Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 24(15)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39124120

ABSTRACT

Weak magnetic detection technology can detect stress concentration areas in ferromagnetic materials. However, the stress non-uniform characteristics of pipeline welds lead to significant differences in stress distribution range and values between inner wall welds and outer wall welds. This discrepancy makes it crucial to further evaluate the impact of stress non-uniformity on magnetic signals. To study the magnetic signal characteristics under the influence of residual stress in weld seams, a magneto-mechanical analytical model was established based on the magnetic charge theory and the distribution characteristics of residual stress in the weld seam. The magneto-mechanical relationship and magnetic signal distribution characteristics at the inner and outer wall welds of the pipeline are calculated. Furthermore, the effects of different excitation intensities on the amplitude growth characteristics of magnetic signals are analyzed and compared. To verify the analysis model, weld detection experiments with different excitation intensities were designed. The results show that both the peak-to-valley values of the normal component and the peak values of the tangential component of the outer wall weld are lower than those of the inner wall weld. Conversely, the peak-to-valley width of the normal component and the peak width of the tangential component are greater than those of the inner wall weld. Additionally, the rate of increase in weak magnetic signal amplitude decreases in a first-order exponential relationship with increasing excitation intensity. The average decay rates of the normal and tangential component amplitude growth rates for the inner wall weld are 34.03% and 27.9%, respectively, while for the outer wall weld, they are 31.75% and 28.01%, respectively. This study contributes to the identification and quantitative assessment of weak magnetic signals in inner and outer wall welds.

2.
Heliyon ; 9(11): e22248, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034599

ABSTRACT

Self-Biased Magnetic Pendulum Array (SBMPA) is an efficient and portable transmitter in ultralow frequency (ULF). The resonance frequency of SBMPA is affected by the magnetic field of the radially magnetized cylindrical permanent magnets. In order to calculate the resonance frequency, the magnetic field model of a single radially magnetized cylindrical permanent magnet is derived based on the concept of magnetic charge. Then, the influence of the demagnetizing field and external magnetic field on the magnetization of permanent magnets is analyzed, and the magnetic field model of SBMPA is established. The results of the magnetic field model are verified through simulation. The average deviation of magnetic field intensity is determined as 0.021%; thus, the magnetic field model and simulation have consistent results. Finally, the influence of the size and distance of permanent magnets on the resonance frequency is analyzed, which could provide theoretical guidance for the dynamic analysis of SBMPA.

3.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850454

ABSTRACT

In order to solve the problem of the quantification of detection signals in the magnetic flux leakage (MFL) of defective in-service oil and gas pipelines, a non-uniform magnetic charge model was established based on magnetic effects. The distribution patterns of magnetic charges under different stresses were analyzed. The influences of the elastic load and plastic deformation on the characteristic values of MFL signals were quantitatively assessed. The experimental results showed that the magnetic charge density was large at the edges of the defect and small at the center, and approximately decreased linearly with increasing stress. The eigenvalues of the axial and radial components of the MFL signals were compared, and it was found that the eigenvalues of the radial component exhibited a larger decline rate and were more sensitive to stress. With the increase in the plastic deformation, the characteristic values of the MFL signals initially decreased and then increased, and there was an inflection point. The location of the inflection point was associated with the magnetostriction coefficient. Compared with the uniform magnetic charge model, the accuracy of the axial and radial components of the MFL signals in the elastic stage of the improved magnetic charge model rose by 17% and 16%, respectively. The accuracy of the axial and radial components of the MFL signals were elevated by 9.15% and 9%, respectively, in the plastic stage.

4.
Sensors (Basel) ; 21(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068412

ABSTRACT

Pipeline magnetic flux leakage (MFL) internal detection technology is the most widely used and effective method in the field of long-distance oil and gas pipeline online detection. With the improvement of data quantization precision, the influence of stress on MFL signal has been paid more and more attention. In this paper, the relationship between stress and saturation magnetization is introduced based on J-A theory. The analytical model of MFL detection signal for pipeline composite defects is established. The MFL signal characteristics of composite defects are quantitatively calculated. The effect of stress on MFL signal is studied. The theoretical analysis is verified by experimental data and excavation results. The researches show that the saturation magnetization of ferromagnets decreases exponentially with the increase of stress in strong magnetic field. The MFL signal of composite defect is weaker than that of volumetric defects of the same dimension. The axial amplitude and radial peak-to-peak value of MFL signal decrease with the increase of stress around the defect. The axial amplitude and radial peak-to-peak value of MFL signal increase non-linearly with the increase of width and depth of defects. When using MFL signal to judge the defect depth, it is necessary to make clear whether there is stress concentration phenomenon around the defect because the stress will lead to underestimation of the defect depth.

5.
Sensors (Basel) ; 20(3)2020 Feb 02.
Article in English | MEDLINE | ID: mdl-32024314

ABSTRACT

Quantitative online detection of microcracks in long-distance oil and gas pipelines is an international problem, and the effective detection method is still lacking. In this paper, a mathematical model of non-uniform distribution of crack magnetic charges is established based on the stress distribution laws of pipeline cracks under internal pressure. The weak magnetic signal characteristics of pipeline cracks with different sizes are analyzed. The internal pressure increasing factor of weak magnetic signals are extracted to analyze the corresponding relationship between crack size and weak magnetic signals. The experimental study of the X70 pipeline is carried out. The results show that the axial component of the weak magnetic signal at the crack has a maximum value near the tip, and a minimum value appears in the middle of the crack. The internal pressure increasing factor is introduced to quantify the weak magnetic signal, the crack is in a safe state (not expanding) when the internal pressure increasing factor is positive, the weak magnetic signal has a linear relationship with the crack size. However, the crack is in a dangerous state when the internal pressure increasing factor is negative, and the pipeline crack will expand as the internal pressure increases.

6.
Adv Mater ; 31(16): e1808298, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30811683

ABSTRACT

The conductivity of a neodymium-based artificial honeycomb lattice undergoes dramatic changes upon application of magnetic fields and currents. These changes are attributed to a redistribution of magnetic charges that are formed at the vertices of the honeycomb due to the nonvanishing net flux of magnetization from adjacent magnetic elements. It is suggested that the application of a large magnetic field or a current causes a transition from a disordered state, in which magnetic charges are distributed at random, to an ordered state, in which they are regularly arranged on the sites of two interpenetrating triangular Wigner crystals. The field and current tuning of electrical properties are highly desirable functionalities for spintronics applications. Consequently, a new spintronics research platform can be envisaged using artificial magnetic honeycomb lattices.

SELECTION OF CITATIONS
SEARCH DETAIL