent studies have identified the presence of diverse pathogens, including viruses, bacteria, and parasites, in the tissues of AD patients, underscoring the critical role of central nervous system infections in inducing pathological changes associated with AD. Nevertheless, it remains unestablished about the specific mechanism by which infections lead to the occurrence of AD. As an important post-transcriptional RNA modification, RNA 5-methylcytosine (m5C) methylation regulates a wide range of biological processes, including RNA splicing, nuclear export, stability, and translation, therefore affecting cellular function. Moreover, it has been recently demonstrated that multiple pathogenic microbial infections are associated with the m5C methylation of the host. However, the role of m5C methylation in infectious AD is still uncertain. Therefore, this review discusses the mechanisms of pathogen-induced AD and summarizes research on the molecular mechanisms of m5C methylation in infectious AD, thereby providing new insight into exploring the mechanism underlying infectious AD.

3.
Cancer Lett ; 597: 217059, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38876383

ABSTRACT

5-Methylcytosine (m5C) methylation is a significant post-transcriptional modification that play a crucial role in the development and progression of numerous cancers. Whereas the functions and molecular mechanisms underlying m5C methylation in gliomas remain unclear. This study dedicated to explore changes of m5C levels and the clinical significance of the m5C writer NSUN4 in gliomas. We found that high m5C levels were negatively related to prognosis of patients with glioma. Moreover, gain- and loss-of-function experiments revealed the role of NSUN4 in enhancing m5C modification of mRNA to promote the malignant progression of glioma. Mechanistically speaking, NSUN4-mediated m5C alterations regulated ALYREF binding to CDC42 mRNA, thereby impacting the mRNA stability of CDC42. We also demonstrated that CDC42 promoted glioma proliferation, migration, and invasion by activating the PI3K-AKT pathway. Additionally, rescue experiments proved that CDC42 overexpression weaken the inhibitory effect of NSUN4 knockdown on the malignant progression of gliomas in vitro and in vivo. Our findings elucidated that NSUN4-mediated high m5C levels promote ALYREF binding to CDC42 mRNA and regulate its stability, thereby driving the malignant progression of glioma. This provides theoretical support for targeted the treatment of gliomas.


Subject(s)
5-Methylcytosine , Glioma , Methyltransferases , RNA Stability , cdc42 GTP-Binding Protein , Animals , Female , Humans , Male , Mice , 5-Methylcytosine/metabolism , 5-Methylcytosine/analogs & derivatives , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , cdc42 GTP-Binding Protein/metabolism , cdc42 GTP-Binding Protein/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Mice, Nude , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
4.
J Transl Med ; 22(1): 476, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764010

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is the leading cause of blinding eye disease among working adults and is primarily attributed to the excessive proliferation of microvessels, which leads to vitreous hemorrhage and retinal traction, thereby significantly impairing patient vision. NSUN2-mediated RNA m5C methylation is implicated in various diseases, and in this investigation, we focused on elucidating the impact of NSUN2 on the regulation of the expression of the downstream gene MUC1, specifically through RNA m5C methylation, on the progression of DR. METHOD: Utilizing Microarray analysis, we examined patient vitreous fluid to pinpoint potential therapeutic targets for DR. Differential expression of NSUN2 was validated through qRT-PCR, Western blot, and immunofluorescence in human tissue, animal tissue, and cell model of DR. The relationship between NSUN2 and DR was explored in vitro and in vivo through gene knockdown and overexpression. Various techniques, such as MeRIP-qPCR and dot blot, were applied to reveal the downstream targets and mechanism of action of NSUN2. RESULTS: The levels of both NSUN2 and RNA m5C methylation were significantly elevated in the DR model. Knockdown of NSUN2 mitigated DR lesion formation both in vitro and in vivo. Mechanistically, NSUN2 promoted MUC1 expression by binding to the RNA m5C reader ALYREF. Knockdown of ALYREF resulted in DR lesion alterations similar to those observed with NSUN2 knockdown. Moreover, MUC1 overexpression successfully reversed a series of DR alterations induced by NSUN2 silencing. CONCLUSIONS: NSUN2 regulates the expression of MUC1 through ALYREF-mediated RNA m5C methylation, thereby regulating the progression of DR and providing a new option for the treatment of DR in the future.


Subject(s)
Diabetic Retinopathy , Disease Progression , Methyltransferases , Mucin-1 , RNA Methylation , Animals , Humans , Male , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , Gene Expression Regulation , Gene Knockdown Techniques , Methylation , Methyltransferases/metabolism , Methyltransferases/genetics , Mice, Inbred C57BL , Mucin-1/metabolism , Mucin-1/genetics
5.
Front Immunol ; 15: 1362159, 2024.
Article in English | MEDLINE | ID: mdl-38807595

ABSTRACT

RNA 5-methylcytosine (m5C) methylation plays a crucial role in hepatocellular carcinoma (HCC). As reported, aberrant m5C methylation is closely associated with the progression, therapeutic efficacy, and prognosis of HCC. The innate immune system functions as the primary defense mechanism in the body against pathogenic infections and tumors since it can activate innate immune pathways through pattern recognition receptors to exert anti-infection and anti-tumor effects. Recently, m5C methylation has been demonstrated to affect the activation of innate immune pathways including TLR, cGAS-STING, and RIG-I pathways by modulating RNA function, unveiling new mechanisms underlying the regulation of innate immune responses by tumor cells. However, research on m5C methylation and its interplay with innate immune pathways is still in its infancy. Therefore, this review details the biological significance of RNA m5C methylation in HCC and discusses its potential regulatory relationship with TLR, cGAS-STING, and RIG-I pathways, thereby providing fresh insights into the role of RNA methylation in the innate immune mechanisms and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Immunity, Innate , Liver Neoplasms , RNA Methylation , Animals , Humans , 5-Methylcytosine/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , RNA/genetics , Signal Transduction/immunology , RNA Methylation/immunology
6.
Front Immunol ; 15: 1380697, 2024.
Article in English | MEDLINE | ID: mdl-38715608

ABSTRACT

The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.


Subject(s)
COVID-19 , Myocarditis , SARS-CoV-2 , Myocarditis/virology , Myocarditis/immunology , Myocarditis/therapy , Myocarditis/genetics , Humans , COVID-19/immunology , COVID-19/genetics , COVID-19/therapy , SARS-CoV-2/physiology , Methylation , 5-Methylcytosine/metabolism , Immunity, Innate , COVID-19 Drug Treatment , Animals , RNA, Viral/genetics , RNA, Viral/metabolism , RNA Processing, Post-Transcriptional
7.
Immun Inflamm Dis ; 12(1): e1150, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38270308

ABSTRACT

BACKGROUND: Recently, many studies have been conducted to examine immune response modification at epigenetic level, but the candidate effect of RNA 5-methylcytosine (m5 C) modification on tumor microenvironment (TME) of acute myeloid leukemia (AML) is still unknown at present. METHODS: We assessed the patterns of m5 C modification among 417 AML cases by using nine m5 C regulators. Thereafter, we associated those identified modification patterns with TME cell infiltration features. Additionally, stepwise regression and LASSO Cox regression analyses were conducted for quantifying patterns of m5 C modification among AML cases to establish the m5 C-score. Meanwhile, we validated the expression of genes in the m5C-score model by qRT-PCR. Finally, the present work analyzed the association between m5 C-score and AML clinical characteristics and prognostic outcomes. RESULTS: In total, three different patterns of m5 C modification (m5 C-clusters) were identified, and highly differentiated TME cell infiltration features were also identified. On this basis, evaluating patterns of m5 C modification in single cancer samples was important for evaluating the immune/stromal activities in TME and for predicting prognosis. In addition, the m5 C-score was established, which showed a close relation with the overall survival (OS) of test and training set samples. Moreover, multivariate Cox analysis suggested that our constructed m5 C-score served as the independent predicting factor for the prognosis of AML (hazard ratio = 1.57, 95% confidence interval = 1.38-1.79, p < 1e-5 ). CONCLUSIONS: This study shows that m5 C modification may be one of the key roles in the formation of diversity and complexity of TME. Meanwhile, assessing the patterns of m5 C modification among individual cancer samples is of great importance, which provides insights into cell infiltration features within TME, thereby helping to develop relevant immunotherapy and predict patient prognostic outcomes.


Subject(s)
Leukemia, Myeloid, Acute , Tumor Microenvironment , Humans , Tumor Microenvironment/genetics , Leukemia, Myeloid, Acute/genetics , RNA , Cell Differentiation , Methylation
8.
Heliyon ; 9(9): e19680, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809908

ABSTRACT

Background: The epigenetic regulator in cancer progression and immune response has been demonstrated recently. However, the potential implications of 5-methylcytosine (m5C) in soft tissue sarcoma (STS) are unclear. Methods: The RNA sequence profile of 911 normal and 259 primary STS tissues were obtained from GTEx and TCGA databases, respectively. We systematically analyzed the m5C modification patterns of STS samples based on 11 m5C regulators, and comprehensively correlated these modification patterns with clinical characteristics, prognosis, and tumor microenvironment (TME) cell-infiltrating. Furthermore, an m5C-related signature was generated using Cox proportional hazard model and validated by the GSE17118 cohort. Results: Two distinct m5C modification patterns (cluster1/2) were discovered. The cluster1 had favorable overall survival, higher immune score, higher expression of most immune checkpoints, and active immune cell infiltration. The GSVA analysis of the P53 pathway, Wnt signaling pathway, G2M checkpoint, mTORC1 signaling, Wnt/ß catenin signaling, and PI3K/AKT/mTOR signaling were significantly enriched in the cluster2. Moreover, 1220 genes were differentially expressed between two clusters, and a m5C prognostic signature was constructed with five m5C-related genes. The signature represented an independent prognostic factor and showed the favorable performance in the GSE17118 cohort. Patients in the low-risk group showed higher immunoscore and higher expression of most immune checkpoints. Further GSVA analysis indicated that the levels of P53 pathway, Wnt signaling pathway, and TGF-ß signaling pathway were different between low- and high-risk groups. Moreover, a nomogram incorporating m5C signature and clinical variables was established and showed well performance. Conclusion: This work showed that the m5C modification plays a significant role in the progression of STS and the formation of TME diversity. Evaluating the m5C modification pattern of tumor will enhance our cognition of TME infiltration characterization to guide more effective immunotherapy strategies.

9.
Adv Sci (Weinh) ; 10(34): e2304329, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870216

ABSTRACT

PIWI-interacting RNAs (piRNAs) are highly expressed in various cardiovascular diseases. However, their role in cardiomyocyte death caused by ischemia/reperfusion (I/R) injury, especially necroptosis, remains elusive. In this study, a heart necroptosis-associated piRNA (HNEAP) is found that regulates cardiomyocyte necroptosis by targeting DNA methyltransferase 1 (DNMT1)-mediated 5-methylcytosine (m5 C) methylation of the activating transcription factor 7 (Atf7) mRNA transcript. HNEAP expression level is significantly elevated in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes and I/R-injured mouse hearts. Loss of HNEAP inhibited cardiomyocyte necroptosis and ameliorated cardiac function in mice. Mechanistically, HNEAP directly interacts with DNMT1 and attenuates m5 C methylation of the Atf7 mRNA transcript, which increases Atf7 expression level. ATF7 can further downregulate the transcription of Chmp2a, an inhibitor of necroptosis, resulting in the reduction of Chmp2a level and the progression of cardiomyocyte necroptosis. The findings reveal that piRNA-mediated m5 C methylation is involved in the regulation of cardiomyocyte necroptosis. Thus, the HNEAP-DNMT1-ATF7-CHMP2A axis may be a potential target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.


Subject(s)
Myocytes, Cardiac , Reperfusion Injury , Mice , Animals , Myocytes, Cardiac/metabolism , RNA, Messenger/metabolism , Piwi-Interacting RNA , Necroptosis/genetics , Methylation , Reperfusion Injury/metabolism , Activating Transcription Factors/metabolism
10.
BMC Genomics ; 24(1): 539, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37700248

ABSTRACT

BACKGROUND: 5-methylcytosine (m5C) modification is widely associated with many biological and pathological processes. However, knowledge of m5C modification in osteoarthritis (OA) remains lacking. Thus, our study aimed to identify common m5C features in OA. RESULTS: In the present study, we identified 1395 differentially methylated genes (DMGs) and 1673 differentially expressed genes (DEGs) using methylated RNA immunoprecipitation next-generation sequencing (MeRIP-seq) and RNA-sequencing. A co-expression analysis of DMGs and DEGs showed that the expression of 133 genes was significantly affected by m5C methylation. A protein-protein interaction network of the 133 genes was constructed using the STRING database, and the cytoHubba plug-in of Cytoscape was used to hub genes were screen out 11 hub genes, including MMP14, VTN, COL15A1, COL6A2, SPARC, COL5A1, COL6A3, COL6A1, COL8A2, ADAMTS2 and COL7A1. The Pathway enrichment analysis by the ClueGO and CluePedia plugins in Cytoscape showed that the hub genes were significantly enriched in collagen degradation and extracellular matrix degradation. CONCLUSIONS: Our study indicated that m5C modification might play an important role in OA pathogenesis, and the present study provides worthwhile insight into identifying m5C-related therapeutic targets in OA.


Subject(s)
Osteoarthritis , RNA , Humans , 5-Methylcytosine , Databases, Factual , High-Throughput Nucleotide Sequencing , Osteoarthritis/genetics , Collagen Type VII
11.
Ecotoxicol Environ Saf ; 262: 115152, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37348220

ABSTRACT

Honeybees play a crucial role as pollinators for crops and are regarded as sensitive bioindicators of environmental health. The widespread use of pesticides poses a severe threat to honeybee survival. However, there is limited information available on the specific risks associated with fipronil exposure in honeybees, particularly concerning the impact on RNA methylation throughout their lifespan. This study aimed to evaluate the effects of sublethal concentrations of fipronil on RNA m6A and m5C methylations, along with the associated genes in honeybee larvae and newly emerged adults. LC-MS/MS analysis revealed a notable hypomethylation of m5C in larvae, while hypermethylation of m6A was observed in the adult brain. Significant changes in the expression of genes such as AmWTAP, AmYTHDF, AmALKBH4, AmALKBH6, AmALKBH8, AmNSUN5, AmNOP2, AmTET1, and AmYBX1 were observed in the adult brain, whereas alterations in the expression of AmNSUN2, AmMETTL14, AmALKBH1, AmALKBH4, AmALKBH6 AmALYREF, AmTET1, and AmYBX1 were observed in the larvae. Notably, the expression of AmALKBH1 was not detected in any fipronil-treated larvae, suggesting its potential as an early risk indicator for honeybee larvae in future assessments. This pioneering study provides insights into the effects of fipronil on RNA methylations in honeybees and explores the possibility of employing RNA methylation as a tool for assessing pesticide risks in this important pollinator species. These findings offer new perspectives on honeybee protection and the development of toxicity evaluation systems for pesticides.

12.
FASEB J ; 37(2): e22751, 2023 02.
Article in English | MEDLINE | ID: mdl-36692426

ABSTRACT

Increasing evidence suggests that RNA m5C modification and its regulators have been confirmed to be associated with the pathogenesis of many diseases. However, the distribution and biological functions of m5C in mRNAs of placental tissues remain unknown. we collected placentae from normotensive pregnancies (CTR) and preeclampsia patients (PE) to analyze the transcriptomic profiling of m5C RNA methylation through m5C RNA immunoprecipitation (UMI-MeRIP-Seq). we discovered that overall m5C methylation peaks were decreased in placental tissues from PE patients. And, 2844 aberrant m5C peaks were identified, of which respectively 1304 m5C peaks were upregulated and 1540 peaks were downregulated. The distribution of m5C peaks were mainly located in CDS (coding sequences) regions in placental tissues of both groups, but compared with the CTR group, the m5C peak in PE group before the stop code of CDS was significantly increased and even higher than the peak value after start code in CDS. Differentially methylated genes were mainly enriched in MAPK/cAMP signaling pathway. Moreover, the up-regulated genes with hypermethylated modification were enriched in the processes of hypoxia, inflammation/immune response. Finally, through analyzing the mRNA expression levels of m5C RNA methylation regulators, we found only DNMT3B and TET3 were significantly upregulated in PE samples than in control group. And they are not only negatively correlated with each other, but also closely related to those differentially expressed genes modified by differential methylation.Our findings provide new insights regarding alterations of m5C RNA modification into the pathogenic mechanisms of PE.


Subject(s)
Placenta , Pre-Eclampsia , Humans , Female , Pregnancy , Placenta/metabolism , Pre-Eclampsia/metabolism , Transcriptome , Gene Expression Profiling , RNA/metabolism
13.
Plant J ; 112(2): 399-413, 2022 10.
Article in English | MEDLINE | ID: mdl-36004545

ABSTRACT

Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.


Subject(s)
F-Box Proteins , Solanum lycopersicum , Starch Synthase , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant/genetics , Methylation , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Circular , Starch Synthase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , F-Box Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ethylenes/metabolism , DNA/metabolism , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Oxidoreductases/metabolism
14.
Front Immunol ; 13: 914577, 2022.
Article in English | MEDLINE | ID: mdl-35757739

ABSTRACT

Background: 5-Methylcytidine (m5C) methylation is an emerging epigenetic modification in recent years, which is associated with the development and progression of various cancers. However, the prognostic value of m5C regulatory genes and the correlation between m5C methylation and the tumor microenvironment (TME) in prostate cancer remain unknown. Methods: In the current study, the genetic and transcriptional alterations and prognostic value of m5C regulatory genes were investigated in The Cancer Genome Atlas and Gene Expression Omnibus datasets. Then, an m5C prognostic model was established by LASSO Cox regression analysis. Gene set variation analyses (GSVA), gene set enrichment analysis (GSEA), clinical relevance, and TME analyses were conducted to explain the biological functions and quantify the TME scores between high-risk and low-risk subgroups. m5C regulatory gene clusters and m5C immune subtypes were identified using consensus unsupervised clustering analysis. The Cell-type Identification By Estimating Relative Subsets of RNA Transcripts algorithm was used to calculate the contents of immune cells. Results: TET3 was upregulated at transcriptional levels in PCa compared with normal tissues, and a high TET3 expression was associated with poor prognosis. An m5C prognostic model consisting of 3 genes (NSUN2, TET3, and YBX1) was developed and a nomogram was constructed for improving the clinical applicability of the model. Functional analysis revealed the enrichment of pathways and the biological processes associated with RNA regulation and immune function. Significant differences were also found in the expression levels of m5C regulatory genes, TME scores, and immune cell infiltration levels between different risk subgroups. We identified two distinct m5C gene clusters and found their correlation with patient prognosis and immune cell infiltration characteristics. Naive B cells, CD8+ T cells, M1 macrophages and M2 macrophages were obtained and 2 m5C immune subtypes were identified. CTLA4, NSUN6, TET1, and TET3 were differentially expressed between immune subtypes. The expression of CTLA4 was found to be correlated with the degree of immune cell infiltration. Conclusions: Our comprehensive analysis of m5C regulatory genes in PCa demonstrated their potential roles in the prognosis, clinical features, and TME. These findings may improve our understanding of m5C regulatory genes in the tumor biology of PCa.


Subject(s)
Cytidine/analogs & derivatives , Prostatic Neoplasms , Cytidine/genetics , Cytidine/metabolism , Genes, Regulator , Humans , Male , Methylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , RNA/genetics , RNA/metabolism , Tumor Microenvironment/genetics
15.
Front Cell Dev Biol ; 10: 885568, 2022.
Article in English | MEDLINE | ID: mdl-35592248

ABSTRACT

Purpose: Epigenetic RNA modification regulates gene expression post-transcriptionally. The aim of this study was to construct a prognostic risk model for lung adenocarcinoma (LUAD) using long non-coding RNAs (lncRNAs) related to m5C RNA methylation. Method: The lncRNAs regulated by m5C methyltransferase were identified in TCGA-LUAD dataset using Pearson correlation analysis (coefficient > 0.4), and clustered using non-negative matrix decomposition. The co-expressing gene modules were identified by WGCNA and functionally annotated. The prognostically relevant lncRNAs were screened by LASSO regression and a risk model was constructed. LINC00628 was silenced in the NCI-H460 and NCI-H1299 cell lines using siRNA constructs, and migration and invasion were assessed by the Transwell and wound healing assays respectively. Results: We identified 185 m5C methyltransferase-related lncRNAs in LUAD, of which 16 were significantly associated with overall survival. The lncRNAs were grouped into two clusters on the basis of m5C pattern, and were associated with significant differences in overall and disease-free survival. GSVA revealed a close relationship among m5C score, ribosomes, endolysosomes and lymphocyte migration. Using LASSO regression, we constructed a prognostic signature consisting of LINC00628, LINC02147, and MIR34AHG. The m5C-lncRNA signature score was closely related to overall survival, and the accuracy of the predictive model was verified by the receiver operating characteristic curve and decision curve analysis. Knocking down LINC00628 in NCI-H460 and NCI-H1299 cells significantly reduced their migration and invasion compared to that of control cells. Conclusion: We constructed a prognostic risk model of LUAD using three lncRNAs regulated by m5C methyltransferase, which has potential clinical value.

16.
Curr Oncol ; 30(1): 559-574, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36661693

ABSTRACT

Recently, studies have revealed the prognostic value of 5-methylcytosine (m5C) in clear cell renal cell carcinoma (ccRCC). However, the role of m5C methylation in ccRCC immune infiltration and the immunotherapeutic response remains unknown. Based on the mRNA expressions of 14 m5C regulators, we evaluated the m5C modification patterns of 530 tumor samples from the TCGA-ccRCC database. We used the principal component analysis (PCA) algorithm to construct individual patient m5Cscores to facilitate individual analysis of m5C modification patterns in ccRCC patients. We finally defined three different m5C modification patterns. Different clinical features and immune heterogeneity existed among the three patterns, and their immune infiltration characteristics could correspond to different immune phenotypes, including the immune-inflamed, immune-excluded, and immune-desert phenotype. We designed the m5Cscore calculated by the PCA algorithm to measure individual patients' m5C modification patterns. The low m5Cscore group presented with a positive prognosis, increased TMB, and immune activation. Additionally, low m5Cscore patients showed an increased response to immune checkpoint inhibitors. We further the value of the m5Cscore in predicting OS verified in four other tumor cohorts. Our findings revealed that m5C methylation modifications are essential in regulating ccRCC immune infiltration. Assessing single ccRCC patients' m5C modification patterns can fully improve our comprehension of tumor immune characteristics and be used to provide effective personalized immunotherapy strategies for clinical use.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , 5-Methylcytosine , Algorithms , Kidney Neoplasms/genetics
17.
Front Immunol ; 12: 800268, 2021.
Article in English | MEDLINE | ID: mdl-34956238

ABSTRACT

RNA methylation modification is a key process in epigenetics that regulates posttranscriptional gene expression. With advances in next-generation sequencing technology, 5-methylcytosine (m5C) modification has also been found in multiple RNAs. Long non-coding RNAs (lncRNAs) were proved to have a key role in cancer progression and closely related to the tumor immune microenvironment. Thus, based on the PDAC patients' clinical information and genetic transcriptome data from the TCGA database, we performed a detailed bioinformatic analysis to establish a m5C-related lncRNA prognostic risk model for PDAC patients and discovered the relationship between the risk model and PDAC immune microenvironment. Pearson correlation coefficient analysis was applied to conduct a m5C regulatory gene and m5C-related lncRNA co-expression network. Expression of m5C-related lncRNAs screened by univariate regression analysis with prognostic value showed a significant difference between pancreatic cancer and normal tissues. The least absolute shrinkage and selection operator (LASSO) Cox regression method was applied to determine an 8-m5C-related lncRNA prognostic risk model. We used principal component analysis to indicate that the risk model could distinguish all the samples clearly. The clinical nomogram also accurately predicted 1-, 1.5-, 2-, and 3-year survival time among PDAC patients. Additionally, this risk model was validated in the entire group and sub-test groups using KM analysis and ROC analysis. Combined with the clinical characteristics, the risk score was found to be an independent factor for predicting the survival of PDAC patients. Furthermore, the association between the risk model and tumor immune microenvironment was evaluated via the ESTIMATE R package and CIBERSORT method. Consequently, the results indicated that immune cells were associated with m5C-related lncRNA risk model scores and had different distribution in the high- and low-risk groups. Based on all these analyses, the m5C-related lncRNA risk model could be a reliable prognostic tool and therapeutic target for PDAC patients.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/immunology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , RNA, Long Noncoding/genetics , Tumor Microenvironment , 5-Methylcytosine/metabolism , Humans , Prognosis , RNA Processing, Post-Transcriptional , Risk Factors , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
18.
Front Genet ; 12: 633681, 2021.
Article in English | MEDLINE | ID: mdl-33613646

ABSTRACT

Epigenetic modifications play an important role in central nervous system disorders. As a widespread posttranscriptional RNA modification, the role of the m5C modification in cerebral ischemia-reperfusion injury (IRI) remains poorly defined. Here, we successfully constructed a neuronal oxygen-glucose deprivation/reoxygenation (OGD/R) model and obtained an overview of the transcriptome-wide m5C profiles using RNA-BS-seq. We discovered that the distribution of neuronal m5C modifications was highly conserved, significantly enriched in CG-rich regions and concentrated in the mRNA translation initiation regions. After OGD/R, modification level of m5C increased, whereas the number of methylated mRNA genes decreased. The amount of overlap of m5C sites with the binding sites of most RNA-binding proteins increased significantly, except for that of the RBM3-binding protein. Moreover, hypermethylated genes in neurons were significantly enriched in pathological processes, and the hub hypermethylated genes RPL8 and RPS9 identified by the protein-protein interaction network were significantly related to cerebral injury. Furthermore, the upregulated transcripts with hypermethylated modification were enriched in the processes involved in response to stress and regulation of apoptosis, and these processes were not identified in hypomethylated transcripts. In final, we verified that OGD/R induced neuronal apoptosis in vitro using TUNEL and western blot assays. Our study identified novel m5C mRNAs associated with ischemia-reperfusion in neurons, providing valuable perspectives for future studies on the role of the RNA methylation in cerebral IRI.

SELECTION OF CITATIONS
SEARCH DETAIL