Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.364
Filter
1.
Methods Mol Biol ; 2852: 85-103, 2025.
Article in English | MEDLINE | ID: mdl-39235738

ABSTRACT

Although MALDI-TOF mass spectrometry (MS) is considered as the gold standard for rapid and cost-effective identification of microorganisms in routine laboratory practices, its capability for antimicrobial resistance (AMR) detection has received limited focus. Nevertheless, recent studies explored the predictive performance of MALDI-TOF MS for detecting AMR in clinical pathogens when machine learning techniques are applied. This chapter describes a routine MALDI-TOF MS workflow for the rapid screening of AMR in foodborne pathogens, with Campylobacter spp. as a study model.


Subject(s)
Campylobacter , Drug Resistance, Bacterial , Machine Learning , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Campylobacter/drug effects , Anti-Bacterial Agents/pharmacology , Humans , Food Microbiology/methods , Microbial Sensitivity Tests/methods , Foodborne Diseases/microbiology , Bacteria/drug effects
2.
Food Chem ; 462: 140931, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39217752

ABSTRACT

This research focused on distinguishing distinct matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) spectral signatures of three Enterococcus species. We evaluated and compared the predictive performance of four supervised machine learning algorithms, K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF), to accurately classify Enterococcus species. This study involved a comprehensive dataset of 410 strains, generating 1640 individual spectra through on-plate and off-plate protein extraction methods. Although the commercial database correctly identified 76.9% of the strains, machine learning classifiers demonstrated superior performance (accuracy 0.991). In the RF model, top informative peaks played a significant role in the classification. Whole-genome sequencing showed that the most informative peaks are biomarkers connected to proteins, which are essential for understanding bacterial classification and evolution. The integration of MALDI-TOF MS and machine learning provides a rapid and accurate method for identifying Enterococcus species, improving healthcare and food safety.


Subject(s)
Enterococcus , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Supervised Machine Learning , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Enterococcus/classification , Enterococcus/chemistry , Enterococcus/isolation & purification , Enterococcus/genetics , Algorithms , Support Vector Machine , Bacterial Typing Techniques/methods , Machine Learning
3.
Microbiol Spectr ; : e0181024, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365108

ABSTRACT

Antimicrobial resistance is a growing global concern exacerbated by the scarcity of new medications and resistance to current antibiotics. Microbes from unexplored habitats are promising sources of natural products to combat this challenge. This study aimed to isolate bacteria producing secondary metabolites and assess their antimicrobial efficacy against human pathogens. Soil and liquid samples were collected from Afar region, Ethiopia. Bacterial isolates were obtained using standard serial dilution techniques. Antimicrobial activity was evaluated using agar plug and well diffusion methods. matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-TOF MS) and whole-genome sequencing (WGS) were conducted for the isolate exhibiting the highest antimicrobial activity. Secondary metabolites were extracted and analyzed using gas chromatography-mass spectra (GC-MS). In this study, 301 bacteria isolates were identified, of which 68 (22.6%) demonstrated antagonistic activity against at least one reference pathogen. Whole-genome sequencing revealed that Sl00103 belongs to the genus Bacillus, designated as Bacillus sp. Sl00103. The extract of Sl00103 showed zones of inhibition ranging between 17.17 ± 0.43 and 26.2 ± 0.4 mm against bacterial pathogens and 19.5 ± 0.44 to 21.0 ± 1.01 mm against Candida albicans. GC-MS analysis of ethyl acetate and n-hexane extracts identified major compounds including (R,R)-butane-2,3-diol; 3-isobutylhexahydropyrrolo[1,2a] pyrazine-1,4-dione; cyclo(L-prolyl-L-valine); and tetradecanoic acid, 12-methyl-, methyl ester; hexadecanoic acid, methyl ester among other. In conclusion, this study isolated several promising bacterial strains from the Afar region in Ethiopia, with strain Sl00103 (Bacillus sp. Sl00103) demonstrating notable antimicrobial and antioxidant activities and warranting further studies. IMPORTANCE: Antimicrobial resistance (AMR) is an escalating global health threat affecting humans, animals, and the environment, underscoring the urgent need for alternative pathogen control methods. Natural products, particularly secondary metabolites from bacteria, continue to be a vital source of antibiotics. However, microbial habitats and metabolites in Africa remain largely unexplored. In this study, we isolated and screened bacteria from Ethiopia's Afar region, characterized by extreme conditions like high temperatures, volcanic activity, high salinity, and hot springs to identify potential bioactive compounds. We discovered diverse bacterial isolates with antimicrobial activity against various pathogens, including strain Sl00103 (Bacillus sp. Sl00103), which demonstrated significant antimicrobial and antioxidant activities. GC-MS analysis identified several antimicrobial compounds, highlighting strain Sl00103 as a promising source of secondary metabolites with potential pharmaceutical applications and warranting further investigation.

4.
Infect Drug Resist ; 17: 4223-4236, 2024.
Article in English | MEDLINE | ID: mdl-39364078

ABSTRACT

Purpose: Nucleotide-based matrix-assisted laser desorption ionization time-of-flight mass spectrometry (nucleotide MALDI-TOF MS) is an emerging molecular technology used for the diagnosis of tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB)and its drug resistance. This study aimed to compare the ability of nucleotide MALDI-TOF MS to detect rifampicin (RIF) resistance in drug-resistant TB (DR-TB) patients with Xpert MTB/RIF and to analyze the disparate results individually. Additionally, potential factors associated with rifampicin resistance among DR-TB patients in Qingdao were investigated. Patients and Methods: A retrospective study was conducted at Qingdao Chest Hospital, and patients with DR-TB were enrolled. Corresponding frozen isolates were recovered and subjected to nucleotide MALDI-TOF MS, Xpert MTB/RIF, and phenotypic drug susceptibility testing (pDST). Sanger sequencing was performed for the discordant results of nucleotide MALDI-TOF MS and Xpert MTB/RIF. Univariate and multivariate logistic regression analyses were used to identify potential factors associated with rifampicin resistance among patients with DR-TB. Results: A total of 125 patients with DR-TB (18.8%, 125/668) were enrolled in this study from May 1 to July 31, 2023. Rifampicin-resistant (DR-TB/RR, 29) and rifampicin-sensitive (DR-TB/RS, 96) groups were divided according to the pDST results. Nucleotide MALDI-TOF MS performed better than Xpert MTB/RIF in terms of sensitivity, specificity, accuracy, and agreement with pDST. Only six cases had inconsistent results, and the sequencing results of five cases were identical to nucleotide MALDI-TOF MS. Furthermore, chest pain (aOR=12.84, 95% CI, 2.29-91.97, p=0.005), isoniazid sensitivity (aOR=0.14, 0.02-0.59, p=0.013), and ethambutol sensitivity (aOR=0.02, 0.00-0.10, p=0.000) were potential factors associated with rifampicin resistance among DR-TB patients in Qingdao. Conclusion: The overall concordance between nucleotide MALDI-TOF MS and Xpert MTB/RIF was 95.2%, with the former performing better in determining rifampicin susceptibility among DR-TB cases in Qingdao. Chest pain, isoniazid, and ethambutol resistance might be factors associated with RIF resistance among patients with DR-TB in Qingdao.

5.
Indian J Med Microbiol ; 52: 100739, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39362528

ABSTRACT

PURPOSE: Deep-seated abscesses can be caused by a wide array of bacteria in various anatomical sites, the precise identification of which is crucial for implementing organism-specific treatments which can reduce morbidity and mortality. MALDI-TOF MS is a powerful proteomic method for the swift and accurate identification of anaerobic organisms. The aim of this study was to investigate deep-seated infections by MALDI-TOF MS (in comparison to VITEK®2 ANC ID card and phenotypic biochemical tests) and to determine the susceptibility pattern of identified microorganisms. MATERIALS AND METHODS: A total of 104 samples from patients suspected of deep-seated infections were aseptically collected and subjected to microscopy, aerobic/anaerobic cultures and subsequent identification via MALDI-TOF MS followed by antimicrobial susceptibility testing. Anaerobic bacteria were also identified using the VITEK-2 system and phenotypic biochemical tests. RESULTS: Out of the 104 samples tested, 41.3 % (43/104) showed positive results, predominantly in pus specimens (88 %). Mixed infections were found in 21 % of the positive cases. Of the 52 organisms identified from positive specimens, 19.2 % (10/52) were obligate anaerobes, with Bacteroides fragilis group being the most prevalent, followed by both Clostridium perfringens and Clostridium sporogenes respectively. Escherichia coli was observed to be the most common facultative anaerobic isolate. All obligate anaerobes were successfully identified to the species level via MALDI-TOF MS. In contrast, the VITEK®2 ANC ID card identified only 40 % (4/10) anaerobic bacteria to the species level. All obligate anaerobic organisms showed 100 % susceptibility to metronidazole, vancomycin and ertapenem. 25 % of the Bacteroides spp. and 50 % of Clostridium perfringens isolates were found to be resistant to clindamycin. CONCLUSION: MALDI-TOF MS proves as a beneficial diagnostic tool for bacterial identification, eliminating the labour-intensive and time consuming conventional microbiological methods. Its accuracy of bacterial detection further helps in combating antibiotic resistance and improving patient outcomes in deep-seated infections.

6.
J Microbiol Methods ; : 107052, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39384072

ABSTRACT

Infections caused by Mycobacterium tuberculosis and nontuberculous mycobacteria represent a significant global threat and medical concern. Therefore, accurate and reliable methods must be employed to identify mycobacteria rapidly. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a technique that compares the cellular protein profiles of unknown isolates with reference mass spectra in a database to identify microorganisms. However, the thick and waxy lipid layer, which is rich in mycolic acids and is present in mycobacterial cells, makes protein extraction challenging. To identify the optimal protocol for correctly identifying bacilli using MALDI-TOF mass spectrometry, this study compared four different cellular protein extraction methods. Four strains of M. bovis BCG were selected as representatives of slow-growing mycobacteria, while three strains of fast-growing mycobacteria were also included: M. peregrinum, M. smegmatis, and M. farcinogenes. The extraction method that proved most effective was the extraction of inactivated cells with chloroform and methanol, which partially delipidates the cells. These cells were then extracted with formic acid, as is standard practice for protein extraction. The advantage of this method is that it allows the parallel analysis of cellular lipids and proteins from a single sample. It is therefore important to optimize mycobacterial protein extraction for MALDI-TOF MS analysis in clinical microbiology laboratories.

7.
Animals (Basel) ; 14(17)2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39272359

ABSTRACT

Staphylococcus species are widespread in poultry environments and can cause various infections, often when the host's defences are compromised. This manuscript reports on a co-infection of chickens with Staphylococcus lentus and Staphylococcus aureus associated with an outbreak of arthritis, synovitis, and osteomyelitis in an organic broiler breeder flock in Austria. Clinically, the affected flock showed weakness, lethargy, lameness, and increased mortality. Post-mortem examinations identified purulent arthritis and femoral head necrosis. Bacteriological analysis using MALDI-TOF MS identified both S. aureus and S. lentus in the affected joints. Antibiotic resistance testing revealed significant resistance, particularly in S. lentus. Histological analysis showed severe inflammation and bacterial colonies in the joints. While S. aureus is a common pathogen in poultry, S. lentus is less frequently reported. This study emphasises the need for detailed bacterial characterisation in outbreaks to better understand the role of less common pathogens like S. lentus. Further research is necessary to elucidate the impact of S. lentus on poultry health and its role in causing arthritis and synovitis, highlighting the importance of comprehensive investigation in such outbreaks.

8.
J Clin Microbiol ; : e0096124, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235248

ABSTRACT

Burkholderia pseudomallei is the causative agent of melioidosis, a disease highly endemic to Southeast Asia and northern Australia, though the area of endemicity is expanding. Cases may occur in returning travelers or, rarely, from imported contaminated products. Identification of B. pseudomallei is challenging for laboratories that do not see this organism frequently, and misidentifications by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and automated biochemical testing have been reported. The in vitro diagnostic database for use with the Vitek MS has recently been updated to include B. pseudomallei and we aimed to validate the performance for identification in comparison to automated biochemical testing with the Vitek 2 GN card, quantitative real-time polymerase chain reaction (qPCR) targeting the type III secretion system, and capsular polysaccharide antigen detection using a lateral flow immunoassay (LFA). We tested a "derivation" cohort including geographically diverse B. pseudomallei and a range of closely related Burkholderia species, and a prospective "validation" cohort of B. pseudomallei and B. cepacia complex clinical isolates. MALDI-TOF MS had a sensitivity of 1.0 and specificity of 1.0 for the identification and differentiation of B. pseudomallei from related Burkholderia species when a certainty cutoff of 99.9% was used. In contrast, automated biochemical testing for B. pseudomallei identification had a sensitivity of 0.83 and specificity of 0.88. Both qPCR and LFA correctly identified all B. pseudomallei isolates with no false positives. Due to the high level of accuracy, we have now incorporated MALDI-TOF MS into our laboratory's B. pseudomallei identification workflow.IMPORTANCEBurkholderia pseudomallei causes melioidosis, a disease associated with high morbidity and mortality that disproportionately affects rural areas in Southeast Asia and northern Australia. The known area of endemicity is expanding and now includes the continental United States. Laboratory identification can be challenging which may result in missed or delayed diagnoses and poor patient outcomes. In this study, we compared mass spectrometry using an updated spectral database with multiple other methods for B. pseudomallei identification and found mass spectrometry highly accurate. We have therefore incorporated this fast and cost-effective method into our laboratory's workflow for B. pseudomallei identification.

9.
Infez Med ; 32(3): 330-339, 2024.
Article in English | MEDLINE | ID: mdl-39282542

ABSTRACT

Objective: MALDI-TOF-MS facilitates the identification of microorganisms from positive cultures in a timely and accurate manner. It eliminates the necessity for the application of biochemicals and operates on the principle of proteomics. It decreases the time required to report culture results. Prompt detection and notification of the pathogen, prior to the disclosure of antimicrobial susceptibilities, could potentially shorten the duration until the initial antibiotic adjustment is necessary, thereby influencing patients' clinical prognoses. Methodology: Fifty patients in the conventional arm and one hundred patients in the interventional arm were compared in a pre and post quasi-experimental study conducted at a tertiary care centre in North India. Patients with positive cultures from medical wards and intensive care units were included. Comparing the time to first antibiotic modification after culture positivity, MALDI-TOF-MS-based identification, and clinical outcomes in both arms was the primary objective. Antibiotic modifications, escalation, and de-escalation were all recorded. Results: The intervention arm exhibited a substantially shorter median time to first antibiotic modification (2010 mins vs 2905 mins, p=0.002) than the conventional arm. In the interventional group, a total of 44 out of 100 antibiotic modifications were implemented. Of these, 19 (43.3%) were determined solely by the MALDI report, without the anticipation of susceptibility assessments. De-escalation of antibiotics constituted the pre-dominant form of modification (47.4%). The difference between the 27% and 32% mortality rates in the intervention arm and the conventional arm was not statistically significant (p=0.52). Conclusion: MALDI-TOF-MS facilitates the modification of antibiotics early on. The primary benefit lies in the reduction of superfluous antibiotic usage. Early organism identification and reporting prior to the availability of susceptibility results did not result in any mortality benefit. This strategy, when combined with a strong antimicrobial stewardship programme, can aid in the reduction of antibiotic use.

10.
J Infect Public Health ; 17(10): 102541, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39270470

ABSTRACT

BACKGROUND: Effective and rapid diagnostic strategies are required to manage antibiotic resistance in Klebsiella pneumonia (KP). This study aimed to design an artificial intelligence-clinical decision support system (AI-CDSS) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and machine learning for the rapid detection of ceftazidime-avibactam (CZA) resistance in KP to improve clinical decision-making processes. METHODS: Out of 107,721 bacterial samples, 675 specimens of KP with suspected multi-drug resistance were selected. These specimens were collected from a tertiary hospital and four secondary hospitals between 2022 and 2023 to evaluate CZA resistance. We used MALDI-TOF MS and machine learning to develop an AI-CDSS with enhanced speed of resistance detection. RESULTS: Machine learning models, especially light gradient boosting machines (LGBM), exhibited an area under the curve (AUC) of 0.95, indicating high accuracy. The predictive models formed the core of our newly developed AI-CDSS, enabling clinical decisions quicker than traditional methods using culture and antibiotic susceptibility testing by a day. CONCLUSIONS: The study confirms that MALDI-TOF MS, integrated with machine learning, can swiftly detect CZA resistance. Incorporating this insight into an AI-CDSS could transform clinical workflows, giving healthcare professionals immediate, crucial insights for shaping treatment plans. This approach promises to be a template for future anti-resistance strategies, emphasizing the vital importance of advanced diagnostics in enhancing public health outcomes.


Subject(s)
Anti-Bacterial Agents , Artificial Intelligence , Azabicyclo Compounds , Ceftazidime , Decision Support Systems, Clinical , Drug Combinations , Drug Resistance, Multiple, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Klebsiella pneumoniae/drug effects , Ceftazidime/pharmacology , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/diagnosis , Klebsiella Infections/microbiology , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Machine Learning , Microbial Sensitivity Tests/methods
11.
Syst Appl Microbiol ; 47(5): 126545, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39241699

ABSTRACT

This study provides an emended description of Acinetobacter faecalis, a species previously described based on a single isolate (YIM 103518T) from elephant feces in China. Our emended description is based on 15 novel isolates conspecific with the A. faecalis type strain, obtained from eight cattle farms in the Czech Republic. The A. faecalis strains have relatively small genomes (≈2.5-2.7 Mbp), with a GC content of 36.3-36.7 mol%. Core genome-based phylogenetic analysis showed that the 15 strains, together with the type strain of A. faecalis, form a distinct and internally coherent phylogroup within the genus. Pairwise genomic ANIb values for the 16 A. faecalis strains were 97.32-99.04 %, while ANIb values between the genomes of the 16 strains and those of the other Acinetobacter spp. were ≤ 86.2 %. Analysis of whole-cell MALDI-TOF mass spectra supported the distinctness and cohesiveness of the taxon. The A. faecalis strains could be differentiated from the other validly named Acinetobacter spp. by the absence of hemolytic activity along with their ability to grow at 37 °C and on L-aspartate, ethanol, and L-glutamate but not at 41 °C or on adipate or 2,3-butanediol. Reduced susceptibility to sulfamethoxazole, trimethoprim and/or streptomycin was shown in eight strains, along with the presence of corresponding antibiotic resistance genes. In conclusion, this study provides a comprehensive description of A. faecalis and demonstrates its occurrence in cattle feces. Though the ecological role of A. faecalis remains unknown, our results show its ability to acquire antibiotic resistance genes, likely as an adaptation to antibiotic selection pressure in livestock farms.


Subject(s)
Anti-Bacterial Agents , Feces , Phylogeny , Animals , Cattle/microbiology , Feces/microbiology , Anti-Bacterial Agents/pharmacology , Genome, Bacterial/genetics , Czech Republic , Acinetobacter/genetics , Acinetobacter/classification , Acinetobacter/isolation & purification , DNA, Bacterial/genetics , Microbial Sensitivity Tests , Base Composition , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Bacterial Typing Techniques
12.
Antibiotics (Basel) ; 13(9)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39335028

ABSTRACT

The purpose of this study was to isolate, identify, and evaluate the antibacterial and probiotic potential of bacteria from honeydew honey collected in Poland. Isolates (189 colonies from 10 honey samples) were evaluated for their antimicrobial activity against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Yersinia enterocolitica, and then identified by MALDI-TOF-MS. The isolates with the greatest antimicrobial properties were screened for their probiotic potential. The total number of bacteria isolated from honey did not exceed the value of 2.5 × 102 CFU/mL. The Bacillus pumilus/altitudinis, B. licheniformis, and Bacillus cereus groups were the dominant identified bacteria. Almost 16% of the isolates expressed antibacterial potential against three pathogenic bacteria, over 20% against two, while almost 34% of the isolates did not inhibit any. The survival rate of the isolates under gastrointestinal tract conditions was higher after 4 h of exposure to bile salts (>60% survival rate for 66.66% of the isolates), while at pH 2.0, it was lower (>50% survival rate for 44% of the isolates). The most resistant isolate B. pumilus/altitudinis survived at a rate of 77% at low pH and 108% with bile salts. These results confirmed that honeydew honey is a promising reservoir of bacteria that produces metabolites with antimicrobial and probiotic potential.

13.
Foods ; 13(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39335879

ABSTRACT

L. monocytogenes is considered one of the most dangerous foodborne pathogens. This study aimed to determine the occurrence of L. monocytogenes in RTE meat products from southern Poland, including serogroups and antimicrobial susceptibility, and to assess the usefulness of MALDI-TOF MS as a tool for identifying L. monocytogenes. A total of 848 production batches of RTE meat products were analyzed for L. monocytogenes. All L. monocytogenes isolates were serotyped using the multiplex PCR method, tested for antimicrobial susceptibility using the disk diffusion method and identified using the MALDI-TOF MS method. L. monocytogenes was detected in 52/848 batches of RTE meat products (6.13%). The isolates belonged to four serogroups: 17/52 (33%) isolates to IVb; 15/52 (29%) isolates to IIa; 10/52 (19%) isolates to IIc and 10/52 (19%) isolates to IIb. All isolates (52/52) showed susceptibility to the tested antimicrobials. Using MALDI-TOF MS, 10/52 isolates (19.2%) were identified at the level of secure genus identification, probable species identification; 37/52 isolates (71.2%) were identified at the level of probable genus identification; 3/52 isolates (5.8%) were incorrectly identified as L. innocua; and 2/52 isolates (3.8%) were not identified. The occurrence of L. monocytogenes in RTE meat products was low. Almost half of the analyzed isolates were L. monocytogenes of serogroups, which are most often associated with listeriosis in humans in Poland. All isolates showed susceptibility to five commonly used antimicrobials for treating listeriosis. The use of MALDI-TOF MS as a tool for the identification of L. monocytogenes indicated its limitations related to the insufficient representation of the pathogen in the reference database.

14.
Int J Antimicrob Agents ; 64(5): 107329, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39244164

ABSTRACT

BACKGROUND: The use of matrix-assisted laser desorption/ionisation-time-of-flight mass spectra (MALDI-TOF MS) with machine learning (ML) has been explored for predicting antimicrobial resistance. This study evaluates the effectiveness of MALDI-TOF MS paired with various ML classifiers and establishes optimal models for predicting antimicrobial resistance and the presence of mecA gene among Staphylococcus aureus. MATERIALS AND METHODS: Antimicrobial resistance against tier 1 antibiotics and MALDI-TOF MS of S. aureus were analysed using data from the Database of Resistance against Antimicrobials with MALDI-TOF Mass Spectrometry (DRIAMS) and one medical centre (CS database). Five ML classifiers were used to analyse performance metrics. The Shapley value quantified the predictive contribution of individual features. RESULTS: The LightGBM demonstrated superior performance in predicting antimicrobial resistance for most tier 1 antibiotics among oxacillin-resistant S. aureus (ORSA) compared with all S. aureus and oxacillin-susceptible S. aureus (OSSA) in both databases. In DRIAMS, Multilayer Perceptron (MLP) was associated with excellent predictive performance, expressed as accuracy/AUROC/AUPR, for clindamycin (0.74/0.81/0.90), tetracycline (0.86/0.87/0.94), and trimethoprim-sulfamethoxazole (0.95/0.72/0.97). In the CS database, Ada and Light Gradient Boosting Machine (LightGBM) showed excellent performance for erythromycin (0.97/0.92/0.86) and tetracycline (0.68/0.79/0.86). Mass-to-charge ratio (m/z) features of 2411-2414 and 2429-2432 correlated with clindamycin resistance, whereas 5033-5036 was linked to erythromycin resistance in DRIAMS. In the CS database, overlapping features of 2423-2426, 4496-4499, and 3764-3767 simultaneously predicted the presence of mecA and oxacillin resistance. CONCLUSION: The predictive performance of antimicrobial resistance against S. aureus using MALDI-TOF MS depends on database characteristics and the ML algorithm selected. Specific and overlapping mass spectra features are excellent predictive markers for mecA and specific antimicrobial resistance.

15.
Microb Pathog ; 196: 106948, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39306052

ABSTRACT

Patients with orofacial clefts are more likely to develop oral fungal diseases due to anatomo-physiological changes and surgical rehabilitation treatment. This case-series study evaluated the genetic diversity and dynamics of oral colonization and spread of C. albicans and C. tropicalis in four patients with orofacial clefts, from the time of hospital admission, perioperative and outpatient follow-up, with specialized physician. Candida biotypes previously identified by CHROMagar Candida and PCR methods were studied by MALDI-TOF MS assays and clustering analyses. Possible correlations with pathogenicity characteristics were observed, including production of hydrolytic exoenzymes and the antifungal sensitivity profiles. Amphotericin B-sensitive and fluconazole-resistant (low frequency) C. tropicalis and C. albicans, including clinically compatible MIC of nystatin, were found in the oral cavity of these patients. Clusters of isolates revealed phenomena of (i) elimination in the operative phase, (ii) maintenance or (iii) acquisition of oral C. tropicalis in the perioperative period and specialized outpatient and medical follow-up. For C. albicans, these phenomena included (i) elimination in the operative phase, (ii) acquisition in the operative phase and propagation from the hospital environment, and (iii) maintenance during hospitalization and operative phase. Amphotericin B and nystatin were shown to be effective in cases of clinical treatment and/or prophylaxis, especially considering the pre-existence of fluconazole-resistant strains. This study confirmed the phenomena of septic maintenance, septic neocolonization and septic elimination involving the opportunistic pathogens. MALDI-TOF MS associated with clustering analysis may assist the monitoring of clinical isolates or groups of epidemiologically important microbial strains in the hospital setting.

16.
Life (Basel) ; 14(9)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39337953

ABSTRACT

Helicobacter pylori (H. pylori) infection is a widespread global health issue with a varying prevalence influenced by geography, socioeconomic status, and demographics. In the U.S., the prevalence is lower, though certain groups, such as older adults and immigrants from high-prevalence regions, show higher rates. The decrease in infection rates in developed countries is due to improved sanitation, antibiotics, and healthcare, whereas developing countries continue to experience high rates due to poor living conditions. H. pylori infection can be asymptomatic or cause symptoms like dyspepsia, abdominal pain, bloating, nausea, and loss of appetite. Pathophysiologically, H. pylori contribute to conditions such as gastritis, peptic ulcers, and gastric cancer through mechanisms including urease production and the release of virulence factors, leading to chronic inflammation and an increased cancer risk. Diagnostic methods for H. pylori have progressed significantly. Non-invasive techniques, such as serological assays, stool antigen tests, and urea breath tests, are practical and sensitive. Invasive methods, including endoscopic biopsy and molecular diagnostics, are more definitive but resource intensive. Recent advancements in diagnostic technology, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), biosensor technology, and next-generation sequencing (NGS), promise improved speed, accuracy, and accessibility. These innovations are expected to enhance the detection and management of H. pylori, potentially reducing the global disease burden. This review aims to discuss these diagnostic modalities with a focus on further advances under investigation.

17.
Microorganisms ; 12(9)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39338474

ABSTRACT

The currently dominant SARS-CoV-2 omicron variant, while causing mild respiratory symptoms, exhibits high transmissibility, drug resistance, and immune evasion. We investigated whether the presence of the SARS-CoV-2 affected the dynamics of fecal microbial composition isolated in culture in moderate COVID-19 patients. Blood, stool, and medical records were collected from 50 patients with confirmed SARS-CoV-2 infection. Two samples were taken per patient, at disease onset (within 5 days) and after symptom resolution (30-35 days). The part of the gut microbiota identifiable using MALDI-TOF MS was analyzed, and inflammatory cytokines and blood markers were measured in serum. The analysis identified 566 isolates at the species level, including 83 bacterial and 9 fungal species. Our findings indicate a change in the gut microbiota composition isolated in culture during the initial phase of infection, characterized by the proliferation of opportunistic bacteria such as Enterococcus spp. and Citrobacter spp., at the expense of beneficial commensal bacteria from the genus Bacillus and Lactobacillus. Additionally, the enrichment of fungal pathogens in fecal samples collected 30 days after the cessation of disease symptoms might suggest a prolonged disruption of the gut microbiota even after the resolution of COVID-19 symptoms. This study contributes to a growing body of evidence on the systemic effects of SARS-CoV-2 and highlights the importance of considering gastrointestinal involvement in the management and treatment of COVID-19.

18.
Microorganisms ; 12(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39338513

ABSTRACT

During the last few decades, the main focus of numerous studies has been on the human breast milk microbiota and its influence on the infant intestinal microbiota and overall health. The presence of lactic acid bacteria in breast milk affects both the quantitative and qualitative composition of the infant gut microbiota. The aim of this study was to assess the most frequently detected cultivable rod-shaped lactobacilli, specific for breast milk of healthy Bulgarian women and fecal samples of their infants over the first month of life, in 14 mother-infant tandem pairs. Additionally, we evaluated the strain diversity among the most common isolated species. A total of 68 Gram-positive and catalase-negative strains were subjected to identification using the MALDI-TOF technique. Predominant cultivable populations belonging to the rod-shaped lactic acid bacteria have been identified as Lacticaseibacillus rhamnosus, Limosilactobacillus fermentum, Lacticaseibacillus paracasei, and Limosilactobacillus reuteri. Also, we confirmed the presence of Lactiplantibacillus plantarum and Lactobacillus gasseri. Up to 26 isolates were selected as representatives and analyzed by 16S rRNA sequencing for strain identity confirmation and a phylogenetic tree based on 16S rRNA gene sequence was constructed. Comparative analysis by four RAPD primers revealed genetic differences between newly isolated predominant L. rhamnosus strains. This pilot study provides data for the current first report concerning the investigation of the characteristic cultivable lactobacilli isolated from human breast milk and infant feces in Bulgaria.

19.
Pathogens ; 13(9)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39338954

ABSTRACT

This study investigated the occurrence and dynamics of oral Staphylococcus species in patients with orofacial clefts undergoing surgical rehabilitation treatment. Patients (n = 59) were statistically stratified and analyzed (age, gender, types of orofacial clefts, surgical history, and types of previous surgical rehabilitation). Salivary samples were obtained between hospitalization and the return to the specialized medical center. Microbiological diagnosis was performed by classical methods, and MALDI-TOF MS. MRSA strains (SCCmec type II, III, and IV) were characterized by the Decision Tree method. A total of 33 (55.9%) patients showed oral staphylococcal colonization in one, two, or three sampling steps. A high prevalence has been reported for S. aureus (including HA-, MRSA and CA-MRSA), followed by S. saprophyticus, S. epidermidis, S. sciuri, S. haemolyticus, S. lentus, S. arlettae, and S. warneri. The dynamics of oral colonization throughout surgical treatment and medical follow-up may be influenced by (i) imbalances in staphylococcal maintenance, (ii) efficiency of surgical asepsis or break of the aseptic chain, (iii) staphylococcal neocolonization in newly rehabilitated anatomical oral sites, and (iv) total or partial maintenance of staphylococcal species. The highly frequent clinical periodicity in specialized medical and dental centers may contribute to the acquisition of MRSA in these patients.

20.
J Agric Food Chem ; 72(40): 22001-22014, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39344132

ABSTRACT

Foodborne pathogens have gained sustained public attention, exerted significant pressure on food manufacturers, and posed serious health risks to human. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been employed for quick and accurate identification of microorganisms in the prevention of foodborne epidemics in recent years. Herein, we first summarize the principle of MALDI and its workflow for foodborne pathogens. Subsequently, we review the recent progress and applications of MALDI-TOF MS in foodborne pathogen determination. Additionally, we outline the expanded utilization of MALDI-based techniques for the identification of closely related species. We also assess the current gaps and propose possible solutions to address the existing challenges. MALDI-TOF MS is a promising biotool for rapid and accurate identification of foodborne microbes at the species and genus level in food samples. Database expansion and direct quantification of spoilage microbes are two promising areas for future progress in MALDI-TOF MS applications.


Subject(s)
Bacteria , Food Microbiology , Foodborne Diseases , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Food Microbiology/methods , Bacteria/isolation & purification , Bacteria/classification , Bacteria/chemistry , Bacteria/genetics , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Food Contamination/analysis , Humans
SELECTION OF CITATIONS
SEARCH DETAIL