Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
Add more filters











Publication year range
1.
Front Plant Sci ; 15: 1411963, 2024.
Article in English | MEDLINE | ID: mdl-39070915

ABSTRACT

Naturally synthesized secondary metabolites in plants are considered an important source of drugs, food additives, etc. Among them, research on natural plant medicinal components and their synthesis mechanisms has always been of high concern. We identified a novel medicinal floral crop, Plumbago auriculata L., that can be treated with methyl jasmonate (MeJA) for the rapid or sustainable production of natural bioactives from hairy roots. In the study, we globally analyzed the changes in the accumulation of plumbagin and others in the hairy roots of Plumbago auriculata L. hairy roots (PAHR) 15834 in P. auriculata L. based on 100 µmol/L of MeJA treatment by RNA-seq profiling, and we found that there was a significant increase in the accumulation of plumbagin and saponin before 24 h. To explain the principle of co-accumulation, it showed that MeJA induced JA signaling and the shikimic acid pathway, and the methylvaleric acid (MVA) pathway was activated downstream subsequently by the Mfuzz and weighted gene co-expression analysis. Under the shared metabolic pathway, the high expression of PAL3 and HMGR promoted the activity of the "gateway enzymes" phenylalanine ammonia lyase (PAL) and 3-hydroxy-3-methylglutaryl CoA reductase (HMGR), which respectively induced the high expression of key reaction enzyme genes, including chalcone synthase (CHS), isopentenyl diphosphate (IPP), and farnesyl pyrophosphate synthase (FPS), that led to the synthesis of plumbagin and saponin. We speculated that large amounts of ketones and/or aldehydes were formed under the action of these characteristic enzymes, ultimately achieving their co-accumulation through polyketone and high-level sugar and amino acid metabolism. The study results provided a theoretical basis for carrying out the factory refinement and biosynthesis of plumbagin and saponins and also provided new ideas for fully exploiting multifunctional agricultural crops and plants and developing new agricultural by-products.

2.
Plant Physiol Biochem ; 214: 108932, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018777

ABSTRACT

Understanding the regulatory biosynthesis mechanisms of active compounds in herbs is vital for the preservation and sustainable use of natural medicine resources. Diterpenoids, which play a key role in plant growth and resistance, also serve as practical products for humans. Tanshinone, a class of abietane-type diterpenes unique to the Salvia genus, such as Salvia miltiorrhiza, is an excellent model for studying diterpenoids. In this study, we discovered that a transcription factor, SmERF106, responds to MeJA induction and is located in the nucleus. It exhibits a positive correlation with the expression of SmKSL1 and SmIDI1, which are associated with tanshinone biosynthesis. We performed DNA affinity purification sequencing (DAP-seq) to predict genes that may be transcriptionally regulated by SmERF106. Our cis-elements analysis suggested that SmERF106 might bind to GCC-boxes in the promoters of SmKSL1 and SmIDI1. This indicates that SmKSL1 and SmIDI1 could be potential target genes regulated by SmERF106 in the tanshinone biosynthesis pathway. Their interaction was then demonstrated through a series of in vitro and in vivo binding experiments, including Y1H, EMSA, and Dual-LUC. Overexpression of SmERF106 in the hairy root of S. miltiorrhiza led to a significant increase in tanshinone content and the transcriptional levels of SmKSL1 and SmIDI1. In summary, we found that SmERF106 can activate the transcription of SmKSL1 and SmIDI1 in response to MeJA induction, thereby promoting tanshinone biosynthesis. This discovery provides new insights into the regulatory mechanisms of tanshinones in response to JA and offers a potential gene tool for tanshinone metabolic engineering strategy.


Subject(s)
Abietanes , Acetates , Cyclopentanes , Gene Expression Regulation, Plant , Oxylipins , Plant Proteins , Salvia miltiorrhiza , Transcription Factors , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/genetics , Abietanes/metabolism , Abietanes/biosynthesis , Oxylipins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Acetates/metabolism , Acetates/pharmacology , Promoter Regions, Genetic/genetics
3.
Plant Physiol Biochem ; 214: 108952, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39043058

ABSTRACT

The Jasmonate ZIM domain (JAZ) proteins, functioning as critical suppressors for jasmonic acid (JA) signal transduction in plants, occupy crucial roles in multiple biological processes, particularly in the orchestration of secondary metabolic pathways. However, the mechanism underlying the JA-induced gypenosides accumulation in Gynostemma pentaphyllum remains poorly elucidated. Our research led to the identification of 11 distinct JAZ members in G. pentaphyllum (GpJAZs). According to the classification approach of AtJAZ, we allocated these members into five subgroups that shared similar conserved motif compositions. Subsequently, we identified the presence of various cis-acting elements associated with light stimuli, hormone responses, and stress signals within the promoter regions of the GpJAZ gene family. The expression levels of GpJAZ genes in different tissues were quite different, and the majority of GpJAZ genes exhibited varying degrees of response to methyl jasmonate (MeJA) induction. Yeast two-hybrid (Y2H) assays revealed interactions between GpJAZ1/2/4/5/7/9/10 and GpMYC2, whereas GpCOI1 protein was found to interact with GpJAZ1/2/4/5, thereby forming the COI1/JAZ/MYC2 complex. Furthermore, as an activator of gypenoside metabolic pathway, GpMYC2 could activate the promoter activity of the gypenoside metabolism-related genes to varying degrees by binding to their promoters, indicating that the COI1/JAZ/MYC2 module involved in the MeJA-induced regulation of gypenosides. In summary, our findings present an exhaustive examination of the JAZ gene family, furnishing a significant lead for delving deeper into the molecular mechanisms that drive the MeJA-induced enhancement of gypenosides accumulation in G. pentaphyllum.


Subject(s)
Acetates , Cyclopentanes , Gene Expression Regulation, Plant , Gynostemma , Oxylipins , Plant Proteins , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Gynostemma/metabolism , Gynostemma/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Phylogeny , Promoter Regions, Genetic/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Extracts
4.
Front Plant Sci ; 15: 1406592, 2024.
Article in English | MEDLINE | ID: mdl-39006964

ABSTRACT

Artemisia argyi, a perennial herb of the genus Artemisia in the family Asteraceae, holds significant importance in Chinese traditional medicine, referred to as "Aicao". Here, we report a high-quality reference genome of Artemisia argyi L. cv. beiai, with a genome size up to 4.15 Gb and a contig N50 of 508.96 Kb, produced with third-generation Nanopore sequencing technology. We predicted 147,248 protein-coding genes, with approximately 68.86% of the assembled sequences comprising repetitive elements, primarily long terminal repeat retrotransposons(LTRs). Comparative genomics analysis shows that A. argyi has the highest number of specific gene families with 5121, and much more families with four or more members than the other 6 plant species, which is consistent with its more expanded gene families and fewer contracted gene families. Furthermore, through transcriptome sequencing of A. argyi in response to exogenous MeJA treatment, we have elucidated acquired regulatory insights into MeJA's impact on the phenylpropanoid, flavonoid, and terpenoid biosynthesis pathways of A. argyi. The whole-genome information obtained in this study serves as a valuable resource for delving deeper into the cultivation and molecular breeding of A. argyi. Moreover, it holds promise for enhancing genome assemblies across other members of the Asteraceae family. The identification of key genes establishes a solid groundwork for developing new varieties of Artemisia with elevated concentrations of active compounds.

5.
Foods ; 13(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38890824

ABSTRACT

'Ruixue' apples were used as the test material to study the effect of 10 µM methyl jasmonate (MeJA) on the quality and cell wall metabolism of apples after 18 d of storage. The results showed that MeJA significantly decreased the respiratory rate, reduced the titratable acid content and maintained a high soluble solids content. MeJA has been shown to suppress the activities and gene expressions of WSP, CSP, ISP, and cellulose in contrast to the control group, thereby maintaining a lower cell permeability and higher exocarp firmness. MeJA significantly decreased the expression of MdACS, MdACO, MdPL, Mdgal, and MdPG genes in the apple exocarp when compared to the control group. In addition, the overexpression of MdPL18 increased the content of cell wall polysaccharides such as WSP and CSP, enhanced cell wall-degrading enzyme activities, and accelerated fruit ripening and softening, whereas silencing MdPL18 did the opposite. Together, these results demonstrate that exogenous MeJA maintains the Ruixue apple fruit quality by regulating the metabolism of cell wall substances.

6.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872078

ABSTRACT

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Subject(s)
Acetates , Cyclopentanes , Gene Expression Regulation, Plant , Multigene Family , Oxylipins , Panax , Phylogeny , Plant Proteins , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Panax/genetics , Panax/metabolism , Panax/drug effects , Acetates/pharmacology , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Gene Expression Profiling , Genes, Plant , Ginsenosides
7.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772462

ABSTRACT

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Subject(s)
Acetates , Cyclopentanes , Fallopia japonica , Gene Expression Regulation, Plant , Metabolome , Oxylipins , Plant Proteins , Resveratrol , Transcription Factors , Transcriptome , Resveratrol/metabolism , Resveratrol/pharmacology , Fallopia japonica/metabolism , Fallopia japonica/genetics , Acetates/pharmacology , Acetates/metabolism , Metabolome/drug effects , Gene Expression Regulation, Plant/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Oxylipins/pharmacology , Oxylipins/metabolism , Transcriptome/drug effects , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/drug effects , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression Profiling , Plants, Genetically Modified/genetics , Plant Leaves/metabolism , Plant Leaves/genetics , Plant Leaves/drug effects
8.
PeerJ ; 12: e17304, 2024.
Article in English | MEDLINE | ID: mdl-38680887

ABSTRACT

The MYB gene family exerts significant influence over various biological processes and stress responses in plants. Despite this, a comprehensive analysis of this gene family in pumpkin remains absent. In this study, the MYB genes of Cucurbita moschata were identified and clustered into 33 groups (C1-33), with members of each group being highly conserved in terms of their motif composition. Furthermore, the distribution of 175 CmoMYB genes across all 20 chromosomes was found to be non-uniform. Examination of the promoter regions of these genes revealed the presence of cis-acting elements associated with phytohormone responses and abiotic/biotic stress. Utilizing quantitative real-time polymerase chain reaction (qRT-PCR), the expression patterns of 13 selected CmoMYB genes were validated, particularly in response to exogenous phytohormone exposure and various abiotic stressors, including ABA, SA, MeJA, and drought treatments. Expression analysis in different tissues showed that CmoMYB genes are expressed at different levels in different tissues, suggesting that they are functionally divergent in regulating growth and abiotic stresses. These results provide a basis for future studies to characterize the function of the MYB gene family under abiotic stresses in pumpkins.


Subject(s)
Cucurbita , Gene Expression Regulation, Plant , Multigene Family , Stress, Physiological , Cucurbita/genetics , Multigene Family/genetics , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Genes, myb , Promoter Regions, Genetic/genetics , Phylogeny , Genome-Wide Association Study , Genome, Plant/genetics
9.
Plants (Basel) ; 13(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38674519

ABSTRACT

In plants, the plastidial mevalonate (MVA)-independent pathway is required for the modification with geranylgeranyl groups of CaaL-motif proteins, which are substrates of protein geranylgeranyltransferase type-I (PGGT-I). As a consequence, fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose (DX)-5 phosphate reductoisomerase/DXR, the second enzyme in this so-called methylerythritol phosphate (MEP) pathway, also acts as an effective inhibitor of protein prenylation. This can be visualized in plant cells by confocal microscopy by expressing GFP-CaM-CVIL, a prenylation sensor protein. After treatment with fosmidomycin, the plasma membrane localization of this GFP-based sensor is altered, and a nuclear distribution of fluorescence is observed instead. In tobacco cells, a visual screen of conditions allowing membrane localization in the presence of fosmidomycin identified jasmonic acid methyl esther (MeJA) as a chemical capable of gradually overcoming inhibition. Using Arabidopsis protein prenyltransferase loss-of-function mutant lines expressing GFP-CaM-CVIL proteins, we demonstrated that in the presence of MeJA, protein farnesyltransferase (PFT) can modify the GFP-CaM-CVIL sensor, a substrate the enzyme does not recognize under standard conditions. Similar to MeJA, farnesol and MVA also alter the protein substrate specificity of PFT, whereas DX and geranylgeraniol have limited or no effect. Our data suggest that MeJA adjusts the protein substrate specificity of PFT by promoting a metabolic cross-talk directing the origin of the prenyl group used to modify the protein. MVA, or an MVA-derived metabolite, appears to be a key metabolic intermediate for this change in substrate specificity.

10.
Front Plant Sci ; 15: 1360919, 2024.
Article in English | MEDLINE | ID: mdl-38545393

ABSTRACT

Panax notoginseng is a highly valued perennial medicinal herb plant in Yunnan Province, China, and the taproots are the main medicinal parts that are rich in active substances of P. notoginseng saponins. The main purpose of this study is to uncover the physiological and molecular mechanism of Panax notoginseng saponin accumulation triggered by methyl jasmonate (MeJA) under arbuscular mycorrhizal fungi (AMF) by determining physiological indices, high-throughput sequencing and correlation analysis. Physiological results showed that the biomass and saponin contents of P. notoginseng, the concentrations of jasmonic acids (JAs) and the key enzyme activities involved in notoginsenoside biosynthesis significantly increased under AMF or MeJA, but the interactive treatment of AMF and MeJA weakened the effect of AMF, suggesting that a high concentration of endogenous JA have inhibitory effect. Transcriptome sequencing results indicated that differential expressed genes (DEGs) involved in notoginsenoside and JA biosynthesis were significantly enriched in response to AMF induction, e.g., upregulated genes of diphosphocytidyl-2-C-methyl-d-erythritol kinases (ISPEs), cytochrome P450 monooxygenases (CYP450s)_and glycosyltransferases (GTs), while treatments AMF-MeJA and salicylhydroxamic acid (SHAM) decreased the abundance of these DEGs. Interestingly, a high correlation presented between any two of saponin contents, key enzyme activities and expression levels of DEGs. Taken together, the inoculation of AMF can improve the growth and saponin accumulation of P. notoginseng by strengthening the activities of key enzymes and the expression levels of encoding genes, in which the JA regulatory pathway is a key link. This study provides references for implementing ecological planting of P. notoginseng, improving saponin accumulation and illustrating the biosynthesis mechanism.

11.
Int J Biol Macromol ; 265(Pt 2): 131017, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38513909

ABSTRACT

Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.


Subject(s)
Cyclopentanes , Oenanthe , Oxylipins , Terpenes , Terpenes/metabolism , Oenanthe/metabolism , Cyclohexane Monoterpenes , Acetates/pharmacology
12.
Foods ; 13(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38472902

ABSTRACT

This study investigated the impact of Methyl Jasmonate (MeJA) application on the nutritional content and yield of five different colored radish microgreens. Microgreens were produced without substrate and subjected to 0.5 mM and 1.0 mM MeJA treatments on the 7th day, three days before harvest. The parameters measured included yield, dry matter, minerals, amino acids, secondary metabolites such as chlorophylls (Chls), anthocyanins, flavonoids, phenolics, glucosinolates (GSLs), vitamin C, and antioxidant capacity. MeJA at 1.0 mM generally improved yield and dry weight across cultivars, and all microgreens exhibited rich mineral and amino acid composition, with the influence of cultivar being more significant than MeJA treatment. However, MeJA enhanced all cultivars' anthocyanins, GSLs, phenolics, flavonoids, and antioxidant activities. Generally, as the antioxidant capacity is the primary factor influencing the nutritional quality of microgreens, MeJA-treated microgreens, especially with selected superior cultivars such as 'Asia purple' and 'Koregon red', could offer a potential for cultivation of value-added, eco-friendly microgreens with substrate-free cultivation.

13.
Plants (Basel) ; 13(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475558

ABSTRACT

Exogenous methyl jasmonate (MeJA) application has shown promising effects on plant defense under diverse abiotic stresses. However, the mechanisms underlying MeJA-induced stress resistance in bananas are unclear. Therefore, in this study, we treated banana plants with 100 µM MeJA before inducing osmotic stress using mannitol. Plant phenotype and antioxidant enzyme activity results demonstrated that MeJA improved osmotic stress resistance in banana plants. Thereafter, to explore the molecular mechanisms underlying MeJA-induced osmotic stress resistance in banana seedlings, we conducted high-throughput RNA sequencing (RNA-seq) using leaf and root samples of "Brazilian" banana seedlings treated with MeJA for 0 h and 8 h. RNA-seq analysis showed that MeJA treatment upregulated 1506 (leaf) and 3341 (root) genes and downregulated 1768 (leaf) and 4625 (root) genes. Then, we performed gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses on the differentially expressed genes. We noted that linoleic acid metabolism was enriched in both root and leaf samples, and the genes of this pathway exhibited different expression patterns; 9S-LOX genes were highly induced by MeJA in the leaves, whereas 13S-LOX genes were highly induced in the roots. We also identified the promoters of these genes, as the differences in response elements may contribute to tissue-specific gene expression in response to MeJA application in banana seedlings. Overall, the findings of this study provide insights into the mechanisms underlying abiotic stress resistance in banana that may aid in the improvement of banana varieties relying on molecular breeding.

14.
Food Chem ; 444: 138602, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38310778

ABSTRACT

In this work, the MeJA-loaded gelatin/pullulan/chitosan composite biofilm was prepared to inhibit the chilling lignification of the loquat fruit during storage at 0 °C. The firmness and lignin content were decreased by 89 % and 81.77 % after MeJA-loaded biofilm treatment. Malondialdehyde (MDA) production was almost completely suppressed and chilling injury of loquat fruit was significantly reduced. Enzyme activity results show that the biofilm alleviated chilling lignification mainly by inhibiting peroxidase (POD) activity in the phenylpropanoid pathway (PCCs = 0.715, with lignin content). Also, the conventional MeJA vapor treatment only alleviated lignification on day 3, but the biofilm treatment had a better and more sustained effect throughout the whole storage due to its sustained release ability. Besides, the biofilm had good mechanical properties, transparency and water vapor transmission rate. This work indicates that loading preservatives into biofilms has a promising application prospect for inhibiting the postharvest quality deterioration of fruit and vegetables.


Subject(s)
Acetates , Antioxidants , Cyclopentanes , Eriobotrya , Lignin , Oxylipins , Plant Extracts , Lignin/metabolism , Antioxidants/metabolism , Fruit/metabolism
15.
Plant J ; 118(4): 1155-1173, 2024 May.
Article in English | MEDLINE | ID: mdl-38332528

ABSTRACT

Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning-based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co-expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)-responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA-mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.


Subject(s)
Acetates , Cannabis , Cyclopentanes , Deep Learning , Gene Expression Profiling , Gene Expression Regulation, Plant , Oxylipins , Trichomes , Oxylipins/pharmacology , Oxylipins/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Cannabis/genetics , Cannabis/growth & development , Cannabis/metabolism , Acetates/pharmacology , Trichomes/genetics , Trichomes/metabolism , Trichomes/growth & development , Gene Expression Profiling/methods , Transcriptome , Plant Growth Regulators/metabolism
16.
Plant Physiol Biochem ; 207: 108371, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38271863

ABSTRACT

Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 µM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms.


Subject(s)
Acetates , Cyclopentanes , Malus , Oxylipins , Malus/metabolism , Reactive Oxygen Species/metabolism , Fruit , Homeostasis , Plant Diseases/microbiology
17.
Food Chem ; 438: 137958, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38000159

ABSTRACT

Methyl jasmonate (MeJA) is an important phytohormone that regulates the development of grape, but the effect and underpin mechanism of its preharvest application on secondary metabolites accumulation in postharvest grape berries are still unclear. In this study, the transcriptome profiles combined with metabolic components analysis were used to determine the effect of preharvest MeJA application on the quality formation of postharvest rose-flavor table grape Shine Muscat. The results indicated that preharvest MeJA treatment had no significant effect on TSS content, but had a down-regulation effect on the accumulation of reducing sugar and titratable acid in the berries. The content of chlorophylls and carotenoids in treated berries was significantly higher than that of the control. Many phenolic components, such as trans-ferulic acid, resveratrol, quercetin, and kaempferol, were sensitive to MeJA and their contents were also significantly higher than that of the control under MeJA treatments during the shelf life. Compared with other volatile aroma components, terpenoid components were more sensitive to preharvest MeJA signals, the content of which presented an overall upward trend with increasing MeJA concentration and prolonging storage time. Furthermore, most of the differentially expressed genes in the general phenylpropanoid pathway and terpenoid biosynthesis pathway were up-regulated responding to MeJA signals. The most upregulated regulatory factors, such as VvWRKY72, VvMYB24, and VvWRI1, may be involved in MeJA signal transduction and regulation. Preharvest MeJA may be an effective technique for enhancing the quality of postharvest Shine Muscat grape berries, with its positive effect on enhancing the characteristic aroma and nutritional components.


Subject(s)
Vitis , Vitis/metabolism , Fruit/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology , Acetates/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Terpenes/metabolism
18.
Plants (Basel) ; 12(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37960120

ABSTRACT

The basic helix-loop-helix (bHLH) transcription factors possess DNA-binding and dimerization domains and are involved in various biological and physiological processes, such as growth and development, the regulation of secondary metabolites, and stress response. However, the bHLH gene family in C. tinctorius has not been investigated. In this study, we performed a genome-wide identification and analysis of bHLH transcription factors in C. tinctorius. A total of 120 CtbHLH genes were identified, distributed across all 12 chromosomes, and classified into 24 subfamilies based on their phylogenetic relationships. Moreover, the 120 CtbHLH genes were subjected to comprehensive analyses, including protein sequence alignment, evolutionary assessment, motif prediction, and the analysis of promoter cis-acting elements. The promoter region analysis revealed that CtbHLH genes encompass cis-acting elements and were associated with various aspects of plant growth and development, responses to phytohormones, as well as responses to both abiotic and biotic stresses. Expression profiles, sourced from transcriptome databases, indicated distinct expression patterns among these CtbHLH genes, which appeared to be either tissue-specific or specific to certain cultivars. To further explore their functionality, we determined the expression levels of fifteen CtbHLH genes known to harbor motifs related to abiotic and hormone responses. This investigation encompassed treatments with ABA, salt, drought, and MeJA. The results demonstrated substantial variations in the expression patterns of CtbHLH genes in response to these abiotic and hormonal treatments. In summary, our study establishes a solid foundation for future inquiries into the roles and regulatory mechanisms of the CtbHLH gene family.

19.
Food Res Int ; 174(Pt 2): 113680, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37981372

ABSTRACT

Ficus pandurata Hance (FPH) holds a rich history as a traditional Chinese botanical remedy, utilized both as a culinary condiment and a medicinal intervention for diverse ailments. This study focuses on enhancing FPH's therapeutic potential by subjecting it to exogenous methyl jasmonate (MeJA) treatment, a strategy aimed at elevating the levels of active constituents to align with clinical and commercial requirements. Employing metabolomics, the impact of MeJA treatment on the lipid and flavonoid profiles of FPH leaves was investigated, revealing a marked increase in flavone glycosides, a subset of flavonoids. Investigation into the regulatory mechanism governing flavone glycoside biosynthesis uncovered elevated expression of structural genes associated with flavonoid production in response to MeJA exposure. Global endogenous hormone analysis pinpointed the selective activation of JA and cytokinin biosynthesis following MeJA treatment. Through a comprehensive integration of transcriptomic and metabolomic data, the cooperative stimulation of glucosyltransferase activity, alongside the JA and cytokinin signaling pathways, orchestrated by MeJA were explored. Furthermore, genes linked to sucrose metabolism exhibited heightened expression, concomitant with a noteworthy surge in antioxidant activity subsequent to MeJA treatment. These findings validate the augmentation of FPH leaf antioxidant capacity through MeJA intervention, while also offering profound insights into the regulatory role of MeJA in flavone glycoside biosynthesis, mediated by the interplay between cytokinin and sucrose metabolism pathways.


Subject(s)
Ficus , Flavones , Glycosides , Cytokinins , Multiomics , Flavonoids , Antioxidants
20.
Front Genet ; 14: 1279850, 2023.
Article in English | MEDLINE | ID: mdl-38028600

ABSTRACT

Artemisia argyi Lev. et Vant. (A. argyi) is a perennial grass in the Artemisia family, the plant has a strong aroma. Methyl jasmonate (MeJA) is critical to plant growth and development, stress response, and secondary metabolic processes. The experimental material Artemisia argyi was utilized in this study to investigate the treatment of A. argyi with exogenous MeJA at concentrations of 100 and 200 µmol/L for durations of 9 and 24 h respectively. Transcriptome sequencing was conducted using the Illumina HiSeq platform to identify stress resistance-related candidate genes. Finally, a total of 102.43 Gb of data were obtained and 162,272 unigenes were identified. Differential analysis before and after MeJA treatment resulted in the screening of 20,776 differentially expressed genes. The GO classification revealed that the annotated unigenes were categorized into three distinct groups: cellular component, molecular function, and biological process. Notably, binding, metabolic process, and cellular process emerged as the most prevalent categories among them. The results of KEGG pathway statistical analysis revealed that plant hormone signal transduction, MAPK signaling pathway-plant, and plant-pathogen interaction were significant transduction pathways in A. argyi's response to exogenous MeJA-induced abiotic stress. With the alteration of exogenous MeJA concentration and duration, a significant upregulation was observed in the expression levels of calmodulin CaM4 (ID: EVM0136224) involved in MAPK signaling pathway-plant and auxin response factor ARF (ID: EVM0055178) associated with plant-pathogen interaction. The findings of this study establish a solid theoretical foundation for the future development of highly resistant varieties of A. argyi.

SELECTION OF CITATIONS
SEARCH DETAIL