Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 890
Filter
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124982, 2025 Jan 05.
Article in English | MEDLINE | ID: mdl-39173318

ABSTRACT

Imine based positional isomers (8E)-N-(4-((E)-(perfluorophenylimino)methyl)benzylidene)-2,3,4,5,6-pentafluorobenzenamine, L and (10E)-N-(3-(E-Perfluorophenylimino)methyl)benzylidene)-2,3,4,5,6-pentafluorobenzenamine, L1 have been designed, and synthesized by functionalizing two electron deficient aromatic moieties at the para-para'/ortho-ortho' positions in the phenyl core of the L and L1 respectively. The responses of L and L1 towards various anionic species are examined. The positional isomers L and L1 differs not only by showing distinguishable color change upon addition of anions but also differentiates themselves by the way of self-assembling together upon binding with cyanide anion. The naked-eye colorimetric experiments, UV-Vis, Nuclear Magnetic Resonance, and Infra-Red spectroscopic analyses reveal that the isomer L binds fluoride anion through 2:1 stoichiometry ratio. Unlike fluoride complex, the isomer L form aggregates while binding with cyanide ion. On the other hand, isomer L1 does not show any instant color change upon additions of any anion. Interestingly, after thirty minutes, only the color of the cyanide complex is turned into dark brown. While analyzing the spectroscopic results of cyanide complex of L1, it is found that the cyanide complex begins to decompose and finally it is completely decomposed within 30 min. This unprecedented phenomenon about the colorimetric sensing of cyanide and destruction of cyanide complex with respect to time has not been reported in the literature yet. To the best of our knowledge this is the first example of study of sensing controlling the selectivity, mode of binding, self-aggregating and degradation properties of anionic complexes under the influence of positional isomeric effects. This present investigation provides simple and effective strategy to construct the sensor molecules with tunable binding properties in terms of easy to prepare as well as easy to use as a colorimetric sensor. _____________________________________________________________________________________________________.

2.
Mol Biotechnol ; 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39264528

ABSTRACT

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, hence there is an urgent need for new and effective therapeutic options. DNA topoisomerase 2A (TOP2A) plays a crucial role in the cell cycle and is involved in CRC progression, making it essential to identify structural and functional relevant alterations. Among the 24 mutations, our findings indicated that mutation D1021Y has the most deleterious effect on the TOP2A protein. Based on virtual screening of 31,561 compounds, we identified three lead candidates: 17683 (nigrospoxydon C), 28461 (carpatamide D), and 28853 (6'-O-acetyl-isohomaarbutin), which showed promising inhibitory effect against TOP2A and its mutant form. These compounds were assessed for their stability using density functional theory (DFT) analysis, where carpatamide D possessed the least energy gap of 4.398 eV showing its high reactivity among all. Further, molecular docking also shows the carpatamide D as the top candidate, which exhibited favourable docking energy against the TOP2A wild type (- 7.47 kcal/mol) and with D1021Y mutant (- 7.62 kcal/mol) as compared to reference compound PK1, which showed - 6.11 kcal/mol TOP2A wild type and - 6.24 kcal/mol against mutant type. The molecular dynamics simulation was performed to analyse the dynamics and stability of complex, which revealed TOP2A_28641 and D1021Y_28641 complexes to be stable with least root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF). Molecular mechanics/Poisson-Boltzmann surface area calculations indicated that TOP2A_28641 and D1021Y_28641 complexes exhibited the lowest binding energy of - 23.55 kcal/mol and - 25.03 kcal/mol, respectively. Our findings suggest carpatamide D as a promising lead compound for the TOP2A_D1021Y targeted cancer therapies, which needs further experimental validation.

3.
Trends Biotechnol ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39277494

ABSTRACT

Biomanufacturing is emerging as a key technology for the sustainable production of chemicals, materials, and food ingredients using engineered microbes. However, despite billions of dollars of investment, few processes have been successfully commercialized due to a lack of attention on industrial-scale bioprocess design and innovation. In this study, we address this challenge through the development of a novel semi-continuous bioprocess for the production of the terpene amorpha-4,11-diene (AMD4,11) using engineered Escherichia coli. Using a hydrophilic membrane for product and biomass retention, we successfully decoupled production at low growth rates (~0.01 1/h) and improved reactor productivity up to 166 mg/lReactor h, threefold compared with traditional fed-batch fermentations. When cell recycling was implemented, we showed sustained production at the highest conversion yield and production rate for up to three cycles, demonstrating the robustness of both the strain and the process and highlighting the potential for new bioprocess strategies to improve the economic viability of industrial biomanufacturing.

4.
J Neurosci Methods ; 410: 110242, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39127350

ABSTRACT

BACKGROUND: Transcranial magnetic stimulation (TMS) is a valuable technique for assessing the function of the motor cortex and cortico-muscular pathways. TMS activates the motoneurons in the cortex, which after transmission along cortico-muscular pathways can be measured as motor-evoked potentials (MEPs). The position and orientation of the TMS coil and the intensity used to deliver a TMS pulse are considered central TMS setup parameters influencing the presence/absence of MEPs. NEW METHOD: We sought to predict the presence of MEPs from TMS setup parameters using machine learning. We trained different machine learners using either within-subject or between-subject designs. RESULTS: We obtained prediction accuracies of on average 77 % and 65 % with maxima up to up to 90 % and 72 % within and between subjects, respectively. Across the board, a bagging ensemble appeared to be the most suitable approach to predict the presence of MEPs. CONCLUSIONS: Although within a subject the prediction of MEPs via TMS setup parameter-based machine learning might be feasible, the limited accuracy between subjects suggests that the transfer of this approach to experimental or clinical research comes with significant challenges.


Subject(s)
Evoked Potentials, Motor , Machine Learning , Motor Cortex , Transcranial Magnetic Stimulation , Transcranial Magnetic Stimulation/methods , Humans , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Male , Adult , Female , Young Adult , Electromyography/methods
5.
Genes Genomics ; 46(9): 1107-1122, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39126602

ABSTRACT

BACKGROUND AND RESEARCH PURPOSE: Paeoniflorin and albiflorin are monoterpene glycosides that exhibit various medicinal properties in Paeonia species. This study explored the terpene biosynthesis pathway and analyzed the distribution of these compounds in different tissues of two Korean landraces of Paeonia lactiflora to gain insights into the biosynthesis of monoterpene glycosides in P. lactiflora and their potential applications. MATERIALS AND METHODS: Two Korean landraces, Hongcheon var. and Hwacheon var, of P. lactiflora were used for the analyses. Contents of the paeoniflorin and albiflorin were analyzed using HPLC. RNA was extracted, sequenced, and subjected to transcriptome analysis. Differential gene expression, KEGG, and GO analyses were performed. Paeoniflorin biosynthesis genes were isolated from the transcriptomes using the genes in Euphorbia maculata with the NBLAST program. Phylogenetic analysis of of 1-Deoxy-D-xylulose 5-phosphate synthase (DOXPS), geranyl pyrophosphate synthase (GPPS), and pinene synthase (PS) was carried out with ClustalW and MEGA v5.0. RESULTS AND DISCUSSION: Analysis of paeoniflorin and albiflorin content in different tissues of the two P. lactiflora landraces revealed significant variation. Transcriptome analysis yielded 36,602 unigenes, most of which were involved in metabolic processes. The DEG analysis revealed tissue-specific expression patterns with correlations between landraces. The isolation of biosynthetic genes identified 173 candidates. Phylogenetic analysis of the key enzymes in these pathways provides insights into their evolutionary relationships. The sequencing and analysis of DOXPS, GPPS, PS revealed distinct clades and subclades, highlighting their evolutionary divergence and functional conservation. Our findings highlight the roots as the primary sites of paeoniflorin and albiflorin accumulation in P. lactiflora, underscoring the importance of tissue-specific gene expression in their biosynthesis. CONCLUSION: this study advances our understanding of monoterpene glycoside production and distribution in Paeonia, thereby guiding further plant biochemistry investigations.


Subject(s)
Glucosides , Monoterpenes , Paeonia , Paeonia/genetics , Paeonia/metabolism , Glucosides/metabolism , Glucosides/biosynthesis , Monoterpenes/metabolism , Bridged-Ring Compounds/metabolism , Phylogeny , Gene Expression Regulation, Plant , Transcriptome/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Biosynthetic Pathways/genetics
6.
Comput Biol Med ; 180: 109032, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39163827

ABSTRACT

OBJECTIVE: To develop and evaluate machine learning (ML) approaches for muscle identification using intraoperative motor evoked potentials (MEPs), and to compare their performance to human experts. BACKGROUND: There is an unseized opportunity to apply ML analytic techniques to the world of intraoperative neuromonitoring (IOM). MEPs are the ideal candidates given the importance of their correct interpretation during a surgical operation to the brain or the spine. In this work, we develop and test a set of different ML models for muscle identification using intraoperative MEPs and compare their performance to human experts. In addition, we provide a review of the available literature on current ML applications to IOM data in neurosurgery. METHODS: We trained and tested five different ML classifiers on a MEP database developed from six different muscles in patients who underwent brain or spinal cord surgery. MEPs were obtained by both transcranial (TES) and direct cortical stimulation (DCS) protocols. The models were evaluated within a single patient and on previously unseen patients, considering signals from TES and DCS both independently and mixed. Ten expert neurophysiologists classified a set of 50 randomly selected MEPs, and their performance was compared to the best performing model. RESULTS: A total of 25.423 MEPs were included in the study. Random Forest proved to be the best performing model with 99 % accuracy in the single patient dataset task and a 78 %-94 % accuracy range on previously unseen patients. The model performance was maximized by representing MEPs as a set of features typically employed in signal processing compared to traditional neurophysiological parameters. The classification ability of the Random Forest model between six different muscles and across different MEP acquisition modalities (79 %) significantly exceeded that of human experts (mean 48 %). CONCLUSIONS: Carefully selected ML models proved to have reliable capacity of extracting meaningful information to classify intraoperative MEPs using a limited number of features, proving robustness across patients and signal acquisition modalities, outperforming human experts, and with the potential to act as decision support systems to the IOM team. Such encouraging results lay the path to further explore the underlying nature of clinically important signals, with the aim to continue to produce useful applications to make surgeries safer and more efficient.


Subject(s)
Evoked Potentials, Motor , Machine Learning , Neurosurgical Procedures , Humans , Evoked Potentials, Motor/physiology , Male , Female , Intraoperative Neurophysiological Monitoring/methods , Adult , Middle Aged , Signal Processing, Computer-Assisted
7.
Clin Neurophysiol ; 166: 176-190, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39178552

ABSTRACT

OBJECTIVE: Our aim is to explore the value of intraoperative facial motor evoked potentials (FMEP) for facial outcomes in cerebellopontine angle (CPA) tumor surgery to provide an evidence-based consensus standard for future clinical practice and prospective studies. METHODS: Electronic databases were searched from inception to June 2023. Study quality was assessed with the QUADAS-2 tool. Bivariate and random-effects models for meta-analysis and meta-regression generated summary receiver operating characteristic curves (ROC) and forest plots for estimates of sensitivity and specificity. RESULTS: We included 17 studies (1,206 participants). Sensitivity was lower in the immediate (IM) post-operative (0.76, 95% CI 0.65-0.84) compared to follow-up (FU) period (0.82, 95% CI 0.74-0.88) while specificity was similar in both groups (IM, 0.94, 95% CI 0.89-0.97; FU, 0.93, 95% CI 0.87-0.96). Data driven estimates improved FMEP performance but require confirmation from future studies. Amplitude cutoff criteria and studies that scored new deficits as worse than House-Brackmann (HB) grade 2 yielded best sensitivities. CONCLUSIONS: FMEP demonstrated statistically significant accuracy for facial function monitoring. Implementation of FMEPs varied widely across studies. SIGNIFICANCE: Our study is the first systematic review with meta-analysis to demonstrate that intraoperative FMEP is valuable in CPA tumor surgery for facial outcomes. Meta-regression identified the methods that were most useful in the application of FMEPs.


Subject(s)
Evoked Potentials, Motor , Intraoperative Neurophysiological Monitoring , Humans , Intraoperative Neurophysiological Monitoring/methods , Evoked Potentials, Motor/physiology , Predictive Value of Tests , Cerebellopontine Angle/surgery , Cerebellopontine Angle/physiopathology , Facial Nerve/physiopathology , Cerebellar Neoplasms/surgery , Cerebellar Neoplasms/physiopathology
8.
Genes (Basel) ; 15(8)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39202430

ABSTRACT

Light is one of the most important factors regulating plant gene expression patterns, metabolism, physiology, growth, and development. To explore how light may induce or alter transcript splicing, we conducted RNA-Seq-based transcriptome analyses by comparing the samples harvested as etiolated seedlings grown under continuous dark conditions vs. the light-treated green seedlings. The study aims to reveal differentially regulated protein-coding genes and novel long noncoding RNAs (lncRNAs), their light-induced alternative splicing, and their association with biological pathways. We identified 14,766 differentially expressed genes, of which 4369 genes showed alternative splicing. We observed that genes mapped to the plastid-localized methyl-erythritol-phosphate (MEP) pathway were light-upregulated compared to the cytosolic mevalonate (MVA) pathway genes. Many of these genes also undergo splicing. These pathways provide crucial metabolite precursors for the biosynthesis of secondary metabolic compounds needed for chloroplast biogenesis, the establishment of a successful photosynthetic apparatus, and photomorphogenesis. In the chromosome-wide survey of the light-induced transcriptome, we observed intron retention as the most predominant splicing event. In addition, we identified 1709 novel lncRNA transcripts in our transcriptome data. This study provides insights on light-regulated gene expression and alternative splicing in rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Seedlings , Oryza/genetics , Oryza/growth & development , Oryza/radiation effects , Oryza/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects , Gene Expression Regulation, Plant/radiation effects , Transcriptome , Light , Alternative Splicing , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling/methods
9.
Asian J Neurosurg ; 19(3): 536-539, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39205894

ABSTRACT

Aneurysm arising from the A1 segment of the anterior cerebral artery is rare. Aneurysm of the A1 segment even being small tend to rupture early. They tend to develop along the with various vascular anomalies of the vessels arising from the A1 segment. Use of computational fluid dynamics and hemodynamic consideration is of importance in this aneurysm. In this report we describe a 57-year-old woman with a small, unruptured A1 segment aneurysm arising from the proximal segment of the posterior surface of A1, and pointing posterior-inferiorly with multiple perforators entangling around for which microsurgical clipping was done. Intraoperative clipping of the aneurysm and salvaging the multiple perforators were challenging. We report a rare case of an A1 segment aneurysm arising from the posterior surface facing with multiple perforators. It is of significance to understand that a small, unruptured A1 aneurysm can arise from the posterior surface of the A1 segment with projection posterior-inferiorly making it deeper in location with multiple perforators entangling it; hence, it is challenging to treat without causing neurological deficits.

10.
Heliyon ; 10(11): e32610, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961960

ABSTRACT

This study analyzed the aspirin molecule (C9H8O4) using Density Functional Theory (DFT) on Gaussian 09W software. First, the structure of aspirin was optimized using the DFT method with the B3LYP functional and the 6-311+G (d,p) basis set. A global reactivity study was employed to understand the reactivity of aspirin in gas and solvent water for both anion and neutral states. To understand the involvement of orbitals in chemical stability and electron conductivity, we calculated the HOMO-LUMO. The thermodynamic function of a molecule was understood using thermochemistry. Molecular Electrostatic Potential (MEP) was employed to understand the physiochemical properties of aspirin. We observed the Mulliken atomic charge to calculate the atomic charge of aspirin. Finally, the title molecule's UV-Vis, FTIR, and Raman spectra are analyzed and compared with the experimental data.

11.
Plant Direct ; 8(7): e617, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973810

ABSTRACT

Isoprene, a volatile hydrocarbon, is typically emitted from the leaves of many plant species. Given its well-known function in plant growth and defense aboveground, we examined its effects on root physiology. We used isoprene-emitting (IE) lines and a non-emitting (NE) line of Arabidopsis and investigated their performance by analyzing root phenotype, hormone levels, transcriptome, and metabolite profiles under both normal and salt stress conditions. We show that IE lines emitted tiny amounts of isoprene from roots and showed an increased root/shoot ratio compared with NE line. Isoprene emission exerted a noteworthy influence on hormone profiles related to plant growth and stress response, promoting root development and salt-stress resistance. Methyl erythritol 4-phosphate pathway metabolites, precursors of isoprene and hormones, were higher in the roots of IE lines than in the NE line. Transcriptome data indicated that the presence of isoprene increased the expression of key genes involved in hormone metabolism/signaling. Our findings reveal that constitutive root isoprene emission sustains root growth under saline conditions by regulating and/or priming hormone biosynthesis and signaling mechanisms and expression of key genes relevant to salt stress defense.

12.
Front Plant Sci ; 15: 1430204, 2024.
Article in English | MEDLINE | ID: mdl-38984161

ABSTRACT

Volatile compounds are important determinants affecting fruit flavor. Previous study has identified a bud mutant of 'Ehime 38' (Citrus reticulata) with different volatile profile. However, the volatile changes between WT and MT during fruit development and underlying mechanism remain elusive. In this study, a total of 35 volatile compounds were identified in the pulps of WT and MT at five developmental stages. Both varieties accumulated similar and the highest levels of volatiles at stage S1, and showed a downward trend as the fruit develops. However, the total volatile contents in the pulps of MT were 1.4-2.5 folds higher than those in WT at stages S2-S5, which was mainly due to the increase in the content of d-limonene. Transcriptomic and RT-qPCR analysis revealed that most genes in MEP pathway were positively correlated with the volatile contents, of which DXS1 might mainly contribute to the elevated volatiles accumulation in MT by increasing the flux into the MEP pathway. Moreover, temporal expression analysis indicated that these MEP pathway genes functioned at different developmental stages. This study provided comprehensive volatile metabolomics and transcriptomics characterizations of a citrus mutant during fruit development, which is valuable for fruit flavor improvement in citrus.

13.
Exp Brain Res ; 242(9): 2083-2091, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38963560

ABSTRACT

Transcranial electrical stimulation (tES) often targets the EEG-guided C3/C4 area that may not accurately represent M1 for hand muscles. This study aimed to determine if the neuroanatomy-based scalp acupuncture-guided site (AC) was a more effective spot than the C3 site for neuromodulation. Fifteen healthy subjects received one 20-minute session of high-definition transcranial alternating current stimulation (HD-tACS) intervention (20 Hz at 2 mA) at the AC or C3 sites randomly with a 1-week washout period. Subjects performed ball-squeezing exercises with the dominant hand during the HD-tACS intervention. The AC site was indiscernible from the finger flexor hotspot detected by TMS. At the baseline, the MEP amplitude from finger flexors was greater with less variability at the AC site than at the C3 site. HD-tACS intervention at the AC site significantly increased the MEP amplitude. However, no significant changes were observed after tACS was applied to the C3 site. Our results provide evidence that HD-tACS at the AC site produces better neuromodulation effects on the flexor digitorum superficialis (FDS) muscle compared to the C3 site. The AC localization approach can be used for future tES studies.


Subject(s)
Evoked Potentials, Motor , Hand , Scalp , Transcranial Direct Current Stimulation , Humans , Male , Female , Transcranial Direct Current Stimulation/methods , Adult , Hand/physiology , Scalp/physiology , Young Adult , Evoked Potentials, Motor/physiology , Muscle, Skeletal/physiology , Electromyography , Motor Cortex/physiology , Electroencephalography/methods
14.
J Neural Eng ; 21(4)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39079555

ABSTRACT

Objective.The transcranial magnetic stimulation (TMS) coil induces an electric field that diminishes rapidly upon entering the brain. This presents a challenge in achieving focal stimulation of a deep brain structure. Neuronal elements, including axons, dendrites, and cell bodies, exhibit specific time constants. When exposed to repetitive TMS pulses at a high frequency, there is a cumulative effect on neuronal membrane potentials, resulting in temporal summation. This study aims to determine whether TMS pulse train at high-frequency and subthreshold intensity could induce a suprathreshold response.Approach.As a proof of concept, we developed a TMS machine in-house that could consistently output pulses up to 250 Hz, and performed experiments on 22 awake rats to test whether temporal summation was detectable under pulse trains at 100, 166, or 250 Hz.Main results.Results revealed that TMS pulses at 55% maximum stimulator output (MSO, peak dI/dt= 68.5 A/µs at 100% MSO, pulse width = 48µs) did not induce motor responses with either single pulses or pulse trains. Similarly, a single TMS pulse at 65% MSO failed to evoke a motor response in rats; however, a train of TMS pulses at frequencies of 166 and 250 Hz, but not at 100 Hz, successfully triggered motor responses and MEP signals, suggesting a temporal summation effect dependent on both pulse intensities and pulse train frequencies.Significance.We propose that the temporal summation effect can be leveraged to design the next-generation focal TMS system: by sequentially driving multiple coils at high-frequency and subthreshold intensity, areas with the most significant overlapping E-fields undergo maximal temporal summation effects, resulting in a suprathreshold response.


Subject(s)
Evoked Potentials, Motor , Transcranial Magnetic Stimulation , Animals , Transcranial Magnetic Stimulation/methods , Rats , Male , Evoked Potentials, Motor/physiology , Motor Cortex/physiology , Rats, Sprague-Dawley
15.
Antimicrob Agents Chemother ; 68(8): e0123823, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39037239

ABSTRACT

We identified MMV026468 as a picomolar inhibitor of blood-stage Plasmodium falciparum. Phenotyping assays, including isopentenyl diphosphate rescue of parasite growth inhibition, demonstrated that it targets MEP isoprenoid precursor biosynthesis. MMV026468-treated parasites showed an overall decrease in MEP pathway intermediates, which could result from inhibition of the first MEP enzyme DXS or steps prior to DXS such as regulation of the MEP pathway. Selection of MMV026468-resistant parasites lacking DXS mutations suggested that other targets are possible. The identification of MMV026468 could lead to a new class of antimalarial isoprenoid inhibitors.


Subject(s)
Antimalarials , Plasmodium falciparum , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Organophosphorus Compounds/pharmacology , Hemiterpenes/pharmacology , Drug Resistance , Humans , Erythritol/analogs & derivatives , Erythritol/pharmacology
16.
Acta Neurochir (Wien) ; 166(1): 244, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822919

ABSTRACT

BACKGROUND: Surgical resection of insular gliomas is a challenge. TO resection is considered more versatile and has lower risk of vascular damage. In this study, we aimed to understand the factors that affect resection rates, ischemic changes and neurological outcomes and studied the utility of IONM in patients who underwent TO resection for IGs. METHODS: Retrospective analysis of 66 patients with IG who underwent TO resection was performed. RESULTS: Radical resection was possible in 39% patients. Involvement of zone II and the absence of contrast enhancement predicted lower resection rate. Persistent deficit rate was 10.9%. Although dominant lobe tumors increased immediate deficit and fronto-orbital operculum involvement reduced prolonged deficit rate, no tumor related factor showed significant association with persistent deficits. 45% of patients developed a postoperative infarct, 53% of whom developed deficits. Most affected vascular territory was lenticulostriate (39%). MEP changes were observed in 9/57 patients. 67% of stable TcMEPs and 74.5% of stable strip MEPs did not develop any postoperative motor deficits. Long-term deficits were seen in 3 and 6% patients with stable TcMEP and strip MEPs respectively. In contrast, 25% and 50% of patients with reversible strip MEP and Tc MEP changes respectively had persistent motor deficits. DWI changes were clinically more relevant when accompanied by MEP changes intraoperatively, with persistent deficit rates three times greater when MEP changes occurred than when MEPs were stable. CONCLUSION: Radical resection can be achieved in large, multizone IGs, with reasonable outcomes using TO approach and multimodal intraoperative strategy with IONM.


Subject(s)
Brain Neoplasms , Glioma , Humans , Glioma/surgery , Glioma/pathology , Male , Female , Middle Aged , Adult , Brain Neoplasms/surgery , Retrospective Studies , Treatment Outcome , Aged , Insular Cortex/surgery , Neurosurgical Procedures/methods , Postoperative Complications/etiology , Young Adult
17.
Surg Neurol Int ; 15: 182, 2024.
Article in English | MEDLINE | ID: mdl-38840594

ABSTRACT

Background: Among the technical measures to preserve facial nerve (FN) function, intraoperative neuromonitoring has become mandatory and is constantly being scrutinized. Hence, to determine the efficacy of FN motor evoked potentials (FNMEPs) in predicting long-term motor FN function following cerebellopontine angle (CPA) tumor surgery, an analysis of cases was done. Methods: In 37 patients who underwent CPA surgery, FNMEPs through corkscrew electrodes positioned at C5-C6 and C6-C5 (C is the central line of the brain as per 10-20 EEG electrode placement) were used to deliver short train stimuli and recorded from the orbicularis oculi, oris, and mentalis muscles. Results: In 58 patients, triggered electromyography (EMG) was able to identify the FN during resection of tumor, but 8 out of these (4.64%) patients developed new facial weakness, whereas 3 out of 38 (1.11%) patients who had intact FN function MEP (decrement of FN target muscles - CMAPs amplitude peak to peak >50-60%), developed new facial weakness (House and Brackmann grade II to III). Conclusion: The FNMEP has significant superiority over triggered EMG when tumor is giant and envelops the FN.

18.
Sci Rep ; 14(1): 14291, 2024 06 21.
Article in English | MEDLINE | ID: mdl-38906953

ABSTRACT

Parabens (PBs) are used as preservatives in various products. They pollute the environment and penetrate living organisms, showing endocrine disrupting activity. Till now studies on long-term exposure of farm animals to PBs have not been performed. Among matrices using in PBs biomonitoring hair samples are becoming more and more important. During this study concentration levels of methyl paraben (MeP), ethyl paraben (EtP), propyl paraben (PrP) butyl paraben (BuP) and benzyl paraben (BeP) were evaluated using liquid chromatography-mass spectrometry (LC-MS) in hair samples collected from dairy cows bred in the Kyrgyz Republic. MeP was noted in 93.8% of samples (with mean concentration levels 62.2 ± 61.8 pg/mg), PrP in 16.7% of samples (12.4 ± 6.5 pg/mg) and EtP in 8.3% of samples (21.4 ± 11.9 pg/mg). BuP was found only in one sample (2.1%) and BeP was not detected in any sample included in the study. Some differences in MeP concentration levels in the hair samples depending on district, where cows were bred were noted. This study has shown that among PBs, dairy cows are exposed mainly to MeP, and hair samples may be a suitable matrix for research on PBs levels in farm animals.


Subject(s)
Hair , Parabens , Animals , Cattle , Parabens/analysis , Hair/chemistry , Female , Chromatography, Liquid/methods , Hair Analysis/methods , Dairying , Environmental Exposure/analysis , Biological Monitoring/methods
19.
Cureus ; 16(5): e60343, 2024 May.
Article in English | MEDLINE | ID: mdl-38882967

ABSTRACT

Background Distal biceps tendon (DBT) rupture is not one of the most common upper limb injuries. Surgical intervention is recommended for these injuries to restore muscular strength and functionality. Multiple different techniques are documented in the literature, however there is no definitive consensus on the most effective surgical treatment. The objective of this study was to assess the functional results of patients who underwent repair of DBT utilizing cortical button fixation procedures. Methods This study is a retrospective single-unit case series consisting of 54 patients who underwent DBT repair at Heartlands Hospital in Birmingham, United Kingdom. The patients' functional outcomes was assessed by the Mayo Elbow Performance Score (MEPS). Results The mean age was 51±11.01 years. Patients were operated on 4.72±7.083 days after the injury. The mean pain Visual Analogue Scale (VAS) 6 months after the surgery was 0.54±0.50. At 6 months follow-up, the average extension deficit was 2.69° (0-10), flexion 132° (120-140), supination76° (50- 85), and 77° for pronation (78-95). Patients were followed up routinely for 6 months. Mayo Elbow Performance (MEP) Score was utilized to assess the functional outcome and the mean MEP score was 91.43±8.26 which showed excellent functional outcomes for the cohort. Conclusion DBT repair with cortical button fixation yielded favorable functional outcomes at 6 months, notably restoring supination strength. This approach offers anatomical reinsertion while minimizing nerve damage risk.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124600, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38852303

ABSTRACT

Psilocin, or 4-HO-DMT (or 3-(2-dimethylaminoethyl)-1H-indol-4-ol), is a psychoactive alkaloid substance from the tryptamine family, isolated from Psilocybe mushrooms. This substance is being studied by various research groups because it has a clear therapeutic effect in certain dosages. In this work, the study of the structure and properties of psilocin was carried using theoretical methods: the effects of polar solvents (acetonitrile, dimethylsulfoxide, water, and tetrahydrofuran) on the structural parameters, spectroscopic properties (Raman, IR, and UV-Vis), frontier molecular orbital (FMO), molecular electrostatic potential (MEP) surface, and nonlinear optical parameters (NLO). Theoretical calculations were performed at the B3LYP/6-311++G(d,p) level by the density functional theory (DFT) method. IEFPCM was used to account for solvent effects. The types and nature of non-covalent interactions (NCI) between psilocin and solvent molecules were determined using Atoms in Molecules (AIM), the reduced density gradient method (RDG), the electron localization function (ELF), and the localization orbital locator (LOL). Experimental and calculated FT-IR, FT-Raman, and UV-Vis spectra were compared and found to be in good agreement.

SELECTION OF CITATIONS
SEARCH DETAIL