Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Lett ; 560: 216126, 2023 04 28.
Article in English | MEDLINE | ID: mdl-36933780

ABSTRACT

Maternal embryonic leucine zipper kinase (MELK) is a member of the AMPK (AMP-activated protein kinase) protein family, which is widely and highly expressed in multiple cancer types. Through direct and indirect interactions with other targets, it mediates various cascades of signal transduction processes and plays an important role in regulating tumor cell survival, growth, invasion and migration and other biological functions. Interestingly, MELK also plays an important role in the regulation of the tumor microenvironment, which can not only predict the responsiveness of immunotherapy, but also affect the function of immune cells to regulate tumor progression. In addition, more and more small molecule inhibitors have been developed for the target of MELK, which exert important anti-tumor effects and have achieved excellent results in a number of clinical trials. In this review, we outline the structural features, molecular biological functions, potential regulatory mechanisms and important roles of MELK in tumors and tumor microenvironment, as well as substances targeting MELK. Although many molecular mechanisms of MELK in the process of tumor regulation are still unknown, it is worth affirming that MELK is a potential tumor molecular therapeutic target, and its unique superiority and important role provide clues and confidence for subsequent basic research and scientific transformation.


Subject(s)
Neoplasms , Protein Serine-Threonine Kinases , Humans , Protein Serine-Threonine Kinases/metabolism , Leucine Zippers , Cell Proliferation , Cell Line, Tumor , Tumor Microenvironment
2.
Biochem Biophys Res Commun ; 572: 164-170, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34365141

ABSTRACT

Death domain-associated protein (DAXX) is involved in the activation of adipocyte apoptosis and is downregulated in response to a high-fat diet (HFD), which implies that the inhibition of adipocyte apoptosis may cause obesity. However, the anti-obesity effects of DAXX in diet-induced obesity (DIO) remain to be characterized. Here, we identified DAXX as an interacting partner of murine protein serine-threonine kinase 38 (MPK38). This interaction was mediated by the C-terminal (amino acids 270-643) domain of MPK38 and the N-terminal (amino acids 1-440) domain of DAXX and was increased by diverse signals that activate ASK1/TGF-ß/p53 signaling. MPK38 phosphorylated DAXX at Thr578. Wild-type DAXX, but not a DAXX T578A mutant, stimulated MPK38-dependent ASK1/TGF-ß/p53 signaling by increasing the stability of MPK38 and complex formation between MPK38 and its downstream targets, such as ASK1, Smad3, and p53. This mechanism was also shown in MEF cells that were null (-/-) for DAXX. Furthermore, the adenovirally-mediated reinstatement of DAXX expression activated MPK38 and ameliorated diet-induced defects in glucose and lipid metabolism in mice. These results indicate that DAXX limits obesity-induced metabolic abnormalities in DIO mice by activating MPK38.


Subject(s)
Co-Repressor Proteins/metabolism , Molecular Chaperones/metabolism , Obesity/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Diet/adverse effects , Humans , Mice , Obesity/chemically induced
3.
J Biol Chem ; 295(24): 8195-8203, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32350113

ABSTRACT

The Ser/Thr protein kinase MELK (maternal embryonic leucine zipper kinase) has been considered an attractive therapeutic target for managing cancer since 2005. Studies using expression analysis have indicated that MELK expression is higher in numerous cancer cells and tissues than in their normal, nonneoplastic counterparts. Further, RNAi-mediated MELK depletion impairs proliferation of multiple cancers, including triple-negative breast cancer (TNBC), and these growth defects can be rescued with exogenous WT MELK, but not kinase-dead MELK complementation. Pharmacological MELK inhibition with OTS167 (alternatively called OTSSP167) and NVS-MELK8a, among other small molecules, also impairs cancer cell growth. These collective results led to MELK being classified as essential for cancer proliferation. More recently, in 2017, the proliferation of TNBC and other cancer cell lines was reported to be unaffected by genetic CRISPR/Cas9-mediated MELK deletion, calling into question the essentiality of this kinase in cancer. To date, the requirement of MELK in cancer remains controversial, and mechanisms underlying the disparate growth effects observed with RNAi, pharmacological inhibition, and CRISPR remain unclear. Our objective with this review is to highlight the evidence on both sides of this controversy, to provide commentary on the purported requirement of MELK in cancer, and to emphasize the need for continued elucidation of the functions of MELK.


Subject(s)
Neoplasms/enzymology , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Proliferation , Humans , Models, Biological , Neoplasms/pathology
4.
J Biol Chem ; 295(8): 2359-2374, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31896573

ABSTRACT

The maternal embryonic leucine zipper kinase (MELK) has been implicated in the regulation of cancer cell proliferation. RNAi-mediated MELK depletion impairs growth and causes G2/M arrest in numerous cancers, but the mechanisms underlying these effects are poorly understood. Furthermore, the MELK inhibitor OTSSP167 has recently been shown to have poor selectivity for MELK, complicating the use of this inhibitor as a tool compound to investigate MELK function. Here, using a cell-based proteomics technique called multiplexed kinase inhibitor beads/mass spectrometry (MIB/MS), we profiled the selectivity of two additional MELK inhibitors, NVS-MELK8a (8a) and HTH-01-091. Our results revealed that 8a is a highly selective MELK inhibitor, which we further used for functional studies. Resazurin and crystal violet assays indicated that 8a decreases triple-negative breast cancer cell viability, and immunoblotting revealed that impaired growth is due to perturbation of cell cycle progression rather than induction of apoptosis. Using double-thymidine synchronization and immunoblotting, we observed that MELK inhibition delays mitotic entry, which was associated with delayed activation of Aurora A, Aurora B, and cyclin-dependent kinase 1 (CDK1). Following this delay, cells entered and completed mitosis. Using live-cell microscopy of cells harboring fluorescent proliferating cell nuclear antigen, we confirmed that 8a significantly and dose-dependently lengthens G2 phase. Collectively, our results provide a rationale for using 8a as a tool compound for functional studies of MELK and indicate that MELK inhibition delays mitotic entry, likely via transient G2/M checkpoint activation.


Subject(s)
Mass Spectrometry , Mitosis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Cell Line, Tumor , Cell Survival/drug effects , Histones/metabolism , Humans , Mitosis/drug effects , Neoplasm Proteins/metabolism , Phosphorylation/drug effects , Protein Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/enzymology , Triple Negative Breast Neoplasms/pathology
5.
Cell Signal ; 63: 109366, 2019 11.
Article in English | MEDLINE | ID: mdl-31352007

ABSTRACT

Maternal embryonic leucine-zipper kinase (MELK) overexpression impacts survival and proliferation of multiple cancer types, most notably glioblastomas and breast cancer. This makes MELK an attractive molecular target for cancer therapy. Yet the molecular mechanisms underlying the involvement of MELK in tumorigenic processes are unknown. MELK participates in numerous protein-protein interactions that affect cell cycle, proliferation, apoptosis, and embryonic development. Here we used both in vitro and in-cell assays to identify a direct interaction between MELK and arrestin-3. A part of this interaction involves the MELK kinase domain, and we further show that the interaction between the MELK kinase domain and arrestin-3 decreases the number of cells in S-phase, as compared to cells expressing the MELK kinase domain alone. Thus, we describe a new mechanism of regulation of MELK function, which may contribute to the control of cell fate.


Subject(s)
Arrestins/chemistry , Arrestins/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , HEK293 Cells , Humans , Protein Binding , S Phase
6.
Bioorg Med Chem Lett ; 29(4): 607-613, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30626559

ABSTRACT

Maternal embryonic leucine zipper kinase (MELK) is involved in several key cellular processes and displays increased levels of expression in numerous cancer classes (colon, breast, brain, ovary, prostate and lung). Although no selective MELK inhibitors have yet been approved, increasing evidence suggest that inhibition of MELK would constitute a promising approach for cancer therapy. A weak high-throughput screening hit (17, IC50 ≈ 5 µM) with lead-like properties was optimized for MELK inhibition. The early identification of a plausible binding mode by molecular modeling offered guidance in the choice of modifications towards compound 52 which displayed a 98 nM IC50. A good selectivity profile was achieved for a representative member of the series (29) in a 486 protein kinase panel. Future elaboration of 52 has the potential to deliver compounds for further development with chemotherapeutic aims.


Subject(s)
Protein Serine-Threonine Kinases/antagonists & inhibitors , Thiophenes/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , High-Throughput Screening Assays , Humans , Inhibitory Concentration 50
7.
Genetics ; 206(4): 2069-2084, 2017 08.
Article in English | MEDLINE | ID: mdl-28652378

ABSTRACT

Snail-like transcription factors affect stem cell function through mechanisms that are incompletely understood. In the Caenorhabditis elegans neurosecretory motor neuron (NSM) neuroblast lineage, CES-1 Snail coordinates cell cycle progression and cell polarity to ensure the asymmetric division of the NSM neuroblast and the generation of two daughter cells of different sizes and fates. We have previously shown that CES-1 Snail controls cell cycle progression by repressing the expression of cdc-25.2 CDC25. However, the mechanism through which CES-1 Snail affects cell polarity has been elusive. Here, we systematically searched for direct targets of CES-1 Snail by genome-wide profiling of CES-1 Snail binding sites and identified >3000 potential CES-1 Snail target genes, including pig-1, the ortholog of the oncogene maternal embryonic leucine zipper kinase (MELK). Furthermore, we show that CES-1 Snail represses pig-1 MELK transcription in the NSM neuroblast lineage and that pig-1 MELK acts downstream of ces-1 Snail to cause the NSM neuroblast to divide asymmetrically by size and along the correct cell division axis. Based on our results we propose that by regulating the expression of the MELK gene, Snail-like transcription factors affect the ability of stem cells to divide asymmetrically and, hence, to self-renew. Furthermore, we speculate that the deregulation of MELK contributes to tumorigenesis by causing cells that normally divide asymmetrically to divide symmetrically instead.


Subject(s)
Asymmetric Cell Division , Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Animals , Binding Sites , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cell Polarity , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Motor Neurons/cytology , Motor Neurons/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Protein Binding , Protein Serine-Threonine Kinases/genetics , Transcription Factors/chemistry , Transcription Factors/genetics
8.
Bioorg Med Chem ; 25(9): 2609-2616, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28351607

ABSTRACT

Despite recent advances in molecularly directed therapy, triple negative breast cancer (TNBC) remains one of the most aggressive forms of breast cancer, still without a suitable target for specific inhibitors. Maternal embryonic leucine zipper kinase (MELK) is highly expressed in TNBC, where level of overexpression correlates with poor prognosis and an aggressive disease course. Herein, we describe the discovery through targeted kinase inhibitor library screening, and structure-guided design of a series of ATP-competitive indolinone derivatives with subnanomolar inhibition constants towards MELK. The most potent compound, 17, inhibits the expression of the anti-apoptotic protein Mcl-1 and proliferation of TNBC cells exhibiting selectivity for cells expressing high levels of MELK. These studies suggest that further elaboration of 17 will furnish MELK-selective inhibitors with potential for development in preclinical models of TNBC and other cancers.


Subject(s)
Acetanilides/pharmacology , Antineoplastic Agents/pharmacology , Indoles/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Acetanilides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Indoles/chemical synthesis , Molecular Docking Simulation , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Protein Kinase Inhibitors/chemical synthesis
9.
Biosci Rep ; 35(6)2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26431963

ABSTRACT

Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold.


Subject(s)
Azepines/administration & dosage , Benzamides/administration & dosage , Breast Neoplasms/genetics , DNA Damage/drug effects , Enzyme Inhibitors/administration & dosage , Protein Serine-Threonine Kinases/biosynthesis , Apoptosis/drug effects , Ataxia Telangiectasia Mutated Proteins/biosynthesis , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Forkhead Box Protein M1 , Forkhead Transcription Factors/biosynthesis , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL