Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 318
Filter
1.
Respir Res ; 25(1): 328, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223619

ABSTRACT

BACKGROUND: The interplay between intrauterine and early postnatal environments has been associated with an increased risk of cardiovascular diseases in adulthood, including pulmonary arterial hypertension (PAH). While emerging evidence highlights the crucial role of mitochondrial pathology in PAH, the specific mechanisms driving fetal-originated PAH remain elusive. METHODS AND RESULTS: To elucidate the role of mitochondrial dynamics in the pathogenesis of fetal-originated PAH, we established a rat model of postnatal catch-up growth following intrauterine growth restriction (IUGR) to induce pulmonary arterial hypertension (PAH). RNA-seq analysis of pulmonary artery samples from the rats revealed dysregulated mitochondrial metabolic genes and pathways associated with increased pulmonary arterial pressure and pulmonary arterial remodeling in the RC group (postnatal catch-up growth following IUGR). In vitro experiments using pulmonary arterial smooth muscle cells (PASMCs) from the RC group demonstrated elevated proliferation, migration, and impaired mitochondrial functions. Notably, reduced expression of Mitofusion 2 (Mfn2), a mitochondrial outer membrane protein involved in mitochondrial fusion, was observed in the RC group. Reconstitution of Mfn2 resulted in enhanced mitochondrial fusion and improved mitochondrial functions in PASMCs of RC group, effectively reversing the Warburg effect. Importantly, Mfn2 reconstitution alleviated the PAH phenotype in the RC group rats. CONCLUSIONS: Imbalanced mitochondrial dynamics, characterized by reduced Mfn2 expression, plays a critical role in the development of fetal-originated PAH following postnatal catch-up growth after IUGR. Mfn2 emerges as a promising therapeutic strategy for managing IUGR-catch-up growth induced PAH.


Subject(s)
Fetal Growth Retardation , GTP Phosphohydrolases , Rats, Sprague-Dawley , Animals , Fetal Growth Retardation/metabolism , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Rats , Female , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/physiopathology , Mitochondrial Dynamics/physiology , Male , Cells, Cultured , Pregnancy , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Disease Models, Animal , Mitochondria/metabolism , Mitochondria/pathology , Animals, Newborn , Mitochondrial Proteins
2.
Front Psychiatry ; 15: 1424958, 2024.
Article in English | MEDLINE | ID: mdl-39323965

ABSTRACT

Introduction: Major Depression (MD) is a common mental disorder. In East Asian ancestry, the association, causality, and shared genetic basis between blood-based biomarkers and MD remain unclear. Methods: We investigated the relationships between blood-based biomarkers and MD through a cross-sectional study and Mendelian randomization (MR) analysis. Cross-trait analysis and enrichment analyses were used to highlight the shared genetic determinants and biological pathways. We conducted summary data-based MR to identify shared genes, which were then validated using a transcriptome dataset from drug-naïve patients with MD. Results: In the cross-sectional study, C-Reactive Protein showed the significantly positive correlation with depressive symptoms, while hematocrit, hemoglobin, and uric acid exhibited significantly negative correlations. In MR analysis, basophil count (BASO) and low-density lipoprotein cholesterol (LDLc) had a significant causal effect on MD. The enrichment analysis indicated a significant role of inflammatory cytokines and oxidative stress. The shared genes MFN2, FAM55C, GCC2, and SCAPER were validated, with MFN2 identified as a pleiotropic gene involved in MD, BASO, and LDLc. Discussion: This study highlighted that BASO and LDLc have a causal effect on MD in East Asian ancestry. The pathological mechanisms of MD are related not only to inflammatory cytokines and oxidative stress but also to down regulation of MFN2 expression and mitochondrial dysfunction.

3.
Mol Neurobiol ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39259438

ABSTRACT

An abnormal increase in the expression of nuclear receptor subfamily 6 group A member 1 (NR6A1) in the hippocampus has been reported to result in depressive-like behavior in mice. However, the role of NR6A1 in the progression of neuronal death induced by ischemic stroke remains unknown. In this study, we observed an increase in NR6A1 in neurons in both in vivo and in vitro cerebral ischemic models. We found that knocking down NR6A1 in HT-22 neuronal cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) attenuated mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Conversely, NR6A1 overexpression exacerbated neuronal damage following OGD/R. NR6A1 hindered the transcription of mitonfusin 2 (MFN2), leading to a decrease in its expression. In contrast, MFN2 conferred the protective effect of NR6A1 silencing against both mitochondrial dysfunction and ER stress. In addition, NR6A1 silencing also attenuated brain infarction, ER stress, neuronal apoptosis, and loss of MFN2 in mice subjected to middle cerebral artery occlusion/reperfusion. These findings indicate that NR6A1 is a promising target for the treatment of neuronal death following cerebral ischemia. Furthermore, these results confirm the involvement of MFN2 in the effects of NR6A1 silencing. Therefore, targeting NR6A1 has potential as a viable strategy for the treatment of ischemic stroke.

4.
Eur J Pharmacol ; 980: 176828, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39094924

ABSTRACT

Induction of resistin-like molecule ß (Relm-ß) and mitofusin 2 (MFN2) mediated aberrant mitochondrial fission have been found to be involved in the pathogenesis of pulmonary arterial hypertension (PAH). However, the molecular mechanisms underlying Relm-ß regulation of MFN2 therefore mitochondrial fission remain unclear. This study aims to address these issues. Primary cultured PASMCs and monocrotaline (MCT)-induced PAH rats were applied in this study. The results showed that Relm-ß promoted cells proliferation in PASMCs, this was accompanied with the upregulation of USP18, Twist1 and miR-214, and downregulation of MFN2. We found that Relm-ß increased USP18 expression which in turn raised Twist1 by suppressing its proteasome degradation. Elevation of Twist1 increased miR-214 expression and then reduced MFN2 expression and mitochondrial fragmentation leading to PASMCs proliferation. In vivo study, we confirmed that Relm-ß was elevated in MCT-induced PAH rat model, and USP18/Twist1/miR-214/MFN2 axis was altered similar as in vitro. Targeting this cascade by Relm-ß receptor inhibitor Calhex231, proteasome inhibitor MG-132, Twist1 inhibitor Harmine or miR-214 antagomiR prevented the development of pulmonary vascular remodeling and therefore PAH in MCT-treated rats. In conclusion, we demonstrate that Relm-ß promotes PASMCs proliferation and vascular remodeling by activating USP18/Twist1/miR-214 dependent MFN2 reduction and mitochondrial fission, suggesting that this signaling pathway might be a promising target for management of PAH.


Subject(s)
Cell Proliferation , GTP Phosphohydrolases , MicroRNAs , Mitochondria , Rats, Sprague-Dawley , Signal Transduction , Twist-Related Protein 1 , Ubiquitin Thiolesterase , Animals , Male , Rats , Cell Proliferation/drug effects , GTP Phosphohydrolases/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Intercellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Mitochondrial Proteins , Monocrotaline/toxicity , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/pathology , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Signal Transduction/drug effects , Twist-Related Protein 1/metabolism , Twist-Related Protein 1/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
5.
Int J Biol Macromol ; 278(Pt 1): 134673, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39142491

ABSTRACT

Charcot-Marie-Tooth type 2A (CMT2A) is a single-gene motor sensory neuropathy caused by Mfn2 mutation. It is generally believed that CMT2A involves mitochondrial fusion disruption. However, how Mfn2 mutation mediates the mitochondrial membrane fusion loss and its further pathogenic mechanisms remain unclear. Here, in vivo and in vitro mouse models harboring the Mfn2R364W, Mfn2G176S and Mfn2H165R mutations were constructed. Mitochondrial membrane fusion and fission proteins analysis showed that Mfn2R364W, Mfn2G176S, and Mfn2H165R/+ mutations maintain the expression of Mfn2, but promote Drp1 upregulation and Opa1 hydrolytic cleavage. In Mfn2H165R/H165R mutation, Mfn2, Drp1, and Opa1 all play a role in inducing mitochondrial fragmentation, and the mitochondrial aggregation is affected by Mfn2 loss. Further research into the pathogenesis of CMT2A showed these three mutations all induce mitochondria-mediated apoptosis, and mitochondrial oxidative phosphorylation damage. Overall, loss of overall fusion activity affects mitochondrial DNA (mtDNA) stability and causes mitochondrial loss and dysfunction, ultimately leading to CMT2A disease. Interestingly, the differences in the pathogenesis of CMT2A between Mfn2R364W, Mfn2G176S, Mfn2H165R/+ and Mfn2H165R/H165R mutations, including the distribution of Mfn2 and mitochondria, the expression of mitochondrial outer membrane-associated proteins (Bax, VDAC1 and AIF), and the enzyme activity of mitochondrial complex I, are related to the expression of Mfn2.


Subject(s)
Apoptosis , Charcot-Marie-Tooth Disease , GTP Phosphohydrolases , Mitochondria , Mutation , Oxidative Phosphorylation , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Animals , Mitochondria/metabolism , Mitochondria/genetics , Mice , Apoptosis/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Dynamics/genetics , Humans , Disease Models, Animal
6.
J Cell Biochem ; : e30641, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175152

ABSTRACT

The lack of amino acids triggers the autophagic response. Some studies have shown such starvation conditions also induce mitochondrial fusion, revealing a close correlation between the two processes. Although Mitofusin-2 (MFN2) has been demonstrated to play a role in fusion regulation, its role in the autophagic response and the variables that activate MFN2 under stress remain unknown. In this investigation, we screened and confirmed that forkhead box protein O3 (FOXO3) participates in MFN2's expression during short periods of starvation. Luciferase reporter test proved that FOXO3 facilitates MFN2's transcription by binding to its promoter region, and FOXO3 downregulation directly depresses MFN2's expression. Consequently, inhibiting the FOXO3-MFN2 axis results in the loss of mitochondrial fusion, disrupting the normal morphology of mitochondria, impairing the degradation of substrates, and reducing autophagosome accumulation, ultimately leading to the blockage of the autophagy. In conclusion, our work demonstrates that the FOXO3-MFN2 pathway is essential for adaptive changes in mitochondrial morphology and cellular autophagy response under nutritional constraints.

7.
J Neuroimmune Pharmacol ; 19(1): 48, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196455

ABSTRACT

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. Microglial activation and neuroinflammation are key cellular events that determine the outcome of TBI, especially neuronal and cognitive function. Studies have suggested that the metabolic characteristics of microglia dictate their inflammatory response. The pyruvate kinase isoform M2 (PKM2), a key glycolytic enzyme, is involved in the regulation of various cellular metabolic processes, including mitochondrial metabolism. This suggests that PKM2 may also participate in the regulation of microglial activation during TBI. Therefore, the present study aimed to evaluate the role of PKM2 in regulating microglial activation and neuroinflammation and its effects on cognitive function following TBI. A controlled cortical impact (CCI) mouse model and inflammation-induced primary mouse microglial cells in vitro were used to investigate the potential effects of PKM2 inhibition and regulation. PKM2 was significantly increased during the acute and subacute phases of TBI and was predominantly detected in microglia rather than in neurons. Our results demonstrate that shikonin and TEPP-46 can inhibit microglial inflammation, improving mitochondria, improving mouse behavior, reducing brain defect volume, and alleviating pathological changes after TBI. There is a difference in the intervention of shikonin and TEPP-46 on PKM2. Shikonin directly inhibits General PKM2; TEPP-46 can promote the expression of PKM2 tetramer. In vitro experiments, TEPP-46 can promote the expression of PKM2 tetramer, enhance the interaction between PKM2 and MFN2, improve mitochondria, alleviate neuroinflammation. General inhibition and tetramerization activation of PKM2 attenuated cognitive function caused by TBI, whereas PKM2 tetramerization exhibited a better treatment effect. Our experiments demonstrated the non-metabolic role of PKM2 in the regulation of microglial activation following TBI. Both shikonin and TEPP-46 can inhibit pro-inflammatory factors, but only TEPP-46 can promote PKM2 tetramerization and upregulate the release of anti-inflammatory factors from microglia.


Subject(s)
Brain Injuries, Traumatic , Microglia , Mitochondria , Naphthoquinones , Pyruvate Kinase , Animals , Microglia/drug effects , Microglia/metabolism , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/drug therapy , Mice , Pyruvate Kinase/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Naphthoquinones/pharmacology , Male , Mice, Inbred C57BL , Protein Multimerization/drug effects , Cells, Cultured
8.
Cell Signal ; 121: 111283, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960059

ABSTRACT

It has been demonstrated that circular RNAs (circRNAs) are associated with the development of diabetic retinopathy (DR). Nevertheless, the function of circSLC16A10 in the development of DR remains unclear. In order to investigate the role of circSLC16A10, we employed cell and animal models of DR. An analysis of a public database revealed that hsa_circSLC16A10 was expressed at lower levels in DR patients than in diabetic patients without DR or healthy controls. Additionally, the level of hsa_circSLC16A10 was lower in high glucose (HG)-exposed ARPE-19 cells and diabetic mice. hsa_circSLC16A10 was observed to be mainly distributed in the cytoplasm. Moreover, overexpression of hsa_circSLC16A10 alleviated HG-induced endoplasmic reticulum stress and cell apoptosis in vitro. Furthermore, overexpression of hsa_circSLC16A10 ameliorated HG-induced mitochondrial dysfunction, as evidenced by improvements in mitochondrial structure and function. hsa_circSLC16A10 acted as a hsa-miR-761-5p sponge to increase MFN2 expression. MFN2 knockdown or hsa-miR-761-5p overexpression partially reversed the protective effect of hsa_circSLC16A10 in vitro. The protective effect of mmu_circSLC16A10 against DR was confirmed in an animal model of DR. These findings indicate that circSLC16A10 may regulate DR progression by improving mitochondrial function via the miR-761-5p/MFN2 axis.


Subject(s)
Diabetic Retinopathy , GTP Phosphohydrolases , MicroRNAs , Mitochondria , RNA, Circular , Animals , Humans , Male , Mice , Apoptosis , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetic Retinopathy/genetics , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Endoplasmic Reticulum Stress , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Mice, Inbred C57BL , MicroRNAs/metabolism , MicroRNAs/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , RNA, Circular/genetics , RNA, Circular/metabolism
9.
Mol Med Rep ; 30(3)2024 Sep.
Article in English | MEDLINE | ID: mdl-39054969

ABSTRACT

Following the publication of this paper, it was drawn to the Editors' attention by a concerned reader that certain of the JC­1 staining images in Fig. 2C were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Molecular Medicine Reports, or were under consideration for publication at around the same time (a small number of which have been retracted). In addition, the Snail western blot data in Fig. 3E bore a close similarity to certain of the Mfn2 data shown in Fig. 4A. In view of the fact that certain of the contentious data had already apparently been published previously, and owing to a lack of confidence in the presentation of certain of the data in this paper, the Editor of Molecular Medicine Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 22: 398­404, 2020; DOI: 10.3892/mmr.2020.11098].

10.
Article in English | MEDLINE | ID: mdl-38946424

ABSTRACT

MicroRNAs (miRNAs) are implicated in the development of cancers and may serve as potential targets for therapy. However, the functions and underlying mechanisms of miRNAs in cancers are not well understood. This work aims to study the role of miR-373-3p in colon cancer cells. We find that the expression of miR-373-3p mimics promotes and the miR-373-3p inhibitor suppresses aerobic glycolysis and proliferation of colon cancer cells. Mechanistically, miR-373-3p inhibits the expression of MFN2, a gene that is known to suppress glycolysis, which leads to the activation of glycolysis and eventually the proliferation of cells. In a nude mouse tumor model, the expression of miR-373-3p in colon cancer cells promotes tumor growth by enhancing lactate formation, which is inhibited by the co-expression of MFN2 in the cells. Administration of the miR-373-3p antagomir blunts in vivo tumor growth by decreasing lactate production. In addition, in human colon cancers, the expression levels of miR-373-3p are increased, while those of MFN2 mRNA are decreased, and the increase of miR-373-3p is associated with the decrease of MFN2 mRNA. Our results reveal a previously unknown function and underlying mechanism of miR-373-3p in the regulation of glycolysis and proliferation in cancer cells and underscore the potential of targeting miR-373-3p for colon cancer treatment.

11.
Oncol Rep ; 52(2)2024 Aug.
Article in English | MEDLINE | ID: mdl-38963052

ABSTRACT

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the immunofluorescence data featured in Fig. 1H, TUNEL assay data in Fig. 2A, cytochome c leakage assay data in Fig. 2H, staining of cardiolipin images in Fig. 2H, lamellipodia­stained data in Fig. 3A, and immunofluorescence assay data in Figs. 3F and 5D were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Oncology Reports, or were under consideration for publication at around the same time (several of which have now been retracted). In addition, overlapping sections of data were noted within the data panels in Fig. 3D and F, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original source(s). In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, and in view of an overall lack of confidence in the presented data, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 39: 1671­1681, 2018; DOI: 10.3892/or.2018.6252].

12.
Biochem Pharmacol ; 226: 116372, 2024 08.
Article in English | MEDLINE | ID: mdl-38885773

ABSTRACT

MicroRNA and mitofusin-2 (Mfn2) play an important role in the myocardial apoptosis induced by acute myocardial infarction (AMI). However, the target relationship and underlying mechanism associated with interorganelle interaction between endoplasmic reticulum (ER) and mitochondria under ischemic condition is not completely clear. MI-induced injury, Mfn2 expression, Mfn2-mediated mitochondrial function and ER stress, and target regulation by miRNA-15b (miR-15b) were evaluated by animal MI and cellular hypoxic models with advanced molecular techniques. The results confirmed that Mfn2 was down-regulated and miR-15b was up-regulated upon the target binding profile under ischemic/hypoxic condition. Our data showed that miR-15b caused cardiac apoptotic injury that was reversed by rAAV9-anti-miR-15b or AMO-15b. The damage effect of miR-15b on Mfn2 expression and mitochondrial function was observed and rescued by rAAV9-anti-miR-15b or AMO-15b. The targeted regulation of miR-15b on Mfn2 was verified by luciferase reporter and microRNA-masking. Importantly, miR-15b-mediated Mfn2 suppression activated PERK/CHOP pathway, by which leads to ER stress and mitochondrial dysfunction, and cardiac apoptosis eventually. In conclusion, our research, for the first time, revealed the missing molecular link in Mfn2 and apoptosis and elucidated that pro-apoptotic miR-15b plays crucial roles during the pathogenesis of AMI through down-regulation of Mfn2 and activation of PERK-mediated ER stress. These findings may provide an opportunity to develop new therapies for prophylaxis and treatment of ischemic heart disease.


Subject(s)
GTP Phosphohydrolases , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Male , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , eIF-2 Kinase/antagonists & inhibitors , Signal Transduction/physiology , Myocardial Ischemia/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Mice , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/genetics , Apoptosis , Mice, Inbred C57BL
13.
Folia Histochem Cytobiol ; 62(2): 76-86, 2024.
Article in English | MEDLINE | ID: mdl-38912568

ABSTRACT

INTRODUCTION: Diabetic cataract (DC) is a common ocular complication of diabetes. Mitofusin 2 (MFN2), a mitochondrial fusion protein, is involved in the pathogenesis of cataract and diabetic complications. However, its role and molecular mechanisms in DC remain unclear. MATERIALS AND METHODS: DC models in rats were induced by intraperitoneal injection of streptozocin (STZ) for 12 weeks. We measured the body weight of rats, blood glucose concentrations, sorbitol dehydrogenase (SDH) activity and advanced glycation end products (AGE) content in the lenses of rats. MFN2 mRNA and protein expression levels in the lenses were detected by RT-qPCR and western blot assays. In vitro, human lens epithelial (HLE) B3 cells were treated for 48 h with 25 mM glucose (high glucose, HG) to induce cell damage. To determine the role of MFN2 in HG-induced cell damage, HLE-B3 cells were transfected with lentivirus loaded with MFN2 overexpression plasmid or short hairpin RNA (shRNA) to overexpress or knock down MFN2 expression, followed by HG exposure. Cell viability was assessed by CCK-8 assay. Flow cytometry was used to detect cell apoptosis and reactive oxygen species (ROS) level. JC-1 staining showed the changes in mitochondrial membrane potential (Δψm). The mediators related to apoptosis, mitochondrial damage, and autophagy were determined. RESULTS: STZ-administrated rats showed reduced body weight, increased blood glucose levels, elevated SDH activity and AGE content, suggesting successful establishment of the DC rat model. Interestingly, MFN2 expression was significantly downregulated in DC rat lens and HG-induced HLE-B3 cells. Further analysis showed that under HG conditions, MFN2 overexpression enhanced cell viability and inhibited apoptosis accompanied by decreased Bax, cleaved caspase-9 and increased Bcl-2 expression in HLE-B3 cells. MFN2 overexpression also suppressed the mitochondrial damage elicited by HG as manifested by reduced ROS production, recovered Δψm and increased mitochondrial cytochrome c (Cyto c) level. Moreover, MFN2 overexpression increased LC3BⅡ/LC3BⅠ ratio and Beclin-1 expression, but decreased p62 level, and blocked the phosphorylation of mTOR in HG-treated HLE-B3 cells. In contrast, MFN2 silencing exerted opposite effects. CONCLUSIONS: Presented findings indicate that MFN2 expression may be essential for preventing lens epithelial cell apoptosis during development of diabetic cataract.


Subject(s)
Apoptosis , Autophagy , Epithelial Cells , GTP Phosphohydrolases , Glucose , Lens, Crystalline , Mitochondria , Apoptosis/drug effects , Animals , Humans , Autophagy/drug effects , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Rats , Lens, Crystalline/metabolism , Lens, Crystalline/drug effects , Rats, Sprague-Dawley , Male , Diabetes Mellitus, Experimental/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Cataract/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Membrane Potential, Mitochondrial/drug effects
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 06.
Article in English | MEDLINE | ID: mdl-38718847

ABSTRACT

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Subject(s)
Amino Acids, Branched-Chain , Apoptosis , GTP Phosphohydrolases , Glioblastoma , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , GTP Phosphohydrolases/metabolism , Animals , Amino Acids, Branched-Chain/metabolism , Cell Line, Tumor , Mice , Mitochondrial Proteins/metabolism , Ubiquitin/metabolism , Signal Transduction/drug effects , Male , Ubiquitination/drug effects , Reactive Oxygen Species/metabolism
15.
Free Radic Biol Med ; 221: 136-154, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38763208

ABSTRACT

Ferroptosis, a novel form of iron-dependent non-apoptotic cell death, plays an active role in the pathogenesis of diverse diseases, including cancer. However, the mechanism through which ferroptosis is regulated in pancreatic ductal adenocarcinoma (PDAC) remains unclear. Here, our study, via combining bioinformatic analysis with experimental validation, showed that ferroptosis is inhibited in PDAC. Genome-wide sequencing further revealed that the ferroptosis activator imidazole ketone erastin (IKE) induced upregulation of the E3 ubiquitin ligase RBCK1 in PDAC cells at the transcriptional or translational level. RBCK1 depletion or knockdown rendered PDAC cells more vulnerable to IKE-induced ferroptotic death in vitro. In a mouse xenograft model, genetic depletion of RBCK1 increased the killing effects of ferroptosis inducer on PDAC cells. Mechanistically, RBCK1 interacts with and polyubiquitylates mitofusin 2 (MFN2), a key regulator of mitochondrial dynamics, to facilitate its proteasomal degradation under ferroptotic stress, leading to decreased mitochondrial reactive oxygen species (ROS) production and lipid peroxidation. These findings not only provide new insights into the defense mechanisms of PDAC cells against ferroptotic death but also indicate that targeting the RBCK1-MFN2 axis may be a promising option for treating patients with PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Ferroptosis , GTP Phosphohydrolases , Pancreatic Neoplasms , Reactive Oxygen Species , Ubiquitin-Protein Ligases , Ferroptosis/genetics , Humans , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Xenograft Model Antitumor Assays , Proteolysis , Ubiquitination , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondria/pathology , Piperazines , Transcription Factors
16.
Exp Neurol ; 377: 114807, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704082

ABSTRACT

Repeated sevoflurane exposure in neonatal mice can leads to neuronal apoptosis and mitochondrial dysfunction. The mitochondria are responsible for energy production to maintain homeostasis in the central nervous system. The mitochondria-associated endoplasmic reticulum membrane (MAM) is located between the mitochondria and endoplasmic reticulum (ER), and it is critical for mitochondrial function and cell survival. MAM malfunction contributes to neurodegeneration, however, whether it is involved in sevoflurane-induced neurotoxicity remains unknown. Our study demonstrated that repeated sevoflurane exposure induced mitochondrial dysfunction and dampened the MAM structure. The upregulated ER-mitochondria tethering enhanced Ca2+ transition from the cytosol to the mitochondria. Overload of mitochondrial Ca2+ contributed to opening of the mitochondrial permeability transition pore (mPTP), which caused neuronal apoptosis. Mitofusin 2(Mfn2), a key regulator of ER-mitochondria contacts, was found to be suppressed after repeated sevoflurane exposure, while restoration of Mfn2 expression alleviated cognitive dysfunction due to repeated sevoflurane exposure in the adult mice. These evidences suggest that sevoflurane-induced MAM malfunction is vulnerable to Mfn2 suppression, and the enhanced ER-mitochondria contacts promotes mitochondrial Ca2+ overload, contributing to mPTP opening and neuronal apoptosis. This paper sheds light on a novel mechanism of sevoflurane-induced neurotoxicity. Furthermore, targeting Mfn2-mediated regulation of the MAM structure and mitochondrial function may provide a therapeutic advantage in sevoflurane-induced neurodegeneration.


Subject(s)
Endoplasmic Reticulum , GTP Phosphohydrolases , Mitochondria , Sevoflurane , Animals , Sevoflurane/toxicity , Sevoflurane/pharmacology , GTP Phosphohydrolases/metabolism , Mice , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Mice, Inbred C57BL , Apoptosis/drug effects , Anesthetics, Inhalation/toxicity , Anesthetics, Inhalation/pharmacology , Male , Calcium/metabolism , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/drug effects
17.
Front Med ; 18(3): 484-498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743133

ABSTRACT

lncRNA ZNF593 antisense (ZNF593-AS) transcripts have been implicated in heart failure through the regulation of myocardial contractility. The decreased transcriptional activity of ZNF593-AS has also been detected in cardiac hypertrophy. However, the function of ZNF593-AS in cardiac hypertrophy remains unclear. Herein, we report that the expression of ZNF593-AS reduced in a mouse model of left ventricular hypertrophy and cardiomyocytes in response to treatment with the hypertrophic agonist phenylephrine (PE). In vivo, ZNF593-AS aggravated pressure overload-induced cardiac hypertrophy in knockout mice. By contrast, cardiomyocyte-specific transgenic mice (ZNF593-AS MHC-Tg) exhibited attenuated TAC-induced cardiac hypertrophy. In vitro, vector-based overexpression using murine or human ZNF593-AS alleviated PE-induced myocyte hypertrophy, whereas GapmeR-induced inhibition aggravated hypertrophic phenotypes. By using RNA-seq and gene set enrichment analyses, we identified a link between ZNF593-AS and oxidative phosphorylation and found that mitofusin 2 (Mfn2) is a direct target of ZNF593-AS. ZNF593-AS exerts an antihypertrophic effect by upregulating Mfn2 expression and improving mitochondrial function. Therefore, it represents a promising therapeutic target for combating pathological cardiac remodeling.


Subject(s)
Cardiomegaly , GTP Phosphohydrolases , Myocytes, Cardiac , RNA, Long Noncoding , Up-Regulation , Animals , Humans , Male , Mice , Cardiomegaly/genetics , Cardiomegaly/metabolism , Disease Models, Animal , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ventricular Remodeling/genetics
18.
Neuron ; 112(12): 1997-2014.e6, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38582081

ABSTRACT

Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.


Subject(s)
Hippocampus , Mitochondrial Dynamics , Neuronal Plasticity , Neurons , Animals , Mitochondrial Dynamics/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Mice , Hippocampus/cytology , Hippocampus/physiology , Mitochondria/metabolism , Mitochondria/physiology , Neurogenesis/physiology , Synapses/physiology , Mice, Inbred C57BL
19.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38612863

ABSTRACT

Our study aimed to explore the potential positive effects of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The study involved 32 male and 32 female rats aged 15 months, randomly assigned to control sedentary animals, animals training in cold water at 5 ± 2 °C, or animals training in water at thermal comfort temperature (36 ± 2 °C). The rats underwent swimming training for nine weeks, gradually increasing the duration of the sessions from 2 min to 4 min per day, five days a week. The results demonstrated that swimming in thermally comfortable water improved the energy metabolism of aging rat muscles (increased metabolic rates expressed as increased ATP, ADP concentration, TAN (total adenine nucleotide) and AEC (adenylate energy charge value)) and increased mRNA and protein expression of fusion regulatory proteins. Similarly, cold-water swimming improved muscle energy metabolism in aging rats, as shown by an increase in muscle energy metabolites and enhanced mitochondrial biogenesis and dynamics. It can be concluded that the additive effect of daily activity in cold water influenced both an increase in the rate of energy metabolism in the muscles of the studied animals and an intensification of mitochondrial biogenesis and dynamics (related to fusion and fragmentation processes). Daily activity in warm water also resulted in an increase in the rate of energy metabolism in muscles, but at the same time did not cause significant changes in mitochondrial dynamics.


Subject(s)
Organelle Biogenesis , Swimming , Female , Male , Animals , Rats , Muscles , Energy Metabolism , Aging , Water
20.
Cancer Sci ; 115(6): 1791-1807, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38480904

ABSTRACT

Dissolving the lipid droplets in tissue section with alcohol during a hematoxylin and eosin (H&E) stain causes the tumor cells to appear like clear soap bubbles under a microscope, which is a key pathological feature of clear cell renal cell carcinoma (ccRCC). Mitochondrial dynamics have been reported to be closely associated with lipid metabolism and tumor development. However, the relationship between mitochondrial dynamics and lipid metabolism reprogramming in ccRCC remains to be further explored. We conducted bioinformatics analysis to identify key genes regulating mitochondrial dynamics differentially expressed between tumor and normal tissues and immunohistochemistry and Western blot to confirm. After the target was identified, we created stable ccRCC cell lines to test the impact of the target gene on mitochondrial morphology, tumorigenesis in culture cells and xenograft models, and profiles of lipid metabolism. It was found that mitofusin 2 (MFN2) was downregulated in ccRCC tissues and associated with poor prognosis in patients with ccRCC. MFN2 suppressed mitochondrial fragmentation, proliferation, migration, and invasion of ccRCC cells and growth of xenograft tumors. Furthermore, MFN2 impacted lipid metabolism and reduced the accumulation of lipid droplets in ccRCC cells. MFN2 suppressed disease progression and improved prognosis for patients with ccRCC possibly by interrupting cellular lipid metabolism and reducing accumulation of lipid droplets.


Subject(s)
Carcinoma, Renal Cell , GTP Phosphohydrolases , Kidney Neoplasms , Lipid Droplets , Lipid Metabolism , Animals , Female , Humans , Male , Mice , Middle Aged , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Down-Regulation , Gene Expression Regulation, Neoplastic , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Lipid Droplets/metabolism , Mice, Nude , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Proteins , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL