ABSTRACT
Microtubule Organizing Centers (MTOC) are subcellular structures in eukaryotic cells where nucleation of microtubules (MTs) takes place and represents the filament's minus end. Their localization depends on the species, cell type, and cell cycle stage. Along the fungal kingdom, the Spindle Pole Body (SPB) in the nucleus (an equivalent to Centrosomes in animal cells) is the principal MTOC. Other MTOCs have been identified in filamentous fungi, such as the Spitzenkörper in the hyphal tips of Schizosaccharomyces pombe or the septal pore of Aspergillus nidulans. However, in the fungal-model organism Neurospora crassa, these alternative MTOCs have not been recognized. Here, we present a Mass spectrometry-based dataset of proteins interacting with four MTOC components of N. crassa tagged with fluorescent proteins: γ-Tubulin-sGFP (main nucleator at the SPB), MZT-1-sGFP (structural SPB microprotein), APS-2-dRFP (septal protein and recognized SPB component), and SPA-10-sGFP (septal MTOC protein). A WT and a cytosolic GFP expressing strain were included as controls. The protein interactors were pulled down by Co-IP1, using GFP-Magnetic agarose that captures recombinant GFP proteins (including GFP-derivatives) in their native state. Bounded proteins were separated by SDS-PAGE and identified by nano LC-MS/MS2. The protein annotation was done using the N. crassa protein database.
ABSTRACT
The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on major histocompatibility complex (MHC) class II molecules, to CD4+ T cells is a crucial part of the adaptive immune response. This allows for T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR), (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules, and (3) Presentation of MHCII-peptide complexes to CD4+ T cells. Here, we describe how to study the biochemical and morphological changes that occur in B lymphocytes at these three major levels.
Subject(s)
Antigen Presentation/immunology , Antigens/metabolism , B-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , Immobilized Proteins/metabolism , Animals , Cell Line , Lymphocyte Activation/immunology , Mice , Spleen/cytology , Synaptic Membranes/metabolismABSTRACT
Most epithelial cells contain apical membrane structures associated to bundles of actin filaments, which constitute the brush border. Whereas microtubule participation in the maintenance of the brush border identity has been characterized, their contribution to de novo microvilli organization remained elusive. Hereby, using a cell model of individual enterocyte polarization, we found that nocodazole induced microtubule depolymerization prevented the de novo brush border formation. Microtubule participation in brush border actin organization was confirmed in polarized kidney tubule MDCK cells. We also found that centrosome, but not Golgi derived microtubules, were essential for the initial stages of brush border development. During this process, microtubule plus ends acquired an early asymmetric orientation toward the apical membrane, which clearly differs from their predominant basal orientation in mature epithelia. In addition, overexpression of the microtubule plus ends associated protein CLIP170, which regulate actin nucleation in different cell contexts, facilitated brush border formation. In combination, the present results support the participation of centrosomal microtubule plus ends in the activation of the polarized actin organization associated to brush border formation, unveiling a novel mechanism of microtubule regulation of epithelial polarity.
Subject(s)
Colon/physiology , Enterocytes/physiology , Epithelial Cells/physiology , Kidney/physiology , Microtubules/physiology , Microvilli/physiology , Actin Cytoskeleton/physiology , Animals , Cell Polarity , Centromere/physiology , Colon/drug effects , Colon/metabolism , Colon/ultrastructure , Dogs , Enterocytes/drug effects , Enterocytes/metabolism , Enterocytes/ultrastructure , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Humans , Kidney/drug effects , Kidney/ultrastructure , Madin Darby Canine Kidney Cells , Microtubule-Associated Proteins/metabolism , Microtubules/drug effects , Microtubules/metabolism , Microvilli/drug effects , Microvilli/metabolism , Nocodazole/pharmacology , Time Factors , Tubulin Modulators/pharmacologyABSTRACT
The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell receptor (BCR). BCR-engaged antigens are transported into specialized lysosomal compartments where proteolysis and production of MHC class II-peptide complexes occur, a process referred to as antigen processing. Expression of MHC class II complexes at the B cell surface allows them to interact with T cells and to receive their help to become fully activated. In this review, we describe how B cells rely on conserved cell polarity mechanisms to coordinate local proteolytic secretion and mechanical forces at the B cell synapse enabling them to efficiently acquire and present extracellular antigens. We foresee that the mechanisms that dictate B cell activation can be used to tune B cell responses in the context of autoimmune diseases and cancer.