Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.174
Filter
1.
Biochem Biophys Res Commun ; 735: 150469, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39106601

ABSTRACT

Recurrent epidemics of coronaviruses have posed significant threats to human life and health. The mortality rate of patients infected with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is 35 %. The main protease (Mpro) plays a crucial role in the MERS-CoV life cycle, and Mpro exhibited a high degree of conservation among different coronaviruses. Therefore inhibition of Mpro has become an effective strategy for the development of broad-spectrum anti-coronaviral drugs. The inhibition of SARS-CoV-2 Mpro by the anti-tumor drug carmofur has been revealed, but structural studies of carmofur in complex with Mpro from other types of coronavirus have not been reported. Hence, we revealed the structure of the MERS-CoV Mpro-carmofur complex, analysed the structural basis for the binding of carmofur to MERS-CoV Mpro in detail, and compared the binding patterns of carmofur to Mpros of two different coronaviruses, MERS-CoV and SARS-CoV-2. Considering the importance of Mpros for coronavirus therapy, structural understanding of Mpro inhibition by carmofur could contribute to the design and development of novel antiviral drugs with safe and broad-spectrum efficacy.

2.
Ann Med Surg (Lond) ; 86(8): 4668-4674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39118758

ABSTRACT

Background: Middle East respiratory syndrome (MERS) is a viral illness caused by the MERS-Coronavirus (MERS-CoV) that was first identified in Saudi Arabia in 2012. Saudi Arabia has reported most global MERS-CoV cases and deaths, with periodic outbreaks in other countries. Objectives: This review aims to provide a comprehensive overview of the 2023 MERS-CoV outbreak in Saudi Arabia, including its epidemiology, public health response, impact, and lessons learned. Methodology: This study utilized a narrative review approach, drawing on published literature and data from sources such as the WHO and the Centers for Disease Control and Prevention. Results: The 2023 outbreak was centered in the Riyadh region, with 312 confirmed cases and 97 deaths reported. MERS-CoV primarily spreads from dromedary camels to humans, with human-to-human transmission, especially in healthcare settings. The outbreak exhibited seasonal and spatial trends, with most cases during camel calving season and in rural areas with high camel populations. The Saudi Ministry of Health implemented a multi-faceted response, including enhancing surveillance, improving infection prevention, providing clinical support, and conducting risk communication. Over time, the response showed a decline in the number of cases and deaths, indicating its effectiveness. Conclusion: The outbreak has significant public health, economic, and social impacts, underscoring the ongoing threat of emerging zoonotic diseases. Key lessons include early case detection, efficient infection control, vaccine and treatment development, public engagement, and strengthening of regional and global collaboration to mitigate future outbreaks and safeguard public health.

3.
Viruses ; 16(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39066320

ABSTRACT

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) continues to be a global threat due to its ability to evolve and generate new subvariants, leading to new waves of infection. Additionally, other coronaviruses like Middle East respiratory syndrome coronavirus (MERS-CoV, formerly known as hCoV-EMC), which first emerged in 2012, persist and continue to present a threat of severe illness to humans. The continued identification of novel coronaviruses, coupled with the potential for genetic recombination between different strains, raises the possibility of new coronavirus clades of global concern emerging. As a result, there is a pressing need for pan-CoV therapeutic drugs and vaccines. After the extensive optimization of an HCV protease inhibitor screening hit, a novel 3CLPro inhibitor (MK-7845) was discovered and subsequently profiled. MK-7845 exhibited nanomolar in vitro potency with broad spectrum activity against a panel of clinical SARS-CoV-2 subvariants and MERS-CoV. Furthermore, when administered orally, MK-7845 demonstrated a notable reduction in viral burdens by >6 log orders in the lungs of transgenic mice infected with SARS-CoV-2 (K18-hACE2 mice) and MERS-CoV (K18-hDDP4 mice).


Subject(s)
Antiviral Agents , SARS-CoV-2 , Animals , Mice , SARS-CoV-2/drug effects , Humans , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/genetics , COVID-19 Drug Treatment , Protease Inhibitors/pharmacology , COVID-19/virology , Coronavirus Infections/drug therapy , Coronavirus Infections/virology
4.
Expert Opin Drug Discov ; : 1-19, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078037

ABSTRACT

INTRODUCTION: Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED: The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION: Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.

5.
Cureus ; 16(6): e63351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39077303

ABSTRACT

Background Coronaviruses (CoVs) pose significant health risks to humans, with recent outbreaks like severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscoring their zoonotic potential. Dromedary camels (Camelus dromedarius) have been implicated as intermediate hosts for MERS-CoV, prompting heightened surveillance efforts. This study aims to identify non-MERS-CoV CoVs in imported camels at the Jeddah seaport, Saudi Arabia, using molecular techniques. Methods Camel nasal swabs (n = 337) were collected from imported dromedary camels arriving at the Jeddah Islamic seaport from Sudan and Djibouti. Samples were tested for CoVs using real-time real-time reverse transcription polymerase chain reaction (RT-PCR) targeting the RNA-dependent RNA polymerase gene. Positive samples were confirmed by conventional RT-PCR and Sanger sequencing. Selected samples underwent RNA sequencing to identify viral genomes. The study underscores the importance of molecular surveillance in camels to mitigate zoonotic risks. Results Out of 337 camel samples tested, 28 (8.30%) were positive for CoVs, predominantly from camels imported from Djibouti, compared to Sudan (13.39% vs. 5.78%). Sequence analysis confirmed the presence of non-MERS CoVs, including camel alpha-coronavirus and human CoV-229E-related strains. These findings highlight potential viral diversity and transmission risks in imported camel populations. Conclusion This study identifies diverse CoVs circulating in imported dromedary camels at the Jeddah Islamic seaport, Saudi Arabia, underscoring their potential role in zoonotic transmission. Enhanced surveillance and collaborative efforts are essential to mitigate public health risks associated with novel coronavirus strains from camel populations.

6.
Cell Rep ; 43(8): 114530, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39058596

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts are limited by a poor understanding of antibody responses elicited by infection. Here, we analyze S-directed antibody responses in plasma collected from MERS-CoV-infected individuals. We observe that binding and neutralizing antibodies peak 1-6 weeks after symptom onset/hospitalization, persist for at least 6 months, and neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the receptor-binding domain (RBD), account for most plasma neutralizing activity. Antigenic site mapping reveals that plasma antibodies frequently target RBD epitopes, whereas targeting of S2 subunit epitopes is rare. Our data reveal the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.

7.
Expert Rev Respir Med ; 18(5): 295-307, 2024 May.
Article in English | MEDLINE | ID: mdl-38881206

ABSTRACT

INTRODUCTION: An important respiratory pathogen that has led to multiple hospital outbreaks both inside and outside of the Arabian Peninsula is the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). Given the elevated case fatality rate, there exists a pressing requirement for efficacious therapeutic agents. AREAS COVERED: This is an updated review of the developments in MERS treatment approaches. Using databases like PubMed, Embase, Cochrane, Scopus, and Google Scholar, a thorough search was carried out utilizing keywords like 'MERS,' 'MERS-CoV,' and 'Middle East respiratory syndrome' in conjunction with 'treatment' or 'therapy' from Jan 2012 to Feb 2024. EXPERT OPINION: MERS-CoV is a highly pathogenic respiratory infection that emerged in 2012 and continues to pose a significant public health threat. Despite ongoing efforts to control the spread of MERS-CoV, there is currently no specific antiviral treatment available. While many agents have been tested both in vivo and in vitro, none of them have been thoroughly examined in extensive clinical trials. Only case reports, case series, or cohort studies have been made available as clinical studies. However, there is a limited number of randomized-controlled trials. Because cases are irregular and sporadic, conducting a large prospective randomized trials for establishing an efficacious treatment might be difficult.


Subject(s)
Antiviral Agents , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Humans , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Antiviral Agents/therapeutic use , Animals , Treatment Outcome
8.
Front Public Health ; 12: 1386495, 2024.
Article in English | MEDLINE | ID: mdl-38827618

ABSTRACT

Introduction: Mitigating the spread of infectious diseases is of paramount concern for societal safety, necessitating the development of effective intervention measures. Epidemic simulation is widely used to evaluate the efficacy of such measures, but realistic simulation environments are crucial for meaningful insights. Despite the common use of contact-tracing data to construct realistic networks, they have inherent limitations. This study explores reconstructing simulation networks using link prediction methods as an alternative approach. Methods: The primary objective of this study is to assess the effectiveness of intervention measures on the reconstructed network, focusing on the 2015 MERS-CoV outbreak in South Korea. Contact-tracing data were acquired, and simulation networks were reconstructed using the graph autoencoder (GAE)-based link prediction method. A scale-free (SF) network was employed for comparison purposes. Epidemic simulations were conducted to evaluate three intervention strategies: Mass Quarantine (MQ), Isolation, and Isolation combined with Acquaintance Quarantine (AQ + Isolation). Results: Simulation results showed that AQ + Isolation was the most effective intervention on the GAE network, resulting in consistent epidemic curves due to high clustering coefficients. Conversely, MQ and AQ + Isolation were highly effective on the SF network, attributed to its low clustering coefficient and intervention sensitivity. Isolation alone exhibited reduced effectiveness. These findings emphasize the significant impact of network structure on intervention outcomes and suggest a potential overestimation of effectiveness in SF networks. Additionally, they highlight the complementary use of link prediction methods. Discussion: This innovative methodology provides inspiration for enhancing simulation environments in future endeavors. It also offers valuable insights for informing public health decision-making processes, emphasizing the importance of realistic simulation environments and the potential of link prediction methods.


Subject(s)
Contact Tracing , Coronavirus Infections , Disease Outbreaks , Middle East Respiratory Syndrome Coronavirus , Humans , Republic of Korea/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/prevention & control , Coronavirus Infections/epidemiology , Contact Tracing/methods , Disease Outbreaks/prevention & control , Quarantine , Computer Simulation
9.
Hum Vaccin Immunother ; 20(1): 2346390, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38691025

ABSTRACT

Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.


Subject(s)
Antibodies, Viral , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Silicon Dioxide , Vaccines, DNA , Viral Vaccines , Animals , Vaccines, DNA/immunology , Vaccines, DNA/genetics , Vaccines, DNA/administration & dosage , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Mice , Viral Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Silicon Dioxide/chemistry , Mice, Inbred BALB C , Female , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Vaccine Development
10.
Animal Model Exp Med ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803038

ABSTRACT

BACKGROUND: The aim was to elucidate the function of IL-37 in middle east respiratory syndrome coronavirus (MERS-CoV) infection, thereby providing a novel therapeutic strategy for managing the clinical treatment of inflammatory response caused by respiratory virus infection. METHODS: We investigated the development of MERS by infecting hDPP4 mice with hCoV-EMC (107 TCID50 [50% tissue culture infectious dose]) intranasally. We infected A549 cells with MERS-CoV, which concurrently interfered with IL-37, detecting the viral titer, viral load, and cytokine expression at certain points postinfection. Meanwhile, we administered IL-37 (12.5 µg/kg) intravenously to hDPP4 mice 2 h after MERS-CoV-2 infection and collected the serum and lungs 5 days after infection to investigate the efficacy of IL-37 in MERS-CoV infection. RESULTS: The viral titer of MERS-CoV-infected A549 cells interfering with IL-37 was significantly reduced by 4.7-fold, and the viral load of MERS-CoV-infected hDPP4 mice was decreased by 59-fold in lung tissue. Furthermore, the administration of IL-37 suppressed inflammatory cytokine and chemokine (monocyte chemoattractant protein 1, interferon-γ, and IL-17A) expression and ameliorated the infiltration of inflammatory cells in hDPP4 mice. CONCLUSION: IL-37 exhibits protective properties in severe pneumonia induced by MERS-CoV infection. This effect is achieved through attenuation of lung viral load, suppression of inflammatory cytokine secretion, reduction in inflammatory cell infiltration, and mitigation of pulmonary injury.

11.
Virus Res ; 345: 199383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697296

ABSTRACT

The emergence of the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) has posed a significant global health concern due to its severe respiratory illness and high fatality rate. Currently, despite the potential for resurgence, there are no specific treatments for MERS-CoV, and only supportive care is available. Our study aimed to address this therapeutic gap by developing a potent neutralizing bispecific antibody (bsAb) against MERS-CoV. Initially, we isolated four human monoclonal antibodies (mAbs) that specifically target the MERS-CoV receptor-binding domain (RBD) using phage display technology and an established human antibody library. Among these four selected mAbs, our intensive in vitro functional analyses showed that the MERS-CoV RBD-specific mAb K111.3 exhibited the most potent neutralizing activity against MERS-CoV pseudoviral infection and the molecular interaction between MERS-CoV RBD and human dipeptidyl peptidase 4. Consequently, we engineered a novel bsAb, K207.C, by utilizing K111.3 as the IgG base and fusing it with the single-chain variable fragment of its non-competing pair, K111.1. This engineered bsAb showed significantly enhanced neutralization potential against MERS-CoV compared to its parental mAb. These findings suggest that K207.C may serve as a potential candidate for effective MERS-CoV neutralization, further highlighting the promise of the bsAb dual-targeting approach in MERS-CoV neutralization.


Subject(s)
Antibodies, Bispecific , Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Antibodies, Bispecific/immunology , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Monoclonal/immunology , Protein Binding , Coronavirus Infections/immunology , Coronavirus Infections/virology , Dipeptidyl Peptidase 4/immunology , Mice , Neutralization Tests
12.
Hum Vaccin Immunother ; 20(1): 2351664, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38757508

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.


Subject(s)
Antibodies, Viral , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus , Spike Glycoprotein, Coronavirus , Viral Vaccines , Middle East Respiratory Syndrome Coronavirus/immunology , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Vaccines/immunology , Mice , Female , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Immunogenicity, Vaccine , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Adjuvants, Immunologic/administration & dosage , Adjuvants, Vaccine , Humans
13.
Med Microbiol Immunol ; 213(1): 6, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722338

ABSTRACT

To date, there is no licensed vaccine for Middle East respiratory syndrome coronavirus (MERS-CoV). Therefore, MERS-CoV is one of the diseases targeted by the Coalition for Epidemic Preparedness Innovations (CEPI) vaccine development programs and has been classified as a priority disease by the World Health Organization (WHO). An important measure of vaccine immunogenicity and antibody functionality is the detection of virus-neutralizing antibodies. We have developed and optimized a microneutralization assay (MNA) using authentic MERS-CoV and standardized automatic counting of virus foci. Compared to our standard virus neutralization assay, the MNA showed improved sensitivity when analyzing 30 human sera with good correlation of results (Spearman's correlation coefficient r = 0.8917, p value < 0.0001). It is important to use standardized materials, such as the WHO international standard (IS) for anti-MERS-CoV immunoglobulin G, to compare the results from clinical trials worldwide. Therefore, in addition to the neutralizing titers (NT50 = 1384, NT80 = 384), we determined the IC50 and IC80 of WHO IS in our MNA to be 0.67 IU/ml and 2.6 IU/ml, respectively. Overall, the established MNA is well suited to reliably quantify vaccine-induced neutralizing antibodies with high sensitivity.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Middle East Respiratory Syndrome Coronavirus , Neutralization Tests , Middle East Respiratory Syndrome Coronavirus/immunology , Humans , Neutralization Tests/methods , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , Coronavirus Infections/diagnosis , Animals , Inhibitory Concentration 50 , Sensitivity and Specificity
14.
Virol Sin ; 39(3): 490-500, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768713

ABSTRACT

As of December 2022, 2603 laboratory-identified Middle East respiratory syndrome coronavirus (MERS-CoV) infections and 935 associated deaths, with a mortality rate of 36%, had been reported to the World Health Organization (WHO). However, there are still no vaccines for MERS-CoV, which makes the prevention and control of MERS-CoV difficult. In this study, we generated two DNA vaccine candidates by integrating MERS-CoV Spike (S) gene into a replicating Vaccinia Tian Tan (VTT) vector. Compared to homologous immunization with either vaccine, mice immunized with DNA vaccine prime and VTT vaccine boost exhibited much stronger and durable humoral and cellular immune responses. The immunized mice produced robust binding antibodies and broad neutralizing antibodies against the EMC2012, England1 and KNIH strains of MERS-CoV. Prime-Boost immunization also induced strong MERS-S specific T cells responses, with high memory and poly-functional (CD107a-IFN-γ-TNF-α) effector CD8+ T cells. In conclusion, the research demonstrated that DNA-Prime/VTT-Boost strategy could elicit robust and balanced humoral and cellular immune responses against MERS-CoV-S. This study not only provides a promising set of MERS-CoV vaccine candidates, but also proposes a heterologous sequential immunization strategy worthy of further development.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Coronavirus Infections , Immunity, Cellular , Immunity, Humoral , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus , Vaccines, DNA , Viral Vaccines , Animals , Vaccines, DNA/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/genetics , Antibodies, Viral/blood , Mice , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Viral Vaccines/genetics , Female , Coronavirus Infections/prevention & control , Coronavirus Infections/immunology , CD8-Positive T-Lymphocytes/immunology , Vaccinia virus/genetics , Vaccinia virus/immunology , Immunization, Secondary , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics
15.
Hum Antibodies ; 32(3): 129-137, 2024.
Article in English | MEDLINE | ID: mdl-38758996

ABSTRACT

BACKGROUND: Middle East Respiratory Syndrome Coronavirus is a highly pathogenic virus that poses a significant threat to public health. OBJECTIVE: The purpose of this study is to develop and characterize novel mouse monoclonal antibodies targeting the spike protein S1 subunit of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV). METHODS: In this study, three mouse monoclonal antibodies (mAbs) against MERS-CoV were generated and characterized using hybridoma technology. The mAbs were evaluated for their reactivity and neutralization activity. The mAbs were generated through hybridoma technology by the fusion of myeloma cells and spleen cells from MERS-CoV-S1 immunized mice. The resulting hybridomas were screened for antibody production using enzyme-linked immunosorbent assays (ELISA). RESULTS: ELISA results demonstrated that all three mAbs exhibited strong reactivity against the MERS-CoV S1-antigen. Similarly, dot-ELISA revealed their ability to specifically recognize viral components, indicating their potential for diagnostic applications. Under non-denaturing conditions, Western blot showed the mAbs to have robust reactivity against a specific band at 116 KDa, corresponding to a putative MERS-CoV S1-antigen. However, no reactive bands were observed under denaturing conditions, suggesting that the antibodies recognize conformational epitopes. The neutralization assay showed no in vitro reactivity against MERS-CoV. CONCLUSION: This study successfully generated three mouse monoclonal antibodies against MERS-CoV using hybridoma technology. The antibodies exhibited strong reactivity against MERS-CoV antigens using ELISA and dot ELISA assays. Taken together, these findings highlight the significance of these mAbs for potential use as valuable tools for MERS-CoV research and diagnosis (community and field-based surveillance and viral antigen detection).


Subject(s)
Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Enzyme-Linked Immunosorbent Assay , Hybridomas , Middle East Respiratory Syndrome Coronavirus , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Antibodies, Monoclonal/immunology , Mice , Antibodies, Viral/immunology , Hybridomas/immunology , Humans , Antibodies, Neutralizing/immunology , Mice, Inbred BALB C , Epitopes/immunology , Neutralization Tests , Antibody Specificity/immunology , Coronavirus Infections/immunology , Female
16.
J Nanobiotechnology ; 22(1): 304, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822339

ABSTRACT

Nanobodies, single-domain antibodies derived from variable domain of camelid or shark heavy-chain antibodies, have unique properties with small size, strong binding affinity, easy construction in versatile formats, high neutralizing activity, protective efficacy, and manufactural capacity on a large-scale. Nanobodies have been arisen as an effective research tool for development of nanobiotechnologies with a variety of applications. Three highly pathogenic coronaviruses (CoVs), SARS-CoV-2, SARS-CoV, and MERS-CoV, have caused serious outbreaks or a global pandemic, and continue to post a threat to public health worldwide. The viral spike (S) protein and its cognate receptor-binding domain (RBD), which initiate viral entry and play a critical role in virus pathogenesis, are important therapeutic targets. This review describes pathogenic human CoVs, including viral structures and proteins, and S protein-mediated viral entry process. It also summarizes recent advances in development of nanobodies targeting these CoVs, focusing on those targeting the S protein and RBD. Finally, we discuss potential strategies to improve the efficacy of nanobodies against emerging SARS-CoV-2 variants and other CoVs with pandemic potential. It will provide important information for rational design and evaluation of therapeutic agents against emerging and reemerging pathogens.


Subject(s)
COVID-19 , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Single-Domain Antibodies/therapeutic use , Single-Domain Antibodies/chemistry , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/virology , COVID-19/immunology , COVID-19/therapy , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Virus Internalization/drug effects , Pandemics , Betacoronavirus/immunology , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Pneumonia, Viral/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use
17.
Curr Med Chem ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38584558

ABSTRACT

BACKGROUND: Pathogenic viruses that cause large-scale global or regional outbreaks almost always contain class I fusion proteins. Although the viruses differ in morphology, they all require fusion protein-mediated virus-host cell membranes during the early stages of host cell invasion. METHOD: The CHR region and NHR region of fusion proteins can form the 6-HB structure to drive the fusion pore formation between viruses and host cells through metastable interactions. Here, we obtained bifunctional N-peptides with inhibitory activities against two viruses, HIV-1 and MERS-CoV, based on the sequences in the HIV-1 NHR region by constructing N-trimer conformation interacting with the CHR region. RESULT: This study demonstrates that N-peptides with the coiled triple helix structure obtained from the NHR region in 6-HB are able to target the CHR region and exhibit inhibitory activity against a variety of viruses. CONCLUSION: Moreover, this strategy can be used to investigate antivirals against unknown viruses for future outbreaks.

18.
Nat Prod Res ; : 1-7, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563220

ABSTRACT

Recently, the world faced many epidemics which were caused by viral respiratory pathogens. Marine creatures including Asteroidea class have been one of the recent research topics due to their diverse and complex secondary metabolites. Some of these constituents exhibit antiviral activities. The present study aimed to extract and identify the potential antiviral compounds from Pentaceraster cumingi, Astropecten polyacanthus and Pentaceraster mammillatus. The results showed that promising activity of the methanolic extract of P. cumingi with 50% inhibitory concentration (IC50) of 3.21 mg/ml against MERS-CoV with a selective index (SI) of 13.975. The biochemical components of the extracts were identified by GC/MS analysis. The Molecular docking study highlighted the virtual mechanism of binding the identified compounds towards three PDB codes of MERS-CoV non-structural protein 10/16. Interestingly, 2-mono Linolein showed promising binding energy of -14.75 Kcal/mol with the second PDB code (5YNI) and -15.22 Kcal/mol with the third PDB code (5YNQ).

19.
J Med Virol ; 96(5): e29628, 2024 May.
Article in English | MEDLINE | ID: mdl-38682568

ABSTRACT

This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Enhancement , COVID-19 , Immunoglobulin G , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Antibodies, Viral/blood , SARS-CoV-2/immunology , Immunoglobulin G/blood , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Middle Aged , Male , Female , Neutralization Tests , Adult , COVID-19 Vaccines/immunology , Antigens, Viral/immunology , Animals , Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination
20.
Biology (Basel) ; 13(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38666857

ABSTRACT

Earlier research has established the existence of reliable interactive genomic biomarkers. However, reliable DNA methylation biomarkers, not to mention interactivity, have yet to be identified at the epigenetic level. This study, drawing from 865,859 methylation sites, discovered two miniature sets of Infinium MethylationEPIC sites, each having eight CpG sites (genes) to interact with each other and disease subtypes. They led to the nearly perfect (96.87-100% accuracy) prediction of COVID-19 patients from patients with other diseases or healthy controls. These CpG sites can jointly explain some post-COVID-19-related conditions. These CpG sites and the optimally performing genomic biomarkers reported in the literature become potential druggable targets. Among these CpG sites, cg16785077 (gene MX1), cg25932713 (gene PARP9), and cg22930808 (gene PARP9) at DNA methylation levels indicate that the initial SARS-CoV-2 virus may be better treated as a transcribed viral DNA into RNA virus, i.e., not as an RNA virus that has concerned scientists in the field. Such a discovery can significantly change the scientific thinking and knowledge of viruses.

SELECTION OF CITATIONS
SEARCH DETAIL