Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.556
Filter
1.
Front Mol Neurosci ; 17: 1448777, 2024.
Article in English | MEDLINE | ID: mdl-39169950

ABSTRACT

Objective: This study aims to systematically evaluate the efficacy of bone marrow mesenchymal stem cell-derived exosomes (BMSCs-Exo) in improving spinal cord injury (SCI) to mitigate the risk of translational discrepancies from animal experiments to clinical applications. Methods: We conducted a comprehensive literature search up to March 2024 using PubMed, Embase, Web of Science, and Scopus databases. Two researchers independently screened the literature, extracted data, and assessed the quality of the studies. Data analysis was performed using STATA16 software. Results: A total of 30 studies were included. The results indicated that BMSCs-Exo significantly improved the BBB score in SCI rats (WMD = 3.47, 95% CI [3.31, 3.63]), inhibited the expression of the pro-inflammatory cytokine TNF-α (SMD = -3.12, 95% CI [-3.57, -2.67]), and promoted the expression of anti-inflammatory cytokines IL-10 (SMD = 2.76, 95% CI [1.88, 3.63]) and TGF-ß (SMD = 3.89, 95% CI [3.02, 4.76]). Additionally, BMSCs-Exo significantly reduced apoptosis levels (SMD = -4.52, 95% CI [-5.14, -3.89]), promoted the expression of axonal regeneration markers NeuN cells/field (SMD = 3.54, 95% CI [2.65, 4.42]), NF200 (SMD = 4.88, 95% CI [3.70, 6.05]), and the number of Nissl bodies (SMD = 1.89, 95% CI [1.13, 2.65]), and decreased the expression of astrogliosis marker GFAP (SMD = -5.15, 95% CI [-6.47, -3.82]). The heterogeneity among studies was primarily due to variations in BMSCs-Exo transplantation doses, with efficacy increasing with higher doses. Conclusion: BMSCs-Exo significantly improved motor function in SCI rats by modulating inflammatory responses, reducing apoptosis, inhibiting astrogliosis, and promoting axonal regeneration. However, the presence of selection, performance, and detection biases in current animal experiments may undermine the quality of evidence in this study.

2.
Heliyon ; 10(15): e35372, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170459

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are emerging as a new therapy for diabetes. Here we investigate the properties of MSCs engineered to express Islet Neogenesis Associated Protein (INGAP) previously shown to reverse diabetes in animal models and evaluate their potential for anti-diabetic applications in mice. Mouse bone marrow-derived MSCs retrovirally transduced to co-express INGAP, Firefly Luciferase and EGFP (INGAP-MSCs), were characterized in vitro and implanted intraperitoneally (IP) into non-diabetic and diabetic C57BL/6 mice (Streptozotocin model) and tracked by live bioluminescence imaging (BLI). Distribution and survival of IP injected INGAP-MSCs differed between diabetic and non-diabetic mice, with a rapid clearance of cells in the latter, and a stronger retention (up to 4 weeks) in diabetic mice concurring with homing towards the pancreas. Interestingly, INGAP-MSCs inhibited the progression of hyperglycemia starting at day 3 and lasting for the entire 6 weeks of the study. Pursuing greater retention, we investigated the survival of INGAP-MSCs in hydrogel matrices. When mixed with Matrigel™ and injected subcutaneously into non-diabetic mice, INGAP-MSCs remained in the implant up to 16 weeks. In vitro tests in three matrices (Matrigel™, Type I Collagen and VitroGel®-MSC) demonstrated that INGAP-MSCs survive and secrete INGAP, with best results at the density of 1-2 x 106 cells/mL. However, all matrices induced spontaneous adipogenic differentiation of INGAP-MSCs in vitro and in vivo, which requires further investigation of its potential impact on MSC therapeutic properties. In summary, based on their ability to stop the rise in hyperglycemia in STZ-treated mice, INGAP-MSCs are a promising therapeutic tool against diabetes but require further research to improve cell delivery and survival.

3.
Heliyon ; 10(15): e35343, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170483

ABSTRACT

Background: Mesenchymal stem cells (MSCs) are commonly employed as a powerful tool for the treatment of immune-mediated problems owing to their capacity to regulate the immune system and differentiate into different tissues. Researchers use mesenchymal stem cell products given the limitations associated with the application of MSCs. Exosomes are nanometer vesicles derived from MSCs that are used in cell-free therapy. Inflammatory environmental conditions, such as stimulation of Toll-like receptor 3 (TLR-3), has the ability to adjust the immune-regulating properties and anti-inflammatory function of mesenchymal stem cells and their exosomes. Galectins and hepatocyte growth factor (HGF) are known as immunomodulatory factors in mesenchymal stem cells. This study was designed to examine the expression of galectin-1, galectin-3, galectin-9, and HGF genes in exosomes isolated from human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) after stimulation with Poly (I:C) (Polyinosinic:polycytidylic acid sodium salt). Methods: To begin, the explant technique was used to extract mesenchymal stem cells from human umbilical cord Wharton's jelly. Then, the stem cells were stimulated using Poly (I:C) at three time intervals of 12, 24 and 48 h. Exosomes secreted from the supernatant of cells were extracted and exosome confirmation tests, including Scanning electron microscopy (SEM), Dynamic light scattering (DLS) and Flow cytometry were performed. Finally, the expression of galectin-1, galectin-3, galectin-9, and HGF genes in exosomes was evaluated by Real-Time PCR at three time intervals of 12, 24 and 48 h after stimulation. Results: The findings of our study indicated that following stimulation with Poly (I:C), the expression of galectin-9 and HGF (P < 0.05) genes was markedly higher than in the control group after 12 h. After 24 h, the expression of galectin-9 (P < 0.01), galectin-3 and HGF (P < 0.05) increased; the expression of galectin-1, galectin-3, (P < 0.05), galectin-9 and HGF genes (p < 0.01) significantly increased compared to the control group after 48 h. Conclusion: TLR3 stimulation can increase the expression of galectins and HGF genes in exosomes derived from hWJ-MSCs and may be improve the immunosuppressive abilities of exosomes.

4.
J Orthop Translat ; 48: 53-69, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39170747

ABSTRACT

Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.

5.
Transpl Immunol ; 86: 102107, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142540

ABSTRACT

The reportedly poor outcome of late-onset idiopathic pneumonia syndrome (IPS) necessitates new approaches to its treatment. A 55-year-old man who had undergone allogeneic hematopoietic cell transplantation (allo-HCT) for myelodysplastic syndrome 1 year ago developed dyspnea with acute skin graft-versus-host disease (GVHD) flare-up while tapering immunosuppressive agents. He presented with acute respiratory distress syndrome with ground-glass opacities in the right upper and left lower lobes. All infectious tests, including multiplex polymerase chain reaction of nasal wash, were negative, and broad-spectrum antibiotic therapy was refractory. The patient was diagnosed with late-onset IPS and was refractory to methylprednisolone pulse therapy. He then showed a favorable response to mesenchymal stem cell (MSC) infusion. After eight infusions of MSCs, he had no IPS recurrence for over one year. Recently, preclinical studies have reported the potential therapeutic utility of MSC infusion for treating IPS, and our case supports its potential for treating late-onset IPS.

6.
Front Bioeng Biotechnol ; 12: 1444363, 2024.
Article in English | MEDLINE | ID: mdl-39144480

ABSTRACT

Due to their unique properties, human mesenchymal stem/stromal cells (MSCs) possess tremendous potential in regenerative medicine, particularly in cell-based therapies where the multipotency and immunomodulatory characteristics of MSCs can be leveraged to address a variety of disease states. Although MSC-based cell therapeutics have emerged as one of the most promising medical treatments, the clinical translation is hampered by the variability of MSC-based cellular products caused by tissue source-specific differences and the lack of physiological cell culture approaches that closely mimic the human cellular microenvironment. In this study, a model for trilineage differentiation of primary adipose-, bone marrow-, and umbilical cord-derived MSCs into adipocytes, chondrocytes and osteoblasts was established and characterized. Differentiation was performed in spheroid culture, using hypoxic conditions and serum-free and antibiotics-free medium. This platform was characterized for spheroid diameter and trilineage differentiation capacity reflecting functionality of differentiated cells, as indicated by lineage-specific extracellular matrix (ECM) accumulation and expression of distinct secreted markers. The presented model shows spheroid growth during the course of differentiation and successfully supports trilineage differentiation for MSCs from almost all tissue sources except for osteogenesis of umbilical cord-derived MSCs. These findings indicate that this platform provides a suitable and favorable environment for trilineage differentiation of MSCs from various tissue sources. Therefore, it poses a promising model to generate highly relevant biological data urgently required for clinical translation and therefore might be used in the future to generate in vitro microtissues, building blocks for tissue engineering or as disease models.

7.
Front Pharmacol ; 15: 1423555, 2024.
Article in English | MEDLINE | ID: mdl-39144620

ABSTRACT

Osteoporosis (OP) is a common and complex chronic metabolic disease with an increasing incidence rate, which has markedly increased the human health burden worldwide. The predominant cause of OP is an imbalance between osteoblasts (OB) and osteoclasts (OC). Studies on the correlation between bone marrow-derived mesenchymal stem cells (BMSCs) and OP have indicated that BMSCs-induced OB differentiation is an important pathway for bone tissue renewal. Chinese medicinal herbs have been used for centuries to treat various types of OPs because they are safer and more effective. The in vivo and in vitro experiments have confirmed that these herbs or their primary phytochemicals may exert therapeutic effects by stimulating BMSCs differentiation, which restores OB and OP balance, inhibits adipocyte differentiation, exerts anti-inflammatory and antioxidant effects, regulates the immune system, etc. This review summarizes the research on how Chinese medicinal herbs or their primary phytochemicals treat OP by stimulating BMSC differentiation and provides a scientifically reliable basis and perspective for their future clinical application.

8.
Adv Healthc Mater ; : e2400524, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148284

ABSTRACT

Endometrial injury is a major cause of infertility and recurrent miscarriage. However, no clinically available methods currently exist to effectively repair the damaged endometrium. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for promoting tissue regeneration, yet a biocompatible scaffold capable of delivering MSCs and supporting their growth is needed. Herein, the study reports a peptide hydrogel scaffold, self-assembled from a peptide IVK8-RGD consisting of an ionic complementary peptide sequence IEVEIRVK and a bioactive sequence RGD, to load umbilical cord-derived mesenchymal stem cells (UC-MSCs). This peptide forms a hydrogel under the physiological condition through self-assembly, and the peptide hydrogel exhibits injectability and adhesiveness to uterus, making it suitable for endometrial repair. Importantly, this hydrogel supports the adhesion and proliferation of UC-MSCs in a 3D environment. In vivo experiments using rats with endometrial injury have shown that treatment with IVK8-RGD hydrogel loaded with UC-MSCs effectively restores endometrial thickness, inhibits fibrosis, and facilitates angiogenesis through activating Raf/MEK/ERK pathway, leading to significantly improved fertility and live birth rate. These findings demonstrate the potential of the UC-MSCs-loaded hydrogel in repairing damaged endometrium and may address the unmet clinical needs of treating recurrent miscarriage and infertility induced by endometrial damage.

9.
J Transl Med ; 22(1): 786, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174960

ABSTRACT

BACKGROUND: The effects of mesenchymal stem cells (MSCs) on heart failure (HF) have been controversial. This study was conducted to investigate whether the transplantation of MSCs after HF could help improve clinical outcomes and myocardial performance indices. METHODS: Using a systematic approach, electronic databases were searched for randomized controlled trials (RCTs), which evaluated the transplantation of MSCs after HF. The outcomes owf interest included clinical outcomes and myocardial function indices. We also assessed the role of age, cause of heart failure, cell origin, cell number, type of donor (autologous/allogeneic), and route of cell delivery on these outcomes. Using the random-effects method, a relative risk (RR) or mean difference (MD) and their corresponding 95% confidence intervals (CI) were pooled. RESULTS: Seventeen RCTs including 1684 patients (927 and 757 patients in the intervention and control arms, respectively) were enrolled. The RR (95% CI) of mortality was 0.78 (0.62; 0.99, p = 0.04) in the MSC group compared to the controls. HF rehospitalization decreased in the MSC group (RR = 0.85 (0.71-1.01), p = 0.06), but this was only significant in those who received autologous MSCs (RR = 0.67 (0.49; 0.90), p = 0.008). LVEF was significantly increased among those who received MSC (MD = 3.38 (1.89; 4.87), p < 0.001). LVESV (MD = -9.14 (-13.25; -5.03), p < 0.001), LVEDV (MD = -8.34 -13.41; -3.27), p < 0.001), and scar size (standardized MD = -0.32 (-0.60; -0.05), p = 0.02) were significantly decreased. NYHA class (MD = -0.19 (-0.34; -0.06), p = 0.006), BNP level (standardized MD = -0.28 (-0.50; -0.06), p = 0.01), and MLHFQ (MD = -11.55 (-16.77; -6.33), p = 0.005) significantly decreased and 6-min walk test significantly improved (MD = 36.86 (11.22; 62.50), p = 0.001) in the MSC group. Trials were not affected by the participants' etiology of heart failure, while trials with the autologous source of cells, MSC doses lower than 100 million cells, and intracoronary injection performed significantly better in some of the outcomes. CONCLUSION: Transplantation of MSCs for ischemic or dilated heart failure patients may reduce all-cause mortality and improve clinical condition. Moreover, this treatment would improve left ventricular function indices and reduce scar size.


Subject(s)
Heart Failure , Mesenchymal Stem Cell Transplantation , Randomized Controlled Trials as Topic , Humans , Heart Failure/physiopathology , Heart Failure/therapy , Treatment Outcome , Chronic Disease , Male , Publication Bias , Heart Function Tests , Middle Aged , Female
10.
BMC Vet Res ; 20(1): 375, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174969

ABSTRACT

BACKGROUND: The aim of this study was to evaluate the adverse effects of allogeneic mesenchymal stem cells (MSCs) transplanted via intravenous infusion in dogs and examine their safety. We performed a retrospective analysis of various clinical assessments, including physical examination, blood tests, and radiographs, and monitored the formation of neoplasms during a 6-month follow-up period in 40 client-owned dogs that received intravenous infusion of adipose tissue-derived MSCs (AT-MSCs) for the treatment of various underlying diseases between 2012 and 2018. RESULTS: No significant adverse effects of MSC therapy were detected by clinical assessment, blood tests, or radiographic examination in the 6-month follow-up period after the first MSC treatment. Additionally no new neoplasms were observed during this period. CONCLUSIONS: To our knowledge, this study is the first to evaluate the safety aspects (≥ 6 months) associated with intravenous allogeneic AT-MSC infusion. These results suggest that allogenic AT-MSC infusion could be a useful and relatively safe therapeutic approach in canines.


Subject(s)
Dog Diseases , Mesenchymal Stem Cell Transplantation , Animals , Dogs , Mesenchymal Stem Cell Transplantation/veterinary , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Female , Male , Retrospective Studies , Dog Diseases/therapy , Mesenchymal Stem Cells , Transplantation, Homologous/veterinary , Injections, Intravenous/veterinary , Adipose Tissue/cytology
11.
Adv Healthc Mater ; : e2401430, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177124

ABSTRACT

Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.

12.
Curr Genomics ; 25(4): 298-315, 2024.
Article in English | MEDLINE | ID: mdl-39156727

ABSTRACT

Background: Although the application of mesenchymal stem cells (MSCs) in engineered medicine, such as tissue regeneration, is well known, new evidence is emerging that shows that MSCs can also promote cancer progression, metastasis, and drug resistance. However, no large-scale cohort analysis of MSCs has been conducted to reveal their impact on the prognosis of cancer patients. Objectives: We propose the MSC score as a novel surrogate for poor prognosis in pan-cancer. Methods: We used single sample gene set enrichment analysis to quantify MSC-related genes into a signature score and identify the signature score as a potential independent prognostic marker for cancer using multivariate Cox regression analysis. TIDE algorithm and neural network were utilized to assess the predictive accuracy of MSC-related genes for immunotherapy. Results: MSC-related gene expression significantly differed between normal and tumor samples across the 33 cancer types. Cox regression analysis suggested the MSC score as an independent prognostic marker for kidney renal papillary cell carcinoma, mesothelioma, glioma, and stomach adenocarcinoma. The abundance of fibroblasts was also more representative of the MSC score than the stromal score. Our findings supported the combined use of the TIDE algorithm and neural network to predict the accuracy of MSC-related genes for immunotherapy. Conclusion: We comprehensively characterized the transcriptome, genome, and epigenetics of MSCs in pan-cancer and revealed the crosstalk of MSCs in the tumor microenvironment, especially with cancer-related fibroblasts. It is suggested that this may be one of the key sources of resistance to cancer immunotherapy.

13.
J Tissue Eng ; 15: 20417314241268189, 2024.
Article in English | MEDLINE | ID: mdl-39157647

ABSTRACT

Articular cartilage defect therapy is still dissatisfactory in clinic. Direct cell implantation faces challenges, such as tumorigenicity, immunogenicity, and uncontrollability. Extracellular vesicles (EVs) based cell-free therapy becomes a promising alternative approach for cartilage regeneration. Even though, EVs from different cells exhibit heterogeneous characteristics and effects. The aim of the study was to discover the functions of EVs from the cells during chondrogenesis timeline on cartilage regeneration. Here, bone marrow mesenchymal stem cells (BMSCs)-EVs, juvenile chondrocytes-EVs, and adult chondrocytes-EVs were used to represent the EVs at different differentiation stages, and fibroblast-EVs as surrounding signals were also joined to compare. Fibroblasts-EVs showed the worst effect on chondrogenesis. While juvenile chondrocyte-EVs and adult chondrocyte-EVs showed comparable effect on chondrogenic differentiation as BMSCs-EVs, BMSCs-EVs showed the best effect on cell proliferation and migration. Moreover, the amount of EVs secreted from BMSCs were much more than that from chondrocytes. An injectable decellularized extracellular matrix (dECM) hydrogel from small intestinal submucosa (SIS) was fabricated as the EVs delivery platform with natural matrix microenvironment. In a rat model, BMSCs-EVs loaded SIS hydrogel was injected into the articular cartilage defects and significantly enhanced cartilage regeneration in vivo. Furthermore, protein proteomics revealed BMSCs-EVs specifically upregulated multiple metabolic and biosynthetic processes, which might be the potential mechanism. Thus, injectable SIS hydrogel loaded with BMSCs-EVs might be a promising therapeutic way for articular cartilage defect.

14.
Front Cell Neurosci ; 18: 1421342, 2024.
Article in English | MEDLINE | ID: mdl-39157757

ABSTRACT

Introduction: Mesenchymal stem cells (MSCs) have long been postulated as an important source cell in regenerative medicine. During subculture expansion, mesenchymal stem cell (MSC) senescence diminishes their multi-differentiation capabilities, leading to a loss of therapeutic potential. Up to date, the extrachromosomal circular DNAs (eccDNAs) have been demonstrated to be involved in senescence but the roles of eccDNAs during MSC. Methods: Here we explored eccDNA profiles in human bone marrow MSCs (BM-MSCs). EccDNA and mRNA was purified and sequenced, followed by quantification and functional annotation. Moreover, we mapped our datasets with the downloading enhancer and transcription factor-regulated genes to explore the potential role of eccDNAs. Results: Sequentially, gene annotation analysis revealed that the majority of eccDNA were mapped in the intron regions with limited BM-MSC enhancer overlaps. We discovered that these eccDNA motifs in senescent BMSCs acted as motifs for binding transcription factors (TFs) of senescence-related genes. Discussion: These findings are highly significant for identifying biomarkers of senescence and therapeutic targets in mesenchymal stem cells (MSCs) for future clinical applications. The potential of eccDNA as a stable therapeutic target for senescence-related disorders warrants further investigation, particularly exploring chemically synthesized eccDNAs as transcription factor regulatory elements to reverse cellular senescence.

15.
Article in English | MEDLINE | ID: mdl-39159204

ABSTRACT

BACKGROUND: The efficacy and safety of mesenchymal stem cells (MSCs) in the treatment of ischemic stroke (IS) remains controversial. Therefore, this study aimed to evaluate the efficacy and safety of MSCs for IS. METHODS: A literature search until May 23, 2023, was conducted using PubMed, EMBASE, the Cochrane Library, and the Web of Science to identify studies on stem cell therapy for IS. Interventional and observational clinical studies of MSCs in patients with IS were included, and the safety and efficacy were assessed. Two reviewers extracted data and assessed the quality independently. The meta-analysis was performed using RevMan5.4. RESULTS: Fifteen randomized controlled trials (RCTs) and 15 non-randomized trials, including 1217 patients (624 and 593 in the intervention and control arms, respectively), were analyzed. MSCs significantly improved patients' activities of daily living according to the modified Rankin scale (mean difference [MD]: -0.26; 95% confidence interval [CI]: -0.50 to -0.01; P = .04) and National Institutes of Health Stroke Scale score (MD: -1.69; 95% CI: -2.66 to -0.73; P < .001) in RCTs. MSC treatment was associated with lower mortality rates in RCTs (risk ratio: 0.44; 95% CI: 0.28-0.69; P < .001). Fever and headache were among the most reported adverse effects. CONCLUSIONS: Based on our review, MSC transplantation improves neurological deficits and daily activities in patients with IS. In the future, prospective studies with large sample sizes are needed for stem cell studies in ischemic stroke. This meta-analysis has been registered at PROSPERO with CRD42022347156.

16.
Exp Eye Res ; 247: 110046, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39147191

ABSTRACT

Diabetic retinopathy, a leading cause of vision impairment, is marked by microvascular complications in the retina, including pericyte loss, a key indicator of early-stage disease. This study explores the therapeutic potential of exosomes derived from immortalized adipose-mesenchymal stem cells differentiated into pericyte-like cells in restoring the function of mouse retinal microvascular endothelial cells damaged by high glucose conditions, thereby contributing to the understanding of early diabetic retinopathy intervention strategies. To induce immortalized adipose-mesenchymal stem cells differentiation into pericyte-like cells, the study employed pericyte growth supplement. And confirmed the success of cell differentiation through the detection of α-smooth muscle actin and neural/glial antigen 2 expression by Western blot and immunofluorescence. Exosomes were isolated from the culture supernatant of immortalized adipose-mesenchymal stem cells using ultracentrifugation and characterized through Western blot for exosomal markers (CD9, CD81, and TSG101), transmission electron microscopy, and nanoparticle tracking analysis. Their influence on mouse retinal microvascular endothelial cells under high glucose stress was assessed through various functional assays. Findings revealed that exosomes, especially those from pericyte-like immortalized adipose-mesenchymal stem cells, were efficiently internalized by retinal microvascular endothelial cells and effectively counteracted high glucose-induced apoptosis. These exosomes also mitigated the rise in reactive oxygen species levels and suppressed the migratory and angiogenic properties of retinal microvascular endothelial cells, as demonstrated by Transwell and tube formation assays, respectively. Furthermore, they preserved endothelial barrier function, reducing hyperglycemia-induced permeability. At the molecular level, qRT-PCR analysis showed that exosome treatment modulated the expression of critical genes involved in angiogenesis (VEGF-A, ANG2, MMP9), inflammation (IL-1ß, TNF-α), gap junction communication (CX43), and cytoskeletal regulation (ROCK1), with the most prominent effects seen with exosomes from pericyte-like immortalized adipose-mesenchymal stem cells. High glucose increased the expression of pro-angiogenic and pro-inflammatory markers, which were effectively normalized post-exosome treatment. In conclusion, this research highlights the reparative capacity of exosomes secreted by pericyte-like differentiated immortalized adipose-mesenchymal stem cells in reversing the detrimental effects of high glucose on retinal microvascular endothelial cells. By reducing apoptosis, oxidative stress, inflammation, and abnormal angiogenic behavior, these exosomes present a promising avenue for therapeutic intervention in early diabetic retinopathy. Future studies can focus on elucidating the precise molecular mechanisms and exploring their translational potential in vivo.

17.
Sci Rep ; 14(1): 19273, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164295

ABSTRACT

Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs), specifically those preconditioned with deferoxamine (DFO) in canine adipose tissue-derived MSCs (cAT-MSCs), were explored for treating autoimmune diseases. This study assessed the effects of DFO-preconditioned EVs (EVDFO) in an experimental autoimmune encephalomyelitis (EAE) mouse model. cAT-MSCs were treated with DFO for 48 h, after which EVs were isolated. EAE mice received intranasal EV or EVDFO treatments and were euthanized following histopathologic analysis; RNA and protein expression levels were measured. Histologically, EV and EVDFO groups showed a significant reduction in inflammatory cell infiltration and demyelination. Immunofluorescence revealed increased CD206 and Foxp3 expression, indicating elevated M2 macrophages and regulatory T (Treg) cells, particularly in the EVDFO group. Treg cells also notably increased in the spleen of EVDFO -treated mice. STAT3 and pSTAT3 proteins were upregulated in the EAE groups compared to the naïve group. However, following EV treatment, STAT3 expression decreased compared to the EAE group, whereas pSTAT3 expression was similar in both the EV and EAE groups. In conclusion, EVDFO treatment resulted in reduced STAT3 expression, suggesting its role in T cell regulation and the potential of EVDFO in modulating the STAT3 pathway for reducing inflammation more effectively than non-preconditioned EVs.


Subject(s)
Deferoxamine , Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Inflammation , Mesenchymal Stem Cells , STAT3 Transcription Factor , T-Lymphocytes, Regulatory , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , STAT3 Transcription Factor/metabolism , Mice , Dogs , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Deferoxamine/pharmacology , Deferoxamine/therapeutic use , Mesenchymal Stem Cells/metabolism , Inflammation/pathology , Female , Disease Models, Animal
18.
J Orthop Translat ; 47: 235-248, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39161657

ABSTRACT

Background: Numerous approaches have been utilized to optimize mesenchymal stem cells (MSCs) performance in treating osteoarthritis (OA), however, the constrained diminished activity and chondrogenic differentiation capacity impede their therapeutic efficacy. Previous investigations have successfully shown that pretreatment with nanosecond pulsed electric fields (nsPEFs) significantly enhances the chondrogenic differentiation of MSCs. Therefore, this study aims to explore nsPEFs as a strategy to improve OA therapy by enhancing MSCs' activity and chondrogenic differentiation and also investigate its potential mechanism. Methods: In this study, a million MSCs were carefully suspended within a 0.4-cm gap cuvette and subjected to five pulses of nsPEFs (100 ns at 10 kV/cm, 1 Hz), with a 1-s interval between each pulse. A control group of MSCs was maintained without nsPEFs treatment for comparative analysis. nsPEFs were applied to regulate the MSCs performance and hinder OA progresses. In order to further explore the corresponding mechanism, we examined the changes of MSCs transcriptome after nsPEF pretreatment. Finally, we studied the properties of extracellular vesicles (EVs) secreted by MSCs affected by nsPEF and the therapeutic effect on OA. Results: We found that nsPEFs pretreatment promoted MSCs migration and viability, particularly enhancing their viability temporarily in vivo, which is also confirmed by mRNA sequencing analysis. It also significantly inhibited the development of OA-like chondrocytes in vitro and prevented OA progression in rat models. Additionally, we discovered that nsPEFs pretreatment reprogrammed MSC performance by enhancing EVs production (5.77 ± 0.92 folds), and consequently optimizing their therapeutic potential. Conclusions: In conclusion, nsPEFs pretreatment provides a simple and effective strategy for improving the MSCs performance and the therapeutic effects of MSCs for OA. EVs-nsPEFs may serve as a potent therapeutic material for OA and hold promise for future clinical applications. The translational potential of this article: This study indicates that MSCs pretreated by nsPEFs greatly inhibited the development of OA. nsPEFs pretreatment will be a promising and effective method to optimize the therapeutic effect of MSCs in the future.

19.
Osteoarthr Cartil Open ; 6(3): 100500, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39161739

ABSTRACT

Objectives: To assess the safety and efficacy of an allogeneic adipose-derived mesenchymal stem cell preparation (MAG200) in the treatment of knee osteoarthritis over 12 months. Design: A single-centre, double-blind, ascending dose, randomised controlled trial. 40 participants with moderate knee osteoarthritis were randomised to receive a single intra-articular injection of MAG200 (dose cohorts:10, 20, 50, 100 â€‹× â€‹106 â€‹cells) or placebo. Primary objectives were safety and efficacy according to a compound responder analysis of minimal clinically important difference in pain (numerical pain rating scale [NPRS]) and function (Knee Injury and Osteoarthritis Outcome Score - Function in Daily Living subscale [KOOSADL]) at month 12. Secondary efficacy outcomes included changes from baseline in patient reported outcome measures and evaluation of disease-modification using quantitative MRI. Results: Treatment was well tolerated with no treatment-related serious adverse events. MAG200 cohorts reported a greater proportion of responders than placebo and demonstrated clinical and statistically significant improvement in pain and clinically relevant improvement in all KOOS subscales. MAG200 demonstrated a reproducible treatment effect over placebo, which was clinically relevant for pain in the 10 â€‹× â€‹106 dose cohort (mean difference NPRS:-2.25[95%CI:-4.47,-0.03, p â€‹= â€‹0.0468]) and for function in the 20 â€‹× â€‹106 and 100 â€‹× â€‹106 dose cohorts (mean difference KOOSADL:10.12[95%CI:-1.51,21.76, p â€‹= â€‹0.0863] and 10.81[95%CI:-1.42,23.04, p â€‹= â€‹0.0810] respectively). A trend in disease-modification was observed with improvement in total knee cartilage volume in MAG200 10, 20, and 100 â€‹× â€‹106 dose cohorts, with progression of osteoarthritis in placebo, though this was not statistically significant. No clear dose response was observed. Conclusion: This early-phase study provides supportive safety and efficacy evidence to progress MAG200 to later-stage trial development. Trial registration: ACTRN12617001095358/ACTRN12621000622808.

20.
Periodontol 2000 ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164835

ABSTRACT

Orthodontic therapy applies forces to teeth, causing an inflammatory reaction in the periodontal ligament. This is repaired by remodeling of the periodontium, allowing tooth displacement. Although orthodontic therapy is mostly initiated during childhood and adolescence, the number of adults seeking this treatment is increasing as our society's esthetic awareness rises. However, adults may already have periodontal tissue abnormalities, rendering orthodontic treatment inefficient because a healthy periodontium is essential for success. Numerous risk factors have been linked to periodontal lesions, with orthodontic tooth movement possibly playing a minimal influence. Although such tissue damages are mostly of esthetic rather than functional concern for patients, restoration frequently requires invasive procedures. Autologous cells for the treatment of periodontal complications have grown in popularity as a less intrusive alternative. The present review analyzed the literature on the use of mesenchymal stem cells and oral tissue-derived fibroblasts for the healing of periodontal defects that may be related to orthodontic tooth movement. Furthermore, the advantages and challenges of the two cell types have been examined. Although the number of clinical studies is currently limited, our study demonstrates that oral fibroblasts have the potential to be the next emergent frontrunners for tissue engineering in the periodontium.

SELECTION OF CITATIONS
SEARCH DETAIL