Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
AAPS J ; 26(5): 96, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174806

ABSTRACT

Stress testing (also known as forced degradation) of pharmaceutical drug substances and products is a critical part of the drug development process, providing insight into the degradation pathways of drug substances and drug products. This information is used to support the development of stability-indicating methods (SIMs) capable of detecting pharmaceutically relevant degradation products that might potentially be observed during manufacturing, long-term storage, distribution, and use. Assessing mass balance of stressed samples is a key aspect of developing SIMs and is a regulatory expectation. However, the approaches to measure, calculate, and interpret mass balance can vary among different pharmaceutical companies. Such disparities also pose difficulties for health authorities when reviewing mass balance assessments, which may result in the potential delay of drug application approvals. The authors have gathered input from 10 pharma companies to map out a practical review of science-based approaches and technical details to assess and interpret mass balance results. Key concepts of mass balance are introduced, various mass balance calculations are demonstrated, and recommendations on how to investigate poor mass balance results are presented using real-world case studies. Herein we provide a single source reference on the topic of mass balance in pharmaceutical forced degradation for small molecule drug substances and drug products in support of regulatory submissions with the goal of facilitating a shared understanding among pharmaceutical scientists and health authorities.


Subject(s)
Drug Stability , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Drug Industry/methods , Humans , Drug Development/methods
2.
J Hazard Mater ; 478: 135465, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39163729

ABSTRACT

Nitrogen, as an essential nutrient, largely contributes to the coastal eutrophication. However, the accurate depiction and evaluation of how external loadings, hydrodynamics, and biogeochemical reactions mediate the occurrence, transport, and transformation of nitrate (NO3-) within coastal embayment still pose ongoing challenges to date. In this study, we took advantage of dual isotopes of NO3- to track external NO3- loadings, radium and dual isotopes of H2O to characterize the influences of hydrodynamic on NO3- transport, δ18O-NO3- and δ18O-H2O along with microbial analysis to explore major NO3- biogeochemical reactions in Tolo Harbour, Hong Kong. The multiple isotopic evidence showed that NO3- in surface harbour water was predominantly contributed by precipitation in wet season and its impact was strengthened by stratification. In dry season, NO3- in the surface harbour water became largely influenced by benthic input and biogeochemical reactions due to intensified vertical mixing. Based on NO3- mass balance model, biogeochemical reaction, especially nitrification, was found to be the major process to secure the closure of NO3- budget and increase NO3- inventory from wet to dry season. Hydrodynamics redistributed the external NO3- loadings and mediated nitrogen biogeochemical reactions, both of which further synergistically regulated the fate of NO3- in the embayment.

3.
Anal Bioanal Chem ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39117955

ABSTRACT

D-Phenylalanine (D-Phe) is a small chiral organic molecule that is both an important pharmaceutical intermediate and used as a calibrator for quantifying amino acids in liquid chromatography-circular dichroism. We have developed a process for a national certified reference material (CRM) for D-Phe following ISO 17034:2016. The identity of D-Phe was confirmed using mass spectrometry (MS) and nuclear magnetic resonance (NMR), infrared, and ultraviolet (UV) spectroscopy. The absolute optical conformation was also determined using circular dichroism (CD) spectroscopy and optical rotation measurements. Impurities were identified via liquid chromatography (LC) with a UV-Vis detector and a charged aerosol detector (CAD) and LC-MS. Both mass balance and quantitative NMR were employed for value assessment, and the associated uncertainty was evaluated. The certified purity was determined to be 0.995 ± 0.003 g/g, a validation that was confirmed by CD using L-Phe CRM as a calibrator. Twenty milligrams of raw material was packed in sealed brown glass tubes for storage, and no inhomogeneity was observed. Stability tests revealed that the D-Phe CRM remained stable at -20 °C for at least 26 months, at 4 °C for at least 14 days, and at 25 °C and 60 °C for at least 7 days. The D-Phe CRM can be used to ensure the accuracy and reliability of D-Phe quantitation in the pharmaceutical field and also as a calibrator to ensure traceability to the International System of Units (SI) for L-Phe quantitation and protein purity analysis using LC-CD methods. The approach outlined in this paper also has potential for use in the development of other chiral CRMs.

4.
Eur J Pharm Sci ; 201: 106873, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121921

ABSTRACT

This review considers the role of in vitro permeation testing (IVPT) for the evaluation of drug delivery from topical formulations applied to the skin. The technique was pioneered by Franz in the 1970's and today remains an important tool in the development, testing and optimization of such topical formulations. An overview of IVPT as well as selection of skin for the experiment, integrity testing of the membrane, and required number of replicate skin samples is discussed. In the literature many researchers have focused solely on permeation and have not reported amounts of the active remaining on and in the skin at the end of the IVPT. Therefore, a particular focus of this article is determination of the complete mass balance of the drug. It is noteworthy that for the evaluation of bioequivalence of topical formulations the draft guideline issued by the European Medicines Agency (EMA) requires the IVPT method to report on both the skin deposition and distribution of the active in the skin as well as amount permeated. Other aspects of current guidance from the EMA and United States Food and Drug Agency for IVPT are also compared and contrasted. Ultimately, harmonisation of IVPT protocols across the regulatory agencies will expedite the development process for novel topical formulations as well as the availability of generic products.

5.
Sci Total Environ ; 951: 175486, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147038

ABSTRACT

The awareness of possible environmental hazards caused by the widespread global use of volatile methylsiloxanes (VMSs) in personal care products (PCPs) and industrial processes has been increasing. Sewage containing these compounds may reach wastewater treatment plants (WWTPs), which are hotspots of their release into the environment. The levels, distribution, and potential risks of VMSs were studied in an unprecedently comprehensive sampling strategy (four seasonal campaigns) along the water line of a WWTP: the main influent entrance (SA1), after the preliminary treatment (SA2), after the primary treatment (SA3) and after the secondary treatment (the treated effluent; SA4). This WWTP was selected as a representative of the conventional set up based on a secondary treatment, allowing a similar approach in numerous facilities worldwide. Seven VMSs (L3, L4, L5, D3, D4, D5, D6) were analysed in wastewater samples by a small-scale liquid-liquid extraction (LLE) protocol, followed by gas chromatography-mass spectrometry (GC-MS), and the cyclic VMSs were dominant at all sampling sites and in all seasons. Considering the whole year, the total VMSs ranged from 0.4 to 22.5 µg L-1 for SA1, 0.03 to 33.7 µg L-1 for SA2, below method detection limit (MDL) to 13.2 µg L-1 for SA3 and 98 %). According to the risk quotients (RQ), only 18 SA4 samples (32 %) presented a minimal risk to the receiving media (0.01 ≤ RQ < 0.1). However, considering the absence of a secondary treatment or a direct discharge without treatment, there may be a risk to the environment.

6.
Article in English | MEDLINE | ID: mdl-39101494

ABSTRACT

Anaprazole is a proton pump inhibitor. This study aims to elucidate absorption, metabolism, and excretion pathways of anaprazole sodium in the human body. A total of 4 healthy Chinese male subjects were administered a single oral dose of 20 mg/100 µCi of [14C]-anaprazole sodium enteric-coated capsules. The whole blood, plasma, and excreta were analyzed for a total radioactivity (TRA) and metabolite profile. The cumulative radioactivity excretion rate was 93.2%, with 53.3% and 39.9% of the radioactive dose excreted in urine and feces, respectively, and 91.6% of dose recovered within 96 hours after dosing. The parent drug, anaprazole, showed good absorption and was extensively metabolized majorly to thioether M8-1 via nonenzymatic metabolism. Overall, 35 metabolites were identified in plasma, urine, and fecal samples. Anaprazole was the most abundant component in plasma followed by the thioether M8-1, accounting for 28.3% and 16.6%, respectively, of the plasma TRA. Thioether carboxylic acid XZP-3409 (26.3% of urine TRA) and XZP-3409 oxidation and dehydrogenation product M417a (15.1% of fecal TRA) were the major metabolites present in urine and feces, respectively. Anaprazole was undetectable in urine, while fecal samples showed traces (0.07% dose). Blood/plasma ratios of the radioactivity (approximately 0.60) remained consistent over time. Anaprazole showed good absorption and was extensively metabolized majorly to thioether M8-1 via nonenzymatic metabolism, and cytochrome P450 3A4 also contributed to its metabolism in healthy individuals.

7.
PNAS Nexus ; 3(7): pgae219, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38948018

ABSTRACT

Increased demands for sustainable water and energy resources in densely populated basins have led to the construction of dams, which impound waters in artificial reservoirs. In many cases, scarce field data led to the development of models that underestimated the seepage losses from reservoirs and ignored the role of extensive fault networks as preferred pathways for groundwater flow. We adopt an integrated approach (remote sensing, hydrologic modeling, and field observations) to assess the magnitude and nature of seepage from such systems using the Grand Ethiopian Renaissance Dam (GERD), Africa's largest hydropower project, as a test site. The dam was constructed on the Blue Nile within steep, highly fractured, and weathered terrain in the western Ethiopian Highlands. The GERD Gravity Recovery and Climate Experiment Terrestrial Water Storage (GRACETWS), seasonal peak difference product, reveals significant mass accumulation (43 ± 5 BCM) in the reservoir and seepage in its surroundings with progressive south-southwest mass migration along mapped structures between 2019 and 2022. Seepage, but not a decrease in inflow or increase in outflow, could explain, at least in part, the observed drop in the reservoir's water level and volume following each of the three fillings. Using mass balance calculations and GRACETWS observations, we estimate significant seepage (19.8 ± 6 BCM) comparable to the reservoir's impounded waters (19.9 ± 1.2 BCM). Investigating and addressing the seepage from the GERD will ensure sustainable development and promote regional cooperation; overlooking the seepage would compromise hydrological modeling efforts on the Nile Basin and misinform ongoing negotiations on the Nile water management.

8.
Sci Rep ; 14(1): 15541, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969678

ABSTRACT

Physics-informed neural networks (PINN) have recently become attractive for solving partial differential equations (PDEs) that describe physics laws. By including PDE-based loss functions, physics laws such as mass balance are enforced softly in PINN. This paper investigates how mass balance constraints are satisfied when PINN is used to solve the resulting PDEs. We investigate PINN's ability to solve the 1D saturated groundwater flow equations (diffusion equations) for homogeneous and heterogeneous media and evaluate the local and global mass balance errors. We compare the obtained PINN's solution and associated mass balance errors against a two-point finite volume numerical method and the corresponding analytical solution. We also evaluate the accuracy of PINN in solving the 1D saturated groundwater flow equation with and without incorporating hydraulic heads as training data. We demonstrate that PINN's local and global mass balance errors are significant compared to the finite volume approach. Tuning the PINN's hyperparameters, such as the number of collocation points, training data, hidden layers, nodes, epochs, and learning rate, did not improve the solution accuracy or the mass balance errors compared to the finite volume solution. Mass balance errors could considerably challenge the utility of PINN in applications where ensuring compliance with physical and mathematical properties is crucial.

9.
J Pharm Sci ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004417

ABSTRACT

Real-time monitoring of critical quality attributes, such as residual water in granules after drying which can be determined through loss-on-drying (LOD), during wet granulation and drying is essential in continuous manufacturing. Near-infrared (NIR) spectroscopy has been widely used as process analytical technology (PAT) for in-line LOD monitoring. This study aims to develop and apply a model for predicting the LOD based on process parameters. Additionally, the efficacy of an orthogonal PAT approach using NIR and mass balance (MB) for a vibrating fluidized bed dryer (VFBD) is demonstrated. An in-house-built, cost-effective NIR sensor was utilized for measurements and exhibited good correlation compared to standard method via infrared drying. The combination of NIR and MB, as independent methods, has demonstrated their applicability. A good correlation, with a Pearson r above 0.99, was observed for LOD up to 16 % (w/w). The use of an orthogonal PAT method mitigated the risk of false process adaption. In some experiments where the NIR sensor might have been covered by powder and therefore did not measure accurately, LOD monitoring via MB remained feasible. The developed model effectively predicted LOD or process parameters, resulting in an R2 of 0.882 and a RMSE of 0.475 between predicted and measured LOD using the standard method.

10.
Environ Pollut ; 358: 124480, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968985

ABSTRACT

A holistic understanding of the chemical recovery of lakes from arsenic (As) pollution requires consideration of within-lake biogeochemical cycling of As and processes occurring in the surrounding catchment. This study used a watershed mass balance approach, complemented by experimental sediment incubations, to assess the mobility and transport of As within a subarctic watershed (155 km2) impacted by more than 60 years of atmospheric mining emissions. The period of record spanned a transition from drought to high streamflow between September 2017 and September 2019, which yielded insights into the interacting effects of hydrology and within-lake biogeochemical cycling of As. Internal loading of As from contaminated lake sediments (25-46 kg As year-1) and contributions from terrestrial sources (16-56 kg As yr-1) continue to negatively impact lake water quality (19-144 µg As L-1), but the relative importance of these loads varies seasonally and inter-annually in response to changing hydrological conditions. Wet conditions resulted in greater transport of As from terrestrial reservoirs and upstream areas, shorter lake water retention time, and increased the downstream export of As. During dry periods, the lake was disconnected from the surrounding watershed resulting in limited terrestrial contributions and longer lake water residence time, which delayed recovery due to the greater relative influence of internal loading from contaminated sediments. This study highlights that changing hydroclimatic regimes will alter trajectories of chemical recovery for arsenic impacted lakes through the coupling of within-lake and watershed transport processes.

11.
Anal Sci ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080194

ABSTRACT

New stability indicating related substances and assay methods for trametinib acetic acid by RP-HPLC have been developed and validated through forced degradation and mass balance studies for the first time. In related substances (RS) method, trametinib acetic acid was successfully separated from its six related substances namely, cyclopropanamide impurity, desiodo trametinib, desacetyl trametinib, trione acetamide intermediate, trione intermediate, and trione PTSA intermediate using YMC-Triart C18 (150 × 4.6 mm, 3 µm) column. Orthophosphoric acid (0.15%) in water was used as buffer. Gradient elution was programmed using mobile phase-A (buffer and acetonitrile mixture in 80:20 v/v ratio) and mobile phase-B (buffer and acetonitrile mixture in 20:80 v/v ratio). Acetonitrile and methanol mixture (1:1 v/v) was used as diluent. Flow rate, injection volume, column temperature, and wavelengths were kept as 0.8 mL/min, 10 µL, 55 °C, and 240 nm, respectively. Desacetyl trametinib and cyclopropanamide impurity were identified as potential degradation impurities in acid and base degradation conditions, respectively. Assay method specific to above six related substances was also developed. Assay of forced degradation samples was also determined, and the mass balance was established by adding total impurities formed in RS method to assay of trametinib acetic acid.

12.
Chemosphere ; 363: 142865, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019191

ABSTRACT

Sustainable removal of per- and polyfluoroalkyl substances (PFAS) from landfill leachate remains a pressing global challenge. To develop an effective PFAS removal technology that utilizes nature-based solutions, we considered a planting unit comprised of a microbial carrier (foamed glass) and Typha domingensis. This study evaluated the possibility of removing PFAS from landfill leachate using a planting unit through a pot experiment. The planting unit effectively removed various short- and long-chain PFAS from the landfill leachate, including perfluorocarboxylic acids (PFCAs [C4-C10]), perfluorosulfonic acids (PFSAs [C4, C6, and C8]), fluorotelomer carboxylic acids (FTCAs [5:3 and 7:3]), and 6:2 fluorotelomer sulfonic acid (FTS), with initial concentrations of 43-9100 ng L-1, achieving a removal efficiency of 53-83% in 21 d. Mass balance analysis indicated that the contribution of accumulation on foamed glass and plant adsorption and uptake played no major role in the removal of PFCAs (C4-C9), PFSAs (C4), and FTCAs (5:3 and 7:3), and that other removal processes played a key role. Although not the most effective removal process, the contribution of accumulation on foamed glass tended to be more notable in the removal of longer-chain PFCAs. In addition, plant adsorption and uptake showed that longer-chain PFCAs were more likely to remain in roots, whereas shorter-chain PFCAs were more likely to be transferred to aboveground plant part. On the other hand, 6:2 FTS removal occurred primarily due to accumulation on foamed glass. These results suggest that differences in the physicochemical properties of PFAS affect removal mechanisms. This study provides valuable insights into development of environmentally friendly technologies capable of removing a variety of short- and long-chain PFAS.


Subject(s)
Fluorocarbons , Glass , Typhaceae , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Fluorocarbons/chemistry , Glass/chemistry , Adsorption , Biodegradation, Environmental , Waste Disposal Facilities
13.
Environ Sci Technol ; 58(29): 12755-12762, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38984753

ABSTRACT

Due to the increasing number of chemicals released into the environment, nontarget screening (NTS) analysis is a necessary tool for providing comprehensive chemical analysis of environmental pollutants. However, NTS workflows encounter challenges in detecting both known and unknown pollutants with common chromatography high-resolution mass spectrometry (HRMS) methods. Identification of unknowns is hindered by limited elemental composition information, and quantification without identical reference standards is prone to errors. To address these issues, we propose the use of inductively coupled plasma mass spectrometry (ICP-MS) as an element-specific detector. ICP-MS can enhance the confidence of compound identification and improve quantification in NTS due to its element-specific response and unambiguous chemical composition information. Additionally, mass balance calculations for individual elements (F, Br, Cl, etc.) enable assessment of total recovery of those elements and evaluation of NTS workflows. Despite its benefits, implementing ICP-MS in NTS analysis and environmental regulation requires overcoming certain shortcomings and challenges, which are discussed herein.


Subject(s)
Environmental Monitoring , Environmental Pollutants , Mass Spectrometry , Environmental Monitoring/methods , Mass Spectrometry/methods , Environmental Pollutants/analysis
14.
Environ Sci Technol ; 58(29): 12943-12953, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985529

ABSTRACT

A growing number of studies have reported that routinely monitored per- and polyfluoroalkyl substances (PFAS) are not sufficient to explain the extractable organic fluorine (EOF) measured in human blood. In this study, we address this gap by screening pooled human serum collected over 3 decades (1986-2015) in Tromsø (Norway) for >5000 PFAS and >300 fluorinated pharmaceuticals. We combined multiple analytical techniques (direct infusion Fourier transform ion cyclotron resonance mass spectrometry, liquid chromatography-Orbitrap-high-resolution mass spectrometry, and total oxidizable precursors assay) in a three-step suspect screening process which aimed at unequivocal suspect identification. This approach uncovered the presence of one PFAS and eight fluorinated pharmaceuticals (including some metabolites) in human serum. While the PFAS suspect only accounted for 2-4% of the EOF, fluorinated pharmaceuticals accounted for 0-63% of the EOF, and their contribution increased in recent years. Although fluorinated pharmaceuticals often contain only 1-3 fluorine atoms, our results indicate that they can contribute significantly to the EOF. Indeed, the contribution from fluorinated pharmaceuticals allowed us to close the organofluorine mass balance in pooled serum from 2015, indicating a good understanding of organofluorine compounds in humans. However, a portion of the EOF in human serum from 1986 and 2007 still remained unexplained.


Subject(s)
Fluorine , Humans , Fluorocarbons/blood , Norway , Halogenation , Pharmaceutical Preparations/blood , Chromatography, Liquid
15.
Animal ; 18(7): 101214, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38970990

ABSTRACT

There is an increasing interest in edible insects in Europe for feed and food purposes. Quantitative information on the transfer of chemical hazards from substrates to larvae is needed to evaluate food and feed safety aspects. This evaluation is especially needed when organic substrates or residual streams such as manure will be applied as substrate, contributing to a circular food system. This study investigated the transfer of veterinary drugs from spiked substrate to black soldier fly larvae (Hermetia illucens). Veterinary drugs that are commonly administered to chicken, fattening pigs, and cattle and regularly detected in manure were included: three different antibiotics (enrofloxacin, oxytetracycline, sulfamethoxazole), three coccidiostats (narasin, salinomycin, toltrazuril) and one antiparasitic drug (eprinomectin). The chemicals were spiked to insect substrate to reach final concentrations of 0.5 and 5 mg/kg for the antibiotics and the antiparasitic drug, and 5 and 50 mg/kg for the coccidiostats. Black soldier fly larvae were reared for 1 week on the spiked substrates, and the transfer of the veterinary drugs to the larvae and frass was quantified using liquid chromatography coupled with tandem mass spectrometry. Only oxytetracycline and eprinomectin reduced the average weight and/or survival of the black soldier fly larvae. The transfer of the veterinary drugs to the larvae was on average 19.2% for oxytetracycline, 12% for enrofloxacin, 9.5% for narasin, 8.1% for eprinomectin, 3.9% for salinomycin, 4.2% for toltrazuril, and 0.2% for sulfamethoxazole, relative to concentrations in the substrate. Mass-balance calculations revealed that the larvae seem to metabolise veterinary drugs, and indeed, metabolites of enrofloxacin, sulfamethoxazole, and toltrazuril were detected in the larvae and frass. In conclusion, insect-rearing substrates should be evaluated for the presence of veterinary drug residues to ensure feed (and food) safety, as well as because of possible effects on insect growth.


Subject(s)
Larva , Veterinary Drugs , Animals , Larva/growth & development , Diptera/drug effects , Diptera/growth & development , Anti-Bacterial Agents , Simuliidae , Coccidiostats , Manure/analysis
16.
Natl Sci Rev ; 11(6): nwae089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38933601

ABSTRACT

Plate tectonics plays an essential role in the redistribution of life-essential volatile elements between Earth's interior and surface, whereby our planet has been well tuned to maintain enduring habitability over much of its history. Here we present an overview of deep carbon recycling in the regime of modern plate tectonics, with a special focus on convergent plate margins for assessing global carbon mass balance. The up-to-date flux compilation implies an approximate balance between deep carbon outflux and subduction carbon influx within uncertainty but remarkably limited return of carbon to convecting mantle. If correct, carbon would gradually accumulate in the lithosphere over time by (i) massive subsurface carbon storage occurring primarily in continental lithosphere from convergent margins to continental interior and (ii) persistent surface carbon sinks to seafloors sustained by high-flux deep CO2 emissions to the atmosphere. Further assessment of global carbon mass balance requires updates on fluxes of subduction-driven carbon recycling paths and reduction in uncertainty of deep carbon outflux. From a global plate tectonics point of view, we particularly emphasize that continental reworking is an important mechanism for remobilizing geologically sequestered carbon in continental crust and sub-continental lithospheric mantle. In light of recent advances, future research is suggested to focus on a better understanding of the reservoirs, fluxes, mechanisms, and climatic effects of deep carbon recycling following an integrated methodology of observation, experiment, and numerical modeling, with the aim of decoding the self-regulating Earth system and its habitability from the deep carbon recycling perspective.

17.
Sci Total Environ ; 946: 173560, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38823710

ABSTRACT

Class A biosolids from water resource recovery facilities (WRRFs) are increasingly used as sustainable alternatives to synthetic fertilizers. However, the high phosphorus to nitrogen ratio in biosolids leads to a potential accumulation of phosphorus after repeated land applications. Extracting vivianite, an FeP mineral, prior to the final dewatering step in the biosolids treatment can reduce the P content in the resulting class A biosolids and achieve a P:N ratio closer to the 1:2 of synthetic fertilizers. Using ICP-MS, IC, UV-Vis colorimetric methods, Mössbauer spectroscopy, and SEM-EDX, a full-scale characterization of vivianite at the Blue Plains Advanced Wastewater Treatment Plant (AWTTP) was surveyed throughout the biosolids treatment train. Results showed that the vivianite-bound phosphorus in primary sludge thickening, before pre-dewatering, after thermal hydrolysis, and after anaerobic digestion corresponded to 8 %, 52 %, 40 %, and 49 % of the total phosphorus in the treatment influent. Similarly, the vivianite-bound iron concentration also corresponded to 8 %, 52 %, 40 %, and 49 % of the total iron present (from FeCl3 dosing), because the molar ratio between total iron and total incoming phosphorus was 1.5:1, which is the same stoichiometry of vivianite. Based on current P:N levels in the Class A biosolids at Blue Plains, a vivianite recovery target of 40 % to ideally 70 % is required in locations with high vivianite content to reach a P:N ratio in the resulting class A biosolid that matches synthetic fertilizers of 1:1.3 to 1:2, respectively. A financial analysis on recycling iron from the recovered vivianite had estimated that 14-25 % of Blue Plain's annual FeCl3 demand can potentially be met. Additionally, model simulations with Visual Minteq were used to evaluate the pre-treatment options that maximize vivianite recovery at different solids treatment train locations.


Subject(s)
Phosphorus , Waste Disposal, Fluid , Wastewater , Phosphorus/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Fertilizers , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Nutrients/analysis , Sewage/chemistry , Iron
18.
J Colloid Interface Sci ; 672: 654-663, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38865879

ABSTRACT

HYPOTHESIS: Understanding polyelectrolyte complexation remains limited due to the absence of a systematic methodology for analyzing the distribution of components between the polyelectrolyte complex (PEC) and the dilute phases. EXPERIMENTS: We developed a methodology based on NMR to quantify all components of solid-like PECs and their supernatant phases formed by mixing different ratios of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid)-sodium salt (PAA). This approach allowed for determining relative and absolute concentrations of polyelectrolytes in both phases by 1H NMR studies. Using 23Na and 35Cl NMR spectroscopy we measured the concentration of counterions in both phases. FINDINGS: Regardless of the mixing ratio of the polyelectrolytes the PEC is charge-stoichiometric, and any excess polyelectrolytes to achieve charge stoichiometry remains in the supernatant phase. The majority of counterions were found in the supernatant phase, confirming counterion release being a major thermodynamic driving force for PEC formation. The counterion concentrations in the PEC phase were approximately twice as high as in the supernatant phase. The complete mass balance of PEC formation could be determined and translated into a molecular picture. It appears that PAH is fully charged, while PAA is more protonated, so less charged, and some 10% extrinsic PAH-Cl- pairs are present in the complex.

19.
Anal Chim Acta ; 1314: 342754, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38876512

ABSTRACT

The unique properties of per- and polyfluoroalkyl substances (PFAS) have led to their extensive use in consumer products, including ski wax. Based on the risks associated with PFAS, and to align with PFAS regulations, the international ski federation (FIS) implemented a ban on products containing "C8 fluorocarbons/perfluorooctanoate (PFOA)" at all FIS events from the 2021/2022 season, leading manufactures to shift their formulations towards short-chain PFAS chemistries. To date, most studies characterising PFAS in ski waxes have measured a suite of individual substances using targeted analytical approaches. However, the fraction of total fluorine (TF) in the wax accounted for by these substances remains unclear. In this study, we sought to address this question by applying a multi-platform, fluorine mass balance approach to a total of 10 commercially available ski wax products. Analysis of TF by combustion ion chromatography (CIC) revealed concentrations of 1040-51700 µg F g-1 for the different fluorinated waxes. In comparison, extractable organic fluorine (EOF) determined in methanol extracts by CIC (and later confirmed by inductively-coupled plasma-mass spectrometry and 19F- nuclear magnetic resonance spectroscopy) ranged from 92 to 3160 µg g-1, accounting for only 3-8.8 % of total fluorine (TF). Further characterisation of extracts by cyclic ion mobility-mass spectrometry (IMS) revealed 15 individual PFAS with perfluoroalkyl carboxylic acid concentrations up to 33 µg F g-1, and 3 products exceeding the regulatory limit for PFOA (0.025 µg g-1) by a factor of up to 100. The sum of all PFAS accounted for only 0.01-1.0 % of EOF, implying a high percentage of unidentified PFAS, thus, pyrolysis gas chromatography-mass spectrometry was used to provide evidence of the nature of the non-extractable fluorine present in the ski wax products.


Subject(s)
Fluorine , Fluorocarbons , Waxes , Fluorocarbons/analysis , Fluorocarbons/chemistry , Fluorine/analysis , Fluorine/chemistry , Waxes/chemistry , Waxes/analysis , Caprylates/analysis , Caprylates/chemistry
20.
Sci Total Environ ; 941: 173695, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38834099

ABSTRACT

At present, an in-depth knowledge of polycyclic aromatic hydrocarbons (PAHs) in the multimedia system of the urban environment remains limited. Taking the Naples metropolitan area (NMA) for instance, we simulated the cross-media transfer of PAHs using a multimedia urban model, involving air, water, soil, sediment, vegetation, and impervious film. The results indicated that the predicted PAH values in 2015 match well with their corresponding in-situ monitoring data. The PAH emission inventory and the simulated mass in various media all showed a downward trend from 2015 to 2020 due to national energy conservation policies and Corona Virus Disease 2019. The simulated mass of PAHs in the soil and sediment phases was 896.8 and 232.7 kg in 2020, respectively, contributing together to 96.7% of PAHs in the NMA. And they were identified as the greatest sinks for PAHs, and exhibited the longest retention duration, with values of PAH persistence reaching approximately 548.8 - 2,0642.3 hours. The results of transfer fluxes indicated that local emissions and atmospheric advection were the primary routes affecting the distribution of PAHs. The sensitivity analysis indicated that atmospheric advection rate was the most critical parameter for air, soil, vegetation, and film, whereas water concentration and sediment degradation rate were vital for water and sediment, respectively. This study offered valuable insights into how human activity contributes to the status and fate of PAHs in the urban environment.

SELECTION OF CITATIONS
SEARCH DETAIL