Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.097
Filter
1.
Life Sci ; : 122902, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004271

ABSTRACT

AIMS: MCP-1 has been shown to be elevated in endometriosis. ILK functions in several cellular events and interacts with MCP-1-signaling. In the current study, we evaluated the role of MCP-1-ILK signaling in human endometriotic cell's (Hs832(C).TCs) potential for colonization, invasion, adhesion, etc. and differentiation of macrophage along with inflammation in an endometriosis mouse model. MATERIALS AND METHODS: A mouse model of endometriosis with elevated levels of MCP-1 was developed by injecting MCP-1. We examined the migration, adhesion, colonization and invasion of Hs832(C).TCs in response to MCP-1-ILK signaling. We also examined the differentiation of THP-1 cells to macrophage in response to MCP-1-ILK signaling. KEY FINDINGS: We observed that MCP-1 increased Ser246 phosphorylation of ILK in Hs832(C).TCs and enhanced the migration, adhesion, colonization, and invasion of Hs832(C).TCs. In the mouse model of endometriosis, we found elevated chemokines (CCL-11, CCL-22 and CXCL13) levels. An increased level of MCP-1 mediated ILK activation, leading to increased inflammatory reaction and infiltration of residential and circulatory macrophages, and monocyte differentiation, but suppressed the anti-inflammatory reaction. The inhibitor (CPD22) of ILK reversed the MCP-1-mediated action by restoring Hs832(C).TCs and THP-1 phenotype. ILK inhibition in a mouse model of endometriosis reduced the effects of MCP-1 mediated pro-inflammatory cytokines, but increased anti-inflammatory response along with T-regulatory and T-helper cell restoration. SIGNIFICANCE: Targeting ILK restores MCP-1 milieu in the peritoneal cavity and endometrial tissues, reduces the inflammatory response, improves the T-regulatory and T-helper cells in the endometriosis mouse model and decreases the migration, adhesion, colonization and invasion of endometriotic cells.

2.
J Clin Transl Hepatol ; 12(7): 634-645, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38993513

ABSTRACT

Background and Aims: Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays a role in the excessive generation of extracellular matrix in liver fibrosis. This study aimed to explore the pathways through which TIMP-1 controls monocyte chemoattractant protein-1 (MCP-1) expression and promotes hepatic macrophage recruitment. Methods: Liver fibrosis was triggered through carbon tetrachloride, and an adeno-associated virus containing small interfering RNA targeting TIMP-1 (siRNA-TIMP-1) was administered to both rats and mice. We assessed the extent of fibrosis and macrophage recruitment. The molecular mechanisms regulating macrophage recruitment by TIMP-1 were investigated through transwell migration assays, luciferase reporter assays, the use of pharmacological modulators, and an analysis of extracellular vesicles (EVs). Results: siRNA-TIMP-1 alleviated carbon tetrachloride-induced liver fibrosis, reducing macrophage migration and MCP-1 expression. Co-culturing macrophages with hepatic stellate cells (HSCs) post-TIMP-1 downregulation inhibited macrophage migration. In siRNA-TIMP-1-treated HSCs, microRNA-145 (miRNA-145) expression increased, while the expression of Friend leukemia virus integration-1 (Fli-1) and MCP-1 was inhibited. Downregulation of Fli-1 led to decreased MCP-1 expression, whereas Fli-1 overexpression increased MCP-1 expression within HSCs. Transfection with miRNA-145 mimics reduced the expression of both Fli-1 and MCP-1, while miRNA-145 inhibitors elevated the expression of both Fli-1 and MCP-1 in HSCs. miRNA-145 bound directly to the 3'-UTR of Fli-1, and miRNA-145-enriched EVs secreted by HSCs after TIMP-1 downregulation influenced macrophage recruitment. Conclusions: TIMP-1 induces Fli-1 expression through miRNA-145, subsequently increasing MCP-1 expression and macrophage recruitment. MiRNA-145-enriched EVs from HSCs can transmit biological information and magnify the function of TIMP-1.

3.
Article in English | MEDLINE | ID: mdl-38991981

ABSTRACT

BACKGROUND: Neuroimmune dysfunction in alcohol use disorder (AUD) is associated with activation of myeloid differentiation primary response 88 (MyD88)-dependent Toll-like receptors (TLR) resulting in overexpression of the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). MCP-1 overexpression in the brain is linked to anxiety, higher alcohol intake, neuronal death, and activation of microglia observed in AUD. The neurosteroid [3α,5α][3-hydroxypregnan-20-one (3α,5α-THP) has been reported as an inhibitor of MyD88-dependent TLR activation and MCP-1 overexpression in mouse and human macrophages and the brain of alcohol-preferring (P) rats. METHODS: We investigated how 3α,5α-THP regulates MCP-1 expression at the cellular level in P rat nucleus accumbens (NAc) and central amygdala (CeA). We focused on neurons, microglia, and astrocytes, examining the individual voxel density of MCP-1, neuronal marker NeuN, microglial marker IBA1, astrocytic marker GFAP, and their shared voxel density, defined as intersection. Ethanol-naïve male and female P rats were perfused 1 h after IP injections of 15 mg/kg of 3α,5α-THP, or vehicle. The NAc and CeA were imaged using confocal microscopy following double-immunofluorescence staining for MCP-1 with NeuN, IBA1, and GFAP, respectively. RESULTS: MCP-1 intersected with NeuN predominantly and IBA1/GFAP negligibly. 3α,5α-THP reduced MCP-1 expression in NeuN-labeled cells by 38.27 ± 28.09% in male and 56.11 ± 21.46% in female NAc, also 37.99 ± 19.53% in male and 54.96 ± 30.58% in female CeA. In females, 3α,5α-THP reduced the MCP-1 within IBA1 and GFAP-labeled voxels in the NAc and CeA. Conversely, in males, 3α,5α-THP did not significantly alter the MCP-1 within IBA1 in NAc or with GFAP in the CeA. Furthermore, 3α,5α-THP decreased levels of IBA1 in both regions and sexes with no impact on GFAP or NeuN levels. Secondary analysis performed on data normalized to % control values indicated that no significant sex differences were present. CONCLUSIONS: These data suggest that 3α,5α-THP inhibits neuronal MCP-1 expression and decreases the proliferation of microglia in P rats. These results increase our understanding of potential mechanisms for 3α,5α-THP modulation of ethanol consumption.

4.
Int Immunopharmacol ; 138: 112659, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996665

ABSTRACT

Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune dysregulation and hepatocyte damage. FKBP38, a member of the immunophilin family, has been implicated in immune regulation and the modulation of intracellular signaling pathways; however, its role in AIH pathogenesis remains poorly understood. In this study, we aimed to investigate the effects of hepatic FKBP38 deletion on AIH using a hepatic FKBP38 knockout (LKO) mouse model created via cre-loxP technology. We compared the survival rates, incidence, and severity of AIH in LKO mice with those in control mice. Our findings revealed that hepatic FKBP38 deletion resulted in an unfavorable prognosis in LKO mice with AIH. Specifically, LKO mice exhibited heightened liver inflammation and extensive hepatocyte damage compared to control mice, with a significant decrease in anti-apoptotic proteins and a marked increase in pro-apoptotic proteins. Additionally, transcriptional and translational levels of pro-inflammatory cytokines and chemokines were significantly increased in LKO mice compared to control mice. Immunoblot analysis showed that MCP-1 expression was significantly elevated in LKO mice. Furthermore, the phosphorylation of p38 was increased in LKO mice with AIH, indicating that FKBP38 deletion promotes liver injury in AIH by upregulating p38 phosphorylation and increasing MCP-1 expression. Immune cell profiling demonstrated elevated populations of T, NK, and B cells, suggesting a dysregulated immune response in LKO mice with AIH. Overall, our findings suggest that FKBP38 disruption exacerbates AIH severity by augmenting the immune response by activating the MCP-1/p38 signaling pathway.

6.
JACC Basic Transl Sci ; 9(5): 593-604, 2024 May.
Article in English | MEDLINE | ID: mdl-38984050

ABSTRACT

Using a translational approach with an ST-segment myocardial infarction (STEMI) cohort and mouse model of myocardial infarction, we highlighted the role of the secreted IL-6 and MCP-1 cytokines and the STAT3 pathway in heart macrophage recruitment and activation. Cardiac myocytes secrete IL-6 and MCP-1 in response to hypoxic stress, leading to a recruitment and/or polarization of anti-inflammatory macrophages via the STAT3 pathway. In our preclinical model of myocardial infarction, neutralization of IL-6 and MCP-1 or STAT3 pathway reduced infarct size. Together, our data demonstrate that anti-inflammatory macrophages can be deleterious in the acute phase of STEMI.

7.
Neurosci Bull ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954270

ABSTRACT

The CC chemokine ligand 2 (CCL2, also known as MCP-1) and its cognate receptor CCR2 have well-characterized roles in chemotaxis. CCL2 has been previously shown to promote excitatory synaptic transmission and neuronal excitability. However, the detailed molecular mechanism underlying this process remains largely unclear. In cultured hippocampal neurons, CCL2 application rapidly upregulated surface expression of GluA1, in a CCR2-dependent manner, assayed using SEP-GluA1 live imaging, surface GluA1 antibody staining, and electrophysiology. Using pharmacology and reporter assays, we further showed that CCL2 upregulated surface GluA1 expression primarily via Gαq- and CaMKII-dependent signaling. Consistently, using i.p. injection of lipopolysaccharide to induce neuroinflammation, we found upregulated phosphorylation of S831 and S845 sites on AMPA receptor subunit GluA1 in the hippocampus, an effect blocked in Ccr2-/- mice. Together, these results provide a mechanism through which CCL2, and other secreted molecules that signal through G-protein coupled receptors, can directly regulate synaptic transmission.

8.
Dokl Biochem Biophys ; 517(1): 228-234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002011

ABSTRACT

The pathogenesis of immunoinflammatory rheumatic diseases (IRDs) is based on chronic inflammation, one of the key mechanisms of which may be abnormal activation of macrophages, leading to further disruption of the immune system. OBJECTIVE: . The objective of this study was to evaluate the proinflammatory activation of circulating monocytes in patients with IRDs. MATERIALS AND METHODS: . The study involved 149 participants (53 patients with rheumatoid arthritis (RA), 45 patients with systemic lupus erythematosus (SLE), 34 patients with systemic scleroderma (SSc), and 17 participants without IRDs) 30 to 65 years old. Basal and lipopolysaccharide (LPS)-stimulated secretion of monocytes was studied in a primary culture of monocytes obtained from blood by immunomagnetic separation. Quantitative assessment of the cytokines tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), as well as the chemokine monocyte chemoattractant protein-1 (MCP-1) was carried out in the culture fluid by ELISA. Proinflammatory activation of monocytes was calculated as the ratio of LPS-stimulated and basal secretions. RESULTS: . It was shown that the basal secretion of all studied cytokines was significantly increased in all groups of patients with IRDs, except for the secretion of IL-1ß in the SLE group, compared to the control. LPS-stimulated secretion of TNF-α was increased and MCP-1 was decreased in patients with IRDs compared to the control group; LPS-stimulated IL-1ß secretion only in the SSc group significantly differed from the control group. In the RA group, monocyte activation was reduced for all cytokines compared to the control; in the SLE group, for TNF-α and MCP-1; in the SSc group, for MCP-1. CONCLUSIONS: . The decrease in proinflammatory activation of monocytes in patients with IRDs is due to a high level of basal secretion of cytokines, which can lead to disruption of the adequate immune response in these diseases and is an important link in the pathogenesis of chronic inflammation.


Subject(s)
Inflammation , Monocytes , Humans , Monocytes/immunology , Monocytes/metabolism , Middle Aged , Adult , Female , Male , Inflammation/immunology , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Aged , Chemokine CCL2/metabolism , Arthritis, Rheumatoid/immunology , Rheumatic Diseases/immunology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-1beta/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Cytokines/metabolism
10.
Cell Immunol ; 401-402: 104843, 2024.
Article in English | MEDLINE | ID: mdl-38905771

ABSTRACT

Monocyte migration is an important process in inflammation and atherogenesis. Identification of the key signalling pathways that regulate monocyte migration can provide prospective targets for prophylactic treatments in inflammatory diseases. Previous research showed that the focal adhesion kinase Pyk2, Src kinase and MAP kinases play an important role in MCP-1-induced monocyte migration. In this study, we demonstrate that MCP-1 induces iPLA2 activity, which is regulated by PKCß and affects downstream activation of Rac1 and Pyk2. Rac1 interacts directly with iPLA2 and Pyk2, and plays a crucial role in MCP-1-mediated monocyte migration by modulating downstream Pyk2 and p38 MAPK activation. Furthermore, Rac1 is necessary for cell spreading and F-actin polymerization during monocyte adhesion to fibronectin. Finally, we provide evidence that Rac1 controls the secretion of inflammatory mediator vimentin from MCP-1-stimulated monocytes. Altogether, this study demonstrates that the PKCß/iPLA2/Rac1/Pyk2/p38 MAPK signalling cascade is essential for MCP-1-induced monocyte adhesion and migration.


Subject(s)
Cell Adhesion , Cell Movement , Chemokine CCL2 , Focal Adhesion Kinase 2 , Monocytes , Signal Transduction , p38 Mitogen-Activated Protein Kinases , rac1 GTP-Binding Protein , Humans , Monocytes/metabolism , Monocytes/immunology , Chemokine CCL2/metabolism , Cell Adhesion/physiology , rac1 GTP-Binding Protein/metabolism , Focal Adhesion Kinase 2/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Protein Kinase C beta/metabolism , Actins/metabolism
11.
Cell Biochem Funct ; 42(4): e4073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863227

ABSTRACT

Polycystic ovary syndrome (PCOS) is a multidisciplinary endocrinopathy that affects women of reproductive age. It is characterized by menstrual complications, hyperandrogenism, insulin resistance, and cardiovascular issues. The current research investigated the efficacy of rosmarinic acid in letrozole-induced PCOS in adult female rats as well as the potential underlying molecular mechanisms. Forty female rats were divided into the control group, the rosmarinic acid group (50 mg/kg per orally, po) for 21 days, PCOS group; PCOS was induced by administration of letrozole (1 mg/kg po) for 21 days, and rosmarinic acid-PCOS group, received rosmarinic acid after PCOS induction. PCOS resulted in a marked elevation in both serum luteinizing hormone (LH) and testosterone levels and LH/follicle-stimulating hormone ratio with a marked reduction in serum estradiol and progesterone levels. A marked rise in tumor necrosis factor-α (TNF-α), interleukin-1ß, monocyte chemotactic protein-1, and vascular endothelial growth factor (messenger RNA) in the ovarian tissue was reported. The histological analysis displayed multiple cystic follicles in the ovarian cortex with markedly thin granulosa cell layer, vacuolated granulosa and theca cell layers, and desquamated granulosa cells. Upregulation in the immune expression of TNF-α and caspase-3 was demonstrated in the ovarian cortex. Interestingly, rosmarinic acid ameliorated the biochemical and histopathological changes. In conclusion, rosmarinic acid ameliorates letrozole-induced PCOS through its anti-inflammatory and antiangiogenesis effects.


Subject(s)
Chemokine CCL2 , Cinnamates , Depsides , Disease Models, Animal , Letrozole , Polycystic Ovary Syndrome , Rosmarinic Acid , Vascular Endothelial Growth Factor A , Animals , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Cinnamates/pharmacology , Depsides/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Rats , Chemokine CCL2/metabolism , Letrozole/pharmacology , Luteinizing Hormone/blood , Luteinizing Hormone/metabolism , Immunohistochemistry , Testosterone/blood , Rats, Sprague-Dawley
12.
Front Immunol ; 15: 1377546, 2024.
Article in English | MEDLINE | ID: mdl-38846938

ABSTRACT

Introduction: Multiple Myeloma (MM), a prevalent hematological malignancy, poses significant treatment challenges due to varied patient responses and toxicities to chemotherapy. This study investigates the predictive value of pretreatment serum levels of interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), and vascular endothelial growth factor (VEGF) for chemotherapy-induced toxicities in newly diagnosed MM patients. We hypothesized that these cytokines, pivotal in the tumor microenvironment, might correlate with the incidence and severity of treatment-related adverse events. Methods: We conducted a prospective observational study with 81 newly diagnosed MM patients, analyzing serum cytokine levels using the multiplex cytometric bead assay (CBA) flow cytometry method. The study used non-parametric and multivariate analysis to compare cytokine levels with treatment-induced toxicities, including lymphopenia, infections, polyneuropathy, and neutropenia. Results: Our findings revealed significant associations between cytokine levels and specific toxicities. IL-8 levels were lower in patients with lymphopenia (p=0.0454) and higher in patients with infections (p=0.0009) or polyneuropathy (p=0.0333). VEGF concentrations were notably lower in patients with neutropenia (p=0.0343). IL-8 demonstrated an 81% sensitivity (AUC=0.69; p=0.0015) in identifying infection risk. IL-8 was an independent predictor of lymphopenia (Odds Ratio [OR]=0.26; 95% Confidence Interval [CI]=0.07-0.78; p=0.0167) and infection (OR=4.76; 95% CI=0.07-0.62; p=0.0049). High VEGF levels correlated with a 4-fold increased risk of anemia (OR=4.13; p=0.0414). Conclusions: Pre-treatment concentrations of IL-8 and VEGF in serum can predict hematological complications, infections, and polyneuropathy in patients with newly diagnosed MM undergoing chemotherapy. They may serve as simple yet effective biomarkers for detecting infections, lymphopenia, neutropenia, and treatment-related polyneuropathy, aiding in the personalization of chemotherapy regimens and the mitigation of treatment-related risks.


Subject(s)
Chemokine CCL2 , Interleukin-8 , Multiple Myeloma , Vascular Endothelial Growth Factor A , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/blood , Male , Female , Middle Aged , Aged , Vascular Endothelial Growth Factor A/blood , Interleukin-8/blood , Prognosis , Chemokine CCL2/blood , Interleukin-6/blood , Prospective Studies , Adult , Aged, 80 and over , Cytokines/blood , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
13.
Int J Mol Sci ; 25(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928452

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) are key players in promoting ovarian cancer cell proliferation, orchestrated by the dynamic interplay between cytokines and their interactions with immune cells; however, the intricate crosstalk among BMSCs and cytokines has not yet been elucidated. Here, we aimed to investigate interactions between BMSCs and ovarian cancer cells. We established BMSCs with a characterized morphology, surface marker expression, and tri-lineage differentiation potential. Ovarian cancer cells (SKOV3) cultured with conditioned medium from BMSCs showed increased migration, invasion, and colony formation, indicating the role of the tumor microenvironment in influencing cancer cell behavior. BMSCs promoted SKOV3 tumorigenesis in nonobese diabetic/severe combined immunodeficiency mice, increasing tumor growth. The co-injection of BMSCs increased the phosphorylation of p38 MAPK and GSK-3ß in SKOV3 tumors. Co-culturing SKOV3 cells with BMSCs led to an increase in the expression of cytokines, especially MCP-1 and IL-6. These findings highlight the influence of BMSCs on ovarian cancer cell behavior and the potential involvement of specific cytokines in mediating these effects. Understanding these mechanisms will highlight potential therapeutic avenues that may halt ovarian cancer progression.


Subject(s)
Cell Proliferation , Cytokines , Mesenchymal Stem Cells , Ovarian Neoplasms , Mesenchymal Stem Cells/metabolism , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Humans , Animals , Cytokines/metabolism , Mice , Cell Line, Tumor , Coculture Techniques , Tumor Microenvironment , Cell Movement , Culture Media, Conditioned/pharmacology , Bone Marrow Cells/metabolism , Mice, SCID , Mice, Inbred NOD , Cell Differentiation
14.
Life (Basel) ; 14(6)2024 May 28.
Article in English | MEDLINE | ID: mdl-38929672

ABSTRACT

Cardiovascular disease (CVD) remains a prominent cause of global mortality, primarily driven by atherosclerosis. Diabetes mellitus, as a modifiable risk factor, significantly contributes to atherogenesis. Monocyte recruitment to the intima is a critical step in atherosclerotic plaque formation, involving chemokines and adhesion molecules such as selectins, ICAM-1, and MCP-1. Glucagon-like peptide 1 receptor agonists (GLP-1RAs) are a promising group of drugs for reducing cardiovascular risk in diabetic patients, prompting investigation into their mechanisms of action. This interventional study enrolled 50 diabetes patients with atherosclerotic plaque, administering GLP-1RA for 180 days. Serum concentrations of MCP-1, ICAM-1, and L-selectin were measured before and after treatment. Anthropometric and biochemical parameters were also assessed. GLP-1RA treatment resulted in significant improvements in anthropometric parameters, glycemic control, blood pressure, and biochemical markers of liver steatosis. Biomarker laboratory analysis revealed higher baseline levels of MCP-1, ICAM-1, and L-selectin in diabetic patients with atherosclerotic plaque compared to healthy controls. Following treatment, MCP-1 and L-selectin levels decreased significantly (p < 0.001), while ICAM-1 levels increased (p < 0.001). GLP-1RA treatment in diabetic patients with atherosclerotic plaque leads to favorable changes in serum molecule levels associated with monocyte recruitment to the endothelium. The observed reduction in MCP-1 and L-selectin suggests a potential mechanism underlying GLP-1RA-mediated cardiovascular risk reduction. Further research is warranted to elucidate the precise mechanisms and clinical implications of these findings in diabetic patients with atherosclerosis.

15.
Sci Rep ; 14(1): 14892, 2024 06 28.
Article in English | MEDLINE | ID: mdl-38937503

ABSTRACT

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Subject(s)
COVID-19 , Cytokines , Machine Learning , Humans , COVID-19/diagnosis , Cytokines/blood , SARS-CoV-2/isolation & purification , SARS-CoV-2/immunology , Mass Screening/methods , Male , Female , Sensitivity and Specificity , Middle Aged , Adult , Aged
16.
Kidney Med ; 6(6): 100834, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826568

ABSTRACT

Rationale & Objective: Tubulointerstitial damage is a feature of early chronic kidney disease (CKD), but current clinical tests capture it poorly. Urine biomarkers of tubulointerstitial health may identify risk of CKD. Study Design: Prospective cohort (Atherosclerosis Risk in Communities [ARIC]) and case-cohort (Multi-Ethnic Study of Atherosclerosis [MESA] and Reasons for Geographic and Racial Differences in Stroke [REGARDS]). Setting & Participants: Adults with estimated glomerular filtration rate (eGFR) ≥60 mL/min/1.73 m2 and without diabetes in the ARIC, REGARDS, and MESA studies. Exposures: Baseline urine monocyte chemoattractant protein-1 (MCP-1), alpha-1-microglobulin (α1m), kidney injury molecule-1, epidermal growth factor, and chitinase-3-like protein 1. Outcome: Incident CKD or end-stage kidney disease. Analytical Approach: Multivariable Cox proportional hazards regression for each cohort; meta-analysis of results from all 3 cohorts. Results: 872 ARIC participants (444 cases of incident CKD), 636 MESA participants (158 cases), and 924 REGARDS participants (488 cases) were sampled. Across cohorts, mean age ranged from 60 ± 10 to 63 ± 8 years, and baseline eGFR ranged from 88 ± 13 to 91 ± 14 mL/min/1.73 m2. In ARIC, higher concentrations of urine MCP-1, α1m, and kidney injury molecule-1 were associated with incident CKD. In MESA, higher concentration of urine MCP-1 and lower concentration of epidermal growth factor were each associated with incident CKD. In REGARDS, none of the biomarkers were associated with incident CKD. In meta-analysis of all 3 cohorts, each 2-fold increase α1m concentration was associated with incident CKD (HR, 1.19; 95% CI, 1.08-1.31). Limitations: Observational design susceptible to confounding; competing risks during long follow-up period; meta-analysis limited to 3 cohorts. Conclusions: In 3 combined cohorts of adults without prevalent CKD or diabetes, higher urine α1m concentration was independently associated with incident CKD. 4 biomarkers were associated with incident CKD in at least 1 of the cohorts when analyzed individually. Kidney tubule health markers might inform CKD risk independent of eGFR and albuminuria.


This study analyzed 3 cohorts (ARIC, MESA, and REGARDS) of adults without diabetes or prevalent chronic kidney disease (CKD) to determine the associations of 5 urinary biomarkers of kidney tubulointerstitial health with incident CKD, independent of traditional measures of kidney health. Meta-analysis of results from all 3 cohorts suggested that higher baseline levels of urine alpha-1-microglobulin were associated with incident CKD at follow-up. Results from individual cohorts suggested that in addition to alpha-1-microglobulin, monocyte chemoattractant protein-1, kidney injury molecule-1, and epidermal growth factor may also be associated with the development of CKD. These findings underscore the importance of kidney tubule interstitial health in defining risk of CKD independent of creatinine and urine albumin.

17.
Mol Ther ; 32(7): 2207-2222, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38734898

ABSTRACT

Lysosomal galactosylceramidase (GALC) is expressed in all brain cells, including oligodendrocytes (OLs), microglia, and astrocytes, although the cell-specific function of GALC is largely unknown. Mutations in GALC cause Krabbe disease (KD), a fatal neurological lysosomal disorder that usually affects infants. To study how Galc ablation in each glial cell type contributes to Krabbe pathogenesis, we used conditional Galc-floxed mice. Here, we found that OL-specific Galc conditional knockout (CKO) in mice results in a phenotype that includes wasting, psychosine accumulation, and neuroinflammation. Microglia- or astrocyte-specific Galc deletion alone in mice did not show specific phenotypes. Interestingly, mice with CKO of Galc from both OLs and microglia have a more severe neuroinflammation with an increase in globoid cell accumulation than OL-specific CKO alone. Moreover, the enhanced phenotype occurred without additional accumulation of psychosine. Further studies revealed that Galc knockout (Galc-KO) microglia cocultured with Galc-KO OLs elicits globoid cell formation and the overexpression of osteopontin and monocyte chemoattractant protein-1, both proteins that are known to recruit immune cells and promote engulfment of debris and damaged cells. We conclude that OLs are the primary cells that initiate KD with an elevated psychosine level and microglia are required for the progression of neuroinflammation in a psychosine-independent manner.


Subject(s)
Disease Models, Animal , Galactosylceramidase , Leukodystrophy, Globoid Cell , Mice, Knockout , Microglia , Oligodendroglia , Animals , Leukodystrophy, Globoid Cell/genetics , Leukodystrophy, Globoid Cell/metabolism , Leukodystrophy, Globoid Cell/pathology , Microglia/metabolism , Mice , Galactosylceramidase/metabolism , Galactosylceramidase/genetics , Oligodendroglia/metabolism , Psychosine/metabolism
18.
J Cardiovasc Dev Dis ; 11(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786964

ABSTRACT

BACKGROUND: Transthyretin cardiac amyloidosis (ATTR amyloidosis) is a frequent etiology of heart failure. Inflammation and mineral metabolism are associated with myocardial dysfunction and clinical performance. Cardiac global longitudinal strain (GLS) allows function assessment and is associated with prognosis. Our aim was to describe possible correlations between GLS, biomarker levels and clinical performance in ATTR amyloidosis. METHODS: Thirteen patients with ATTR amyloidosis were included. Clinical characteristics; echocardiographic features, including strain assessment and 6 min walk test (6MWT); and baseline inflammatory, mineral metabolism and cardiovascular biomarker levels were assessed. RESULTS: Of the 13 patients, 46.2% were women, and the mean age was 79 years. TAPSE correlated with NT-ProBNP (r -0.65, p < 0.05) and galectin-3 (r 0.76, p < 0.05); E/E' ratio correlated with hsCRP (r 0.58, p < 0.05). Left ventricular GLS was associated with NT-ProBNP (r 0.61, p < 0.05) (patients have a better prognosis if the strain value is more negative) and left atrial GLS with NT-ProBNP (r -0.73, p < 0.05) and MCP1 (r 0.55, p < 0.05). Right ventricular GLS was correlated with hsTnI (r 0.62, p < 0.05) and IL6 (r 0.881, p < 0.05). Klotho levels were correlated with 6MWT (r 0.57, p < 0.05). CONCLUSIONS: While inflammatory biomarkers were correlated with cardiac function, klotho levels were associated with clinical performance in the population with TTR-CA.

19.
Clin Kidney J ; 17(5): sfae146, 2024 May.
Article in English | MEDLINE | ID: mdl-38803396

ABSTRACT

Background: Proteinuria is not only a biomarker of chronic kidney disease (CKD) but also a driver of CKD progression. The aim of this study was to evaluate serum and urinary tubular biomarkers in patients with biopsied proteinuric kidney disease and to correlate them with histology and kidney outcomes. Methods: A single-center retrospective study was conducted on a cohort of 156 patients from January 2016 to December 2021. The following urinary and serum biomarkers were analyzed on the day of kidney biopsy: beta 2 microglobulin (ß2-mcg), alpha 1 microglobulin (α1-mcg), neutrophil gelatinase-associated lipocalin (NGAL), urinary kidney injury molecule-1 (uKIM-1), monocyte chemoattractant protein-1 (MCP-1), urinary Dickkopf-3 (uDKK3), uromodulin (urinary uUMOD), serum kidney injury molecule-1 (sKIM-1) and serum uromodulin (sUMOD). A composite outcome of kidney progression or death was recorded during a median follow-up period of 26 months. Results: Multivariate regression analysis identified sUMOD (ß-0.357, P < .001) and uDKK3 (ß 0.483, P < .001) as independent predictors of interstitial fibrosis, adjusted for age, estimated glomerular filtration rate (eGFR) and log proteinuria. Elevated levels of MCP-1 [odds ratio 15.61, 95% confidence interval (CI) 3.52-69.20] were associated with a higher risk of cortical interstitial inflammation >10% adjusted for eGFR, log proteinuria and microhematuria. Upper tertiles of uDKK3 were associated with greater eGFR decline during follow-up. Although not a predictor of the composite outcome, doubling of uDKK3 was a predictor of kidney events (hazard ratio 2.26, 95% CI 1.04-4.94) after adjustment for interstitial fibrosis, eGFR and proteinuria. Conclusions: Tubular markers may have prognostic value in proteinuric kidney disease, correlating with specific histologic parameters and identifying cases at higher risk of CKD progression.

20.
J Transl Med ; 22(1): 421, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702780

ABSTRACT

INTRODUCTION: Immune checkpoint inhibitors (ICIs) induce acute interstitial nephritis (AIN) in 2-5% of patients, with a clearly higher incidence when they are combined with platinum derivatives. Unfortunately, suitable disease models and non-invasive biomarkers are lacking. To fill this gap in our understanding, we investigated the renal effects of cisplatin and anti-PD-L1 antibodies in mice, assessing PD-1 renal expression and cytokine levels in mice with AIN, and then we compared these findings with those in AIN-diagnosed cancer patients. METHODS: Twenty C57BL6J mice received 200 µg of anti-PD-L1 antibody and 5 mg/kg cisplatin intraperitoneally and were compared with those receiving cisplatin (n = 6), anti-PD-L1 (n = 7), or saline (n = 6). After 7 days, the mice were euthanized. Serum and urinary concentrations of TNFα, CXCL10, IL-6, and MCP-1 were measured by Luminex. The kidney sections were stained to determine PD-1 tissue expression. Thirty-nine cancer patients with AKI were enrolled (AIN n = 33, acute tubular necrosis (ATN) n = 6), urine MCP-1 (uMCP-1) was measured, and kidney sections were stained to assess PD-1 expression. RESULTS: Cisplatin and anti PD-L1 treatment led to 40% AIN development (p = 0.03) in mice, accompanied by elevated serum creatinine and uMCP1. AIN-diagnosed cancer patients also had higher uMCP1 levels than ATN-diagnosed patients, confirming our previous findings. Mice with AIN exhibited interstitial PD-1 staining and stronger glomerular PD-1 expression, especially with combination treatment. Conversely, human AIN patients only showed interstitial PD-1 positivity. CONCLUSIONS: Only mice receiving cisplatin and anti-PDL1 concomitantly developed AIN, accompanied with a more severe kidney injury. AIN induced by this drug combination was linked to elevated uMCP1, consistently with human AIN, suggesting that uMCP1 can be potentially used as an AIN biomarker.


Subject(s)
Chemokine CCL2 , Cisplatin , Immune Checkpoint Inhibitors , Mice, Inbred C57BL , Nephritis, Interstitial , Programmed Cell Death 1 Receptor , Animals , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Nephritis, Interstitial/urine , Nephritis, Interstitial/pathology , Nephritis, Interstitial/chemically induced , Chemokine CCL2/urine , Chemokine CCL2/metabolism , Cisplatin/adverse effects , Humans , Male , Female , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , B7-H1 Antigen/metabolism , Mice , Middle Aged , Aged , Acute Disease
SELECTION OF CITATIONS
SEARCH DETAIL