Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Infect Dis ; 4(4): 549-559, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29072835

ABSTRACT

Malaria continues to be one of the deadliest diseases worldwide, and the emergence of drug resistance parasites is a constant threat. Plasmodium parasites utilize the methylerythritol phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are essential for parasite growth. Previously, we and others identified that the Malaria Box compound MMV008138 targets the apicoplast and that parasite growth inhibition by this compound can be reversed by supplementation of IPP. Further work has revealed that MMV008138 targets the enzyme 2- C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD) in the MEP pathway, which converts MEP and cytidine triphosphate (CTP) to cytidinediphosphate methylerythritol (CDP-ME) and pyrophosphate. In this work, we sought to gain insight into the structure-activity relationships by probing the ability of MMV008138 analogs to inhibit PfIspD recombinant enzyme. Here, we report PfIspD inhibition data for fosmidomycin (FOS) and 19 previously disclosed analogs and report parasite growth and PfIspD inhibition data for 27 new analogs of MMV008138. In addition, we show that MMV008138 does not target the recently characterized human IspD, reinforcing MMV008138 as a prototype of a new class of species-selective IspD-targeting antimalarial agents.


Subject(s)
Antimalarials/pharmacology , Carbolines/pharmacology , Enzyme Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Pipecolic Acids/pharmacology , Plasmodium/drug effects , Plasmodium/enzymology , Antimalarials/chemistry , Carbolines/chemistry , Enzyme Inhibitors/chemistry , Molecular Structure , Pipecolic Acids/chemistry , Plasmodium/growth & development , Structure-Activity Relationship
2.
ACS Infect Dis ; 1(4): 157-167, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-26783558

ABSTRACT

As resistance to current therapies spreads, novel antimalarials are urgently needed. In this work, we examine the potential for therapeutic intervention via the targeting of Plasmodium IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase), the second dedicated enzyme of the essential methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis. Enzymes of this pathway represent promising therapeutic targets because the pathway is not present in humans. The Malaria Box compound, MMV008138, inhibits Plasmodium falciparum growth, and PfIspD has been proposed as a candidate intracellular target. We find that PfIspD is the sole intracellular target of MMV008138 and characterize the mode of inhibition and target-based resistance, providing chemical validation of this target. Additionally, we find that the Pf ISPD genetic locus is refractory to disruption in malaria parasites, providing independent genetic validation for efforts targeting this enzyme. This work provides compelling support for IspD as a druggable target for the development of additional, much-needed antimalarial agents.

SELECTION OF CITATIONS
SEARCH DETAIL