Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
World J Hepatol ; 16(7): 990-994, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39086530

ABSTRACT

In this editorial, we offer commentary on the article published by Chen et al in a recent issue of the World Journal of Gastroenterology (2024; 30: 1346-1357). The study highlights a noteworthy association between persistently elevated, yet high-normal levels of alanine transaminase (ALT) and an escalated cumulative risk of developing metabolic dysfunction-associated fatty liver disease (MAFLD). MAFLD has emerged as a globally prevalent chronic liver condition, whose incidence is steadily rising in parallel with improvements in living standards. Left unchecked, MAFLD can progress from hepatic steatosis to liver fibrosis, cirrhosis, and even hepatocellular carcinoma, underscoring the importance of early screening and diagnosis. ALT is widely recognized as a reliable biomarker for assessing the extent of hepatocellular damage. While ALT levels demonstrate a significant correlation with the severity of fatty liver disease, they lack specificity. The article by Chen et al contributes to our understanding of the development of MAFLD by investigating the long-term implications of high-normal ALT levels. Their findings suggest that sustained elevation within the normal range is linked to an increased likelihood of developing MAFLD, emphasizing the need for closer monitoring and potential intervention in such cases.

2.
Front Cell Dev Biol ; 12: 1433857, 2024.
Article in English | MEDLINE | ID: mdl-39086662

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most common liver disorder worldwide, with an estimated global prevalence of more than 31%. Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as non-alcoholic steatohepatitis (NASH), is a progressive form of MASLD characterized by hepatic steatosis, inflammation, and fibrosis. This review aims to provide a comprehensive analysis of the extrahepatic manifestations of MASH, focusing on chronic diseases related to the cardiovascular, muscular, and renal systems. A systematic review of published studies and literature was conducted to summarize the findings related to the systemic impacts of MASLD and MASH. The review focused on the association of MASLD and MASH with metabolic comorbidities, cardiovascular mortality, sarcopenia, and chronic kidney disease. Mechanistic insights into the concept of lipotoxic inflammatory "spill over" from the MASH-affected liver were also explored. MASLD and MASH are highly associated (50%-80%) with other metabolic comorbidities such as impaired insulin response, type 2 diabetes, dyslipidemia, hypertriglyceridemia, and hypertension. Furthermore, more than 90% of obese patients with type 2 diabetes have MASH. Data suggest that in middle-aged individuals (especially those aged 45-54), MASLD is an independent risk factor for cardiovascular mortality, sarcopenia, and chronic kidney disease. The concept of lipotoxic inflammatory "spill over" from the MASH-affected liver plays a crucial role in mediating the systemic pathological effects observed. Understanding the multifaceted impact of MASH on the heart, muscle, and kidney is crucial for early detection and risk stratification. This knowledge is also timely for implementing comprehensive disease management strategies addressing multi-organ involvement in MASH pathogenesis.

3.
J Ultrasound Med ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115144

ABSTRACT

OBJECTIVE: To assess the reproducibility of six ultrasound (US)-determined shear wave (SW) viscoelastography parameters for assessment of mechanical properties of the liver in volunteers and patients with biopsy-proven metabolic dysfunction-associated steatotic liver disease (MASLD) or metabolic dysfunction-associated steatohepatitis (MASH). METHODS: This prospective, cross-sectional, institutional review board-approved study included 10 volunteers and 20 patients with MASLD or MASH who underwent liver US elastography twice, at least 2 weeks apart. SW speed (SWS), Young's modulus (E), shear modulus (G), SW attenuation (SWA), SW dispersion (SWD), and viscosity were computed from radiofrequency data recorded on a research US scanner. Linear mixed models were used to consider the sonographer on duty as a confounder. The reproducibility of measurements was assessed by intraclass correlation coefficient (ICC), coefficient of variation (CV), reproducibility coefficient (RDC), and Bland-Altman analyses. RESULTS: The sonographer performing the exam had no impact on viscoelastic parameters (P > .05). ICCs of SWS, E, G, SWA, SWD, and viscosity were, respectively, 0.89 (95% confidence intervals [CI]: 0.79-0.95), 0.81 (95% CI: 0.79-0.95), 0.90 (95% CI: 0.80-0.95), 0.96 (95% CI: 0.93-0.98), 0.78 (95% CI: 0.60-0.89), and 0.90 (95% CI: 0.80-0.95); CVs were 11.9, 23.3, 24.2, 10.1, 29.0, and 32.2%; RDCs were 33.0, 64.5, 66.9, 27.7, 80.3, and 89.2%, and Bland-Altman mean biases and 95% limits of agreement were -0.05 (-0.45, 0.35) m/s, -0.61 (-5.33, 4.10) kPa, -0.25 (-2.06, 1.56) kPa, -0.01 (-0.27, 0.26) Np/m/Hz, -0.09 (-7.09, 6.91) m/s/kHz, and -0.33 (-2.60, 1.94) Pa/s, between the two visits. CONCLUSION: US-determined viscoelastography parameters can be measured with high reproducibility and consistency between two visits 2 weeks apart on the same ultrasound machine.

4.
Gastro Hep Adv ; 3(1): 9-16, 2024.
Article in English | MEDLINE | ID: mdl-39132187

ABSTRACT

Background and Aims: Metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are pressing public health problems occurring alongside the rising prevalence of obesity and diabetes. This feasibility study explored the use of a novel prescription digital therapeutic (PDT) in this patient population. Methods: A prospective, open-label study was conducted at two hepatology clinics. Eligible patients had a baseline FibroScan controlled attenuation parameter >274 dB/m. Participants were given access to a PDT containing a novel form of cognitive behavioral therapy designed to treat cardiometabolic disease. Laboratory assessments, FibroScan, and magnetic resonance imaging proton density fat fraction (MRI-PDFF) imaging were conducted preintervention and postintervention. Results: Twenty-two participants were enrolled. Mean baseline fat fraction on MRI-PDFF was 18.7%. After the 90-day intervention, the mean relative reduction in MRI-PDFF was -16.2% (P = .011) in those with baseline PDFF ≥10%. Mean alanine transaminase decreased by -17.1 IU/L (P = .002). Participants achieved an average total body weight loss of -2.9% (P = .008) and controlled attenuation parameter score was reduced by -18.8 dB/m (P = .021). No serious or device-related adverse events were reported. An average improvement in health-related quality of life of +2.2 Healthy Days per month (P = .500) and high treatment satisfaction (mean Net Promoter Score of +75) were reported. Conclusion: After 90 days of digitally delivered cognitive behavioral therapy, improvements were observed in multiple endpoints without any adverse device effects. The safety, efficacy, and usability data observed strengthen the hypothesis that PDTs provide a scalable tool to address unmet behavioral treatment needs in metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis (ClinicalTrials.gov number, NCT05357248).

5.
Cell Metab ; 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116884

ABSTRACT

Urea cycle impairment and its relationship to obesity and inflammation remained elusive, partly due to the dramatic clinical presentation of classical urea cycle defects. We generated mice with hepatocyte-specific arginase 2 deletion (Arg2LKO) and revealed a mild compensated urea cycle defect. Stable isotope tracing and respirometry revealed hepatocyte urea and TCA cycle flux defects, impaired mitochondrial oxidative metabolism, and glutamine anaplerosis despite normal energy and glucose homeostasis during early adulthood. Yet during middle adulthood, chow- and diet-induced obese Arg2LKO mice develop exaggerated glucose and lipid derangements, which are reversible by replacing the TCA cycle oxidative substrate nicotinamide adenine dinucleotide. Moreover, serum-based hallmarks of urea, TCA cycle, and mitochondrial derangements predict incident fibroinflammatory liver disease in 106,606 patients nearly a decade in advance. The data reveal hierarchical urea-TCA cycle control via ARG2 to drive oxidative metabolism. Moreover, perturbations in this circuit may causally link urea cycle compromise to fibroinflammatory liver disease.

6.
Int J Biol Sci ; 20(10): 3823-3841, 2024.
Article in English | MEDLINE | ID: mdl-39113706

ABSTRACT

Macrophages show high plasticity and play a vital role in the progression of metabolic dysfunction-associated steatohepatitis (MASH). X-box binding protein 1 (XBP1), a key sensor of the unfolded protein response, can modulate macrophage-mediated pro-inflammatory responses in the pathogenesis of MASH. However, how XBP1 influences macrophage plasticity and promotes MASH progression remains unclear. Herein, we formulated an Xbp1 siRNA delivery system based on folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles (FT@XBP1) to explore the precise role of macrophage-specific Xbp1 deficiency in the progression of MASH. FT@XBP1 was specifically internalized into hepatic macrophages and subsequently inhibited the expression of spliced XBP1 both in vitro and in vivo. It promoted M1-phenotype macrophage repolarization to M2 macrophages, reduced the release of pro-inflammatory factors, and alleviated hepatic steatosis, liver injury, and fibrosis in mice with fat-, fructose- and cholesterol-rich diet-induced MASH. Mechanistically, FT@XBP1 promoted macrophage polarization toward the M2 phenotype and enhanced the release of exosomes that could inhibit the activation of hepatic stellate cells. A promising macrophage-targeted siRNA delivery system was revealed to pave a promising strategy in the treatment of MASH.


Subject(s)
Folic Acid , Macrophages , RNA, Small Interfering , X-Box Binding Protein 1 , Animals , Male , Mice , Endoplasmic Reticulum Stress/drug effects , Fatty Liver/metabolism , Folic Acid/chemistry , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Nanoparticles/chemistry , X-Box Binding Protein 1/metabolism
7.
Metabolism ; : 156000, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142602

ABSTRACT

The rising prevalence of obesity-related illnesses, such as metabolic steatotic liver disease (MASLD), represents a significant global public health concern. This disease affects approximately 30 % of the adult population and is the result of metabolic abnormalities rather than alcohol consumption. Additionally, MASLD is associated with an increased risk of cardiovascular disease (CVD), chronic liver disease, and a variety of cancers, particularly gastrointestinal cancers. Clonal hematopoiesis (CH) is a biological state characterized by the expansion of a population of blood cells derived from a single mutated hematopoietic stem cell. The presence of CH in the absence of a diagnosed blood disorder or cytopenia is known as clonal hematopoiesis of indeterminate potential (CHIP), which itself increases the risk of hematological malignancies and CVD. Steatotic liver disease may also complicate the clinical course of cancer patients receiving antineoplastic agents, a condition referred to as chemotherapy induced steatohepatitis (CASH). This review will present an outline of the various aspects of MASLD, including complications. Furthermore, it will summarize the existing knowledge on the emerging association between CHIP and MASLD and present the available data on patient cases with concurrent MASLD and hematological neoplasms. Finally, it will provide a brief overview of the chemotherapeutic drugs associated with CASH, the underlying pathophysiologic mechanisms and their clinical implications.

8.
Front Cell Dev Biol ; 12: 1431921, 2024.
Article in English | MEDLINE | ID: mdl-39071804

ABSTRACT

By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.

9.
Int Immunopharmacol ; 138: 112634, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38971107

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) is a severe metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by abnormal hepatic steatosis and inflammation. Previous studies have shown that Patchouli alcohol (PA), the primary component of Pogostemonis Herba, can alleviate digestive system diseases. However, its protection against MASH remains unclear. This study explored the protective effects and underlying mechanism of PA against high-fat diet-induced MASH in rats. Results showed that PA considerably reduced body weight, epididymal fat, and liver index and attenuated liver histological injury in MASH rats. PA alleviated hepatic injury by inhibiting steatosis and inflammation. These effects are associated with the improvement of SREBP-1c- and PPARα-mediated lipid metabolism and inhibition of the STING-signaling pathway-mediated inflammatory response. Moreover, PA-inhibited hepatic endoplasmic reticulum (ER) stress and mitochondrial dysfunction, reducing SREBP-1c and STING expressions and enhance PPARα expression. PA treatment had the strongest effect on the regulation of mitogen fusion protein 2 (Mfn2) in inhibiting mitochondrial dysfunction. Mfn2 is an important structural protein for binding ERs and mitochondria to form mitochondria-associated ER membranes (MAMs). MASH-mediated disruption of MAMs was inhibited after PA treatment-induced Mfn2 activation. Therefore, the pharmacological effect of PA on MASH is mainly attributed to the inhibition of MAM disruption-induced hepatic steatosis and inflammation. The findings of this study may have implications for MASH treatment that do not neglect the role of Mfn2-mediated MAMs.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , PPAR alpha , Rats, Sprague-Dawley , Sesquiterpenes , Animals , Male , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Diet, High-Fat/adverse effects , Rats , Sesquiterpenes/therapeutic use , Sesquiterpenes/pharmacology , PPAR alpha/metabolism , Endoplasmic Reticulum Stress/drug effects , Liver/pathology , Liver/drug effects , Liver/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Fatty Liver/drug therapy , Fatty Liver/metabolism , Fatty Liver/pathology , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Lipid Metabolism/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Inflammation/drug therapy , Pogostemon , Signal Transduction/drug effects
10.
BMC Prim Care ; 25(1): 265, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033284

ABSTRACT

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly referred to as nonalcoholic fatty liver disease, impacts 30% of the global population. This educational pilot focused on the role primary care providers may play in the delivery of guidelines-based metabolic dysfunction-associated steatohepatitis (MASH) care. OBJECTIVE: Accelerate the application of guidelines-based MASH care pathways to clinical workflows. METHODS: A panel of six hepatologists was convened in 2021 to develop the care pathway and the subsequent pilot occurred between 2022 - 2023. The pilot was conducted across three U.S. health systems: Boston Medical Center (Boston), Methodist Health System (Dallas), and Weill Cornell Medicine (New York). Clinicians were educated on the care pathway and completed baseline/follow-up assessments. 19 primary care clinicians participated in the educational pilot baseline assessment, nine primary care clinicians completed the two-month assessment, and 15 primary care clinicians completed the four-month assessment. The primary endpoint was to assess clinician-reported adherence to and satisfaction with the care pathway. The pilot was deemed exempt by the Western Consensus Group Institutional Review Board. RESULTS: At baseline, 38.10% (n = 8) of respondents felt they had received sufficient training on when to refer a patient suspected of metabolic dysfunction-associated liver disease to hepatology, and 42.86% (n = 9) had not referred any patients suspected of metabolic dysfunction-associated liver disease to hepatology within a month. At four months post-intervention, 79% (n = 15) of respondents agreed or strongly agreed they received sufficient training on when to refer a patient suspected of metabolic dysfunction-associated liver disease to hepatology, and there was a 25.7% increase in self-reported adherence to the institution's referral guidelines. Barriers to care pathway adherence included burden of manually calculating fibrosis-4 scores and difficulty ordering non-invasive diagnostics. CONCLUSIONS: With therapeutics anticipated to enter the market this year, health systems leadership must consider opportunities to streamline the identification, referral, and management of patients with metabolic dysfunction-associated steatohepatitis. Electronic integration of metabolic dysfunction-associated steatohepatitis care pathways may address implementation challenges.


Subject(s)
Critical Pathways , Non-alcoholic Fatty Liver Disease , Humans , Pilot Projects , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/metabolism , Primary Health Care , Guideline Adherence , Consensus , Male , Female , Practice Guidelines as Topic
11.
J Med Econ ; 27(1): 919-930, 2024.
Article in English | MEDLINE | ID: mdl-38953706

ABSTRACT

AIMS: This study aimed to assess and compare the health care resource utilization (HCRU) and medical cost of metabolic dysfunction-associated steatohepatitis (MASH) by disease severity based on Fibrosis-4 Index (FIB-4) score among US adults in a real-world setting. MATERIALS AND METHODS: This observational cohort study used claims data from the Healthcare Integrated Research Database (HIRD) to compare all-cause, cardiovascular (CV)-related, and liver-related HCRU, including hospitalization, and medical costs stratified by FIB-4 score among patients with MASH (identified by International Classification of Diseases, Tenth Revision, Clinical Modification [ICD-10-CM] code K75.81). Hospitalization and medical costs were compared by FIB-4 score using generalized linear regression with negative binomial and gamma distribution models, respectively, while controlling for confounders. RESULTS: The cohort included a total of 5,104 patients with MASH and comprised 3,162, 1,343, and 599 patients with low, indeterminate, and high FIB-4 scores, respectively. All-cause hospitalization was significantly higher in the high FIB-4 cohort when compared with the low FIB-4 reference after covariate adjustment (rate ratio, 1.63; 95% CI, 1.32-2.02; p < .0001). CV-related hospitalization was similar across all cohorts; however, CV-related costs were 1.26 times higher (95% CI, 1.11-1.45; p < .001) in the indeterminate cohort and 2.15 times higher (95% CI, 1.77-2.62; p < .0001) in the high FIB-4 cohort when compared with the low FIB-4 cohort. Patients with indeterminate and high FIB-4 scores had 2.97 (95% CI, 1.78-4.95) and 12.08 (95% CI, 7.35-19.88) times the rate of liver-related hospitalization and were 3.68 (95% CI, 3.11-4.34) and 33.73 (95% CI, 27.39-41.55) times more likely to incur liver-related costs, respectively (p < .0001 for all). LIMITATIONS: This claims-based analysis relied on diagnostic coding accuracy, which may not capture the presence of all diseases or all care received. CONCLUSIONS: High and indeterminate FIB-4 scores were associated with significantly higher liver-related clinical and economic burdens than low FIB-4 scores among patients with MASH.


MASH is a serious liver disease that can lead to fibrosis, cirrhosis, and other complications. There is a need to understand the impact of disease severity on the burden of MASH. Health care claims data were used to assess the use of medical resources, including hospitalization, and medical costs among patients with 3 different levels of severity of MASH, as assessed via FIB-4 score. FIB-4 is a widely available non-invasive marker of severity. Rates of all-cause, cardiovascular-related and liver-related hospitalization and medical costs were several-fold higher in patients with high disease severity of MASH than those with low disease severity of MASH.


Subject(s)
Hospitalization , Insurance Claim Review , Severity of Illness Index , Humans , Male , Female , Middle Aged , Hospitalization/economics , Hospitalization/statistics & numerical data , Adult , Aged , Health Expenditures/statistics & numerical data , United States , Fatty Liver/economics , Health Resources/statistics & numerical data , Health Resources/economics , Retrospective Studies , Cardiovascular Diseases/economics , Comorbidity , Metabolic Diseases
12.
J Hepatol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002641

ABSTRACT

BACKGROUND & AIMS: This was a randomized, double-blind, placebo-controlled study to assess the effects of pemvidutide, a glucagon-like peptide-1 (GLP-1)/glucagon dual receptor agonist, on liver fat content (LFC) in subjects with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Subjects with a BMI ≥28.0 kg/m2 and LFC ≥10% by magnetic resonance imaging-proton density fat fraction were randomized 1:1:1:1 to pemvidutide at 1.2 mg, 1.8 mg, or 2.4 mg, or placebo administered subcutaneously once weekly for 12 weeks. Participants were stratified according to a diagnosis of type 2 diabetes mellitus (T2DM). The primary efficacy endpoint was relative reduction (%) from baseline in LFC after 12 weeks of treatment. RESULTS: 94 subjects were randomized and dosed. Median baseline BMI and LFC across the study population were 36.2 kg/m2 and 20.6%; 29% of subjects had T2DM. At Week 12, relative reductions in LFC from baseline were (1.2 mg) 46.6% [95% CI -63.7 to -29.6], (1.8 mg) 68.5% [95% CI -84.4 to -52.5], and (2.4 mg) 57.1% [95% CI -76.1 to -38.1] versus 4.4% [95% CI -20.2 to 11.3] in placebo subjects (p <0.001 vs. placebo, all treatment groups), with 94.4% and 72.2% of subjects achieving 30% and 50% reductions in LFC and 55.6% achieving normalization (≤5% LFC) at the 1.8 mg dose. Maximal responses for weight loss (-4.3%; p <0.001), alanine aminotransferase (-13.8 IU/L; p = 0.029), and corrected cT1 (-75.9 ms; p = 0.002) were all observed at the 1.8 mg dose. Pemvidutide was well-tolerated at all doses with no severe or serious adverse events. CONCLUSIONS: In subjects with MASLD, weekly pemvidutide treatment yielded significant reductions in LFC, markers of hepatic inflammation, and body weight compared to placebo. IMPACT AND IMPLICATIONS: MASLD, and MASH, are strongly associated with overweight and obesity and it is believed that the excess liver fat associated with obesity is an important driver of these diseases. Glucagon-like peptide-1 receptor (GLP-1R) agonists elicit weight loss through centrally and peripherally mediated effects on appetite. Unlike GLP-1R agonists, glucagon receptor (GCGR) agonists act directly on the liver to stimulate fatty acid oxidation and inhibit lipogenesis, potentially providing a more potent mechanism for liver fat content (LFC) reduction than weight loss alone. This study demonstrated the ability of once-weekly treatment with pemvidutide, a dual GLP-1R/GCGR agonist, to significantly reduce LFC, hepatic inflammatory activity, and body weight, suggesting that pemvidutide may be an effective treatment for both MASH and obesity. CLINICAL TRIAL NUMBER: NCT05006885.

13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159532, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38981571

ABSTRACT

Hepatic adipogenesis has common mechanisms with adipocyte differentiation such as PPARγ involvement and the induction of adipose tissue-specific molecules. A previous report demonstrated that integrator complex subunit 6 (INTS6) is required for adipocyte differentiation. This study aimed to investigate INTS6 expression and its role in hepatic steatosis progression. The expression of INTS6 and PPARγ was examined in the liver of a mouse model of steatohepatitis and in paired liver biopsy samples from 11 patients with severe obesity and histologically proven metabolic dysfunction associated steatohepatitis (MASH) before and one year after bariatric surgery. To induce hepatocellular steatosis in vitro, an immortalized human hepatocyte cell line Hc3716 was treated with free fatty acids. In the steatohepatitis mouse model, we observed hepatic induction of INTS6, PPARγ, and adipocyte-specific genes. In contrast, ß-catenin which negatively regulates PPARγ was reduced. Biopsied human livers demonstrated a strong positive correlation (r2 = 0.8755) between INTS6 and PPARγ mRNA levels. After bariatric surgery, gene expressions of PPARγ, FABP4, and CD36 were mostly downregulated. In our in vitro experiments, we observed a concentration-dependent increase in Oil Red O staining in Hc3716 cells after treatment with the free fatty acids. Alongside this change, the expression of INTS6, PPARγ, and adipocyte-specific genes was induced. INTS6 knockdown using siRNA significantly suppressed cellular lipid accumulation together with induction of ß-catenin and PPARγ downregulation. Collectively, INTS6 expression closely correlates with PPARγ. INTS6 suppression significantly reduced hepatocyte steatosis via ß-catenin-PPARγ axis, indicating that INTS6 could be a novel therapeutic target for treating MASH.


Subject(s)
PPAR gamma , beta Catenin , PPAR gamma/metabolism , PPAR gamma/genetics , Humans , Animals , beta Catenin/metabolism , beta Catenin/genetics , Mice , Male , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , Female , Hepatocytes/metabolism , Hepatocytes/pathology , Cell Line , Mice, Inbred C57BL , Disease Models, Animal , Liver/metabolism , Liver/pathology , Middle Aged , Adult , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , CD36 Antigens/metabolism , CD36 Antigens/genetics
14.
Medicina (Kaunas) ; 60(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39064580

ABSTRACT

Background and Objectives: The incidence of metabolic dysfunction-associated steatohepatitis (MASH)-related hepatocellular carcinoma (HCC) is increasing worldwide, alongside the epidemic of obesity and metabolic syndrome. Based on preliminary reports regarding the potential association of HCC and periodontitis, this study aimed to analyze the involvement of periodontal bacteria as well as the oral and intestinal bacterial flora in MASH-related HCC (MASH-HCC). Materials and Methods: Forty-one patients with MASH and nineteen with MASH-HCC participated in the study, completing survey questionnaires, undergoing periodontal examinations, and providing samples of saliva, mouth-rinsed water, feces, and peripheral blood. The oral and fecal microbiome profiles were analyzed by 16S ribosomal RNA sequencing. Bayesian network analysis was used to analyze the causation between various factors, including MASH-HCC, examinations, and bacteria. Results: The genus Fusobacterium had a significantly higher occupancy rate (p = 0.002) in the intestinal microflora of the MASH-HCC group compared to the MASH group. However, Butyricicoccus (p = 0.022) and Roseburia (p < 0.05) had significantly lower occupancy rates. The Bayesian network analysis revealed the absence of periodontal pathogenic bacteria and enteric bacteria affecting HCC. However, HCC directly affected the periodontal bacterial species Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella intermedia in the saliva, as well as the genera Lactobacillus, Roseburia, Fusobacterium, Prevotella, Clostridium, Ruminococcus, Trabulsiella, and SMB53 in the intestine. Furthermore, P. gingivalis in the oral cavity directly affected the genera Lactobacillus and Streptococcus in the intestine. Conclusions: MASH-HCC directly affects periodontal pathogenic and intestinal bacteria, and P. gingivalis may affect the intestinal bacteria associated with gastrointestinal cancer.


Subject(s)
Carcinoma, Hepatocellular , Gastrointestinal Microbiome , Liver Neoplasms , Humans , Gastrointestinal Microbiome/physiology , Male , Pilot Projects , Female , Middle Aged , Cross-Sectional Studies , Carcinoma, Hepatocellular/microbiology , Liver Neoplasms/microbiology , Aged , Mouth/microbiology , Bayes Theorem , Fatty Liver/microbiology , Fatty Liver/complications , Adult , Saliva/microbiology
15.
Liver Int ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046166

ABSTRACT

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of chronic liver disease, characterized by fat accumulation, inflammation and fibrosis, which development depends on mitochondrial dysfunction and oxidative stress. Highly expressed in the liver during fasting, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates mitochondrial and oxidative metabolism. Given the relevant role of mitochondrial function in MASH, we investigated the relationship between PGC-1α and steatohepatitis. METHODS: We measured the hepatic expression of Pgc-1α in both MASH patients and wild-type mice fed a western diet (WD) inducing steatosis and fibrosis. We then generated a pure C57BL6/J strain loss of function mouse model in which Pgc-1α is selectively deleted in the liver and we fed these mice with a WD supplemented with sugar water that accurately mimics human MASH. RESULTS: We observed that the hepatic expression of Pgc-1α is strongly reduced in MASH, in both humans and mice. Moreover, the hepatic ablation of Pgc-1α promotes a considerable reduction of the hepatic mitochondrial respiratory capacity, setting up a bioenergetic harmful environment for liver diseases. Indeed, the lack of Pgc-1α decreases mitochondrial function and increases inflammation, fibrosis and oxidative stress in the scenario of MASH. Intriguingly, this profibrotic phenotype is not linked with obesity, insulin resistance and lipid disbalance. CONCLUSIONS: In a MASH model the hepatic ablation of Pgc-1α drives fibrosis independently from lipid and glucose metabolism. These results add a novel mechanistic piece to the puzzle of the specific and crucial role of mitochondrial function in MASH development.

16.
Liver Int ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963299

ABSTRACT

BACKGROUND AND AIMS: Lifestyle intervention is the mainstay of therapy for metabolic dysfunction-associated steatohepatitis (MASH), and liver fibrosis is a key consequence of MASH that predicts adverse clinical outcomes. The placebo response plays a pivotal role in the outcome of MASH clinical trials. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses can provide an automated quantitative assessment of fibrosis features on a continuous scale called qFibrosis. In this exploratory study, we used this approach to gain insight into the effect of lifestyle intervention-induced fibrosis changes in MASH. METHODS: We examined unstained sections from paired liver biopsies (baseline and end-of-intervention) from MASH individuals who had received either routine lifestyle intervention (RLI) (n = 35) or strengthened lifestyle intervention (SLI) (n = 17). We quantified liver fibrosis with qFibrosis in the portal tract, periportal, transitional, pericentral, and central vein regions. RESULTS: About 20% (7/35) and 65% (11/17) of patients had fibrosis regression in the RLI and SLI groups, respectively. Liver fibrosis tended towards no change or regression after each lifestyle intervention, and this phenomenon was more prominent in the SLI group. SLI-induced liver fibrosis regression was concentrated in the periportal region. CONCLUSION: Using digital pathology, we could detect a more pronounced fibrosis regression with SLI, mainly in the periportal region. With changes in fibrosis area in the periportal region, we could differentiate RLI and SLI patients in the placebo group in the MASH clinical trial. Digital pathology provides new insight into lifestyle-induced fibrosis regression and placebo responses, which is not captured by conventional histological staging.

17.
World J Gastroenterol ; 30(23): 2964-2980, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38946874

ABSTRACT

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, ß-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.


Subject(s)
Gastrointestinal Microbiome , Glucagon-Like Peptide-1 Receptor , Liver , Humans , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Gastrointestinal Microbiome/drug effects , Liver/metabolism , Liver/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Animals , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Metabolic Syndrome/microbiology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Incretins/therapeutic use , Incretins/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Glucagon-Like Peptide-1 Receptor Agonists
18.
J Pathol ; 264(1): 101-111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39022853

ABSTRACT

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.


Subject(s)
Disease Progression , Liver , Ornithine Decarboxylase , Putrescine , Animals , Humans , Putrescine/metabolism , Ornithine Decarboxylase/metabolism , Liver/metabolism , Liver/pathology , Male , Mice, Inbred C57BL , Fatty Liver/metabolism , Fatty Liver/pathology , Mice , Disease Models, Animal , Female , Middle Aged , Obesity/metabolism , Obesity/complications , Hep G2 Cells , Adult
19.
Mol Metab ; 87: 101997, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032642

ABSTRACT

OBJECTIVE: Currently, little is known about the mechanism(s) regulating global and specific protein translation during metabolic dysfunction-associated steatohepatitis (MASH; previously known as non-alcoholic steatohepatitis, NASH). METHODS: Unbiased label-free quantitative proteome, puromycin-labelling and polysome profiling were used to understand protein translation activity in vitro and in vivo. RESULTS: We observed a global decrease in protein translation during lipotoxicity in human primary hepatocytes, mouse hepatic AML12 cells, and livers from a dietary mouse model of MASH. Interestingly, proteomic analysis showed that Rplp1, which regulates ribosome and translation pathways, was one of the most downregulated proteins. Moreover, decreased Esrra expression and binding to the Rplp1 promoter, diminished Rplp1 gene expression during lipotoxicity. This, in turn, reduced global protein translation and Esrra/Rplp1-dependent translation of lysosome (Lamp2, Ctsd) and autophagy (sqstm1, Map1lc3b) proteins. Of note, Esrra did not increase its binding to these gene promoters or their gene transcription, confirming its regulation of their translation during lipotoxicity. Notably, hepatic Esrra-Rplp1-dependent translation of lysosomal and autophagy proteins also was impaired in MASH patients and liver-specific Esrra knockout mice. Remarkably, alternate day fasting induced Esrra-Rplp1-dependent expression of lysosomal proteins, restored autophagy, and reduced lipotoxicity, inflammation, and fibrosis in hepatic cell culture and in vivo models of MASH. CONCLUSIONS: Esrra regulation of Rplp1-mediated translation of lysosome/autolysosome proteins was downregulated during MASH. Alternate day fasting activated this novel pathway and improved MASH, suggesting that Esrra and Rplp1 may serve as therapeutic targets for MASH. Our findings also provided the first example of a nuclear hormone receptor, Esrra, to not only regulate transcription but also protein translation, via induction of Rplp1.


Subject(s)
Fasting , Lysosomes , Non-alcoholic Fatty Liver Disease , Animals , Mice , Humans , Lysosomes/metabolism , Fasting/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Mice, Inbred C57BL , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Male , Hepatocytes/metabolism , Protein Biosynthesis , Autophagy , Liver/metabolism , Mice, Knockout
20.
Quant Imaging Med Surg ; 14(7): 4659-4674, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39022255

ABSTRACT

Background: Bariatric surgery and lifestyle modification are important treatments for obesity, a risk factor for metabolic dysfunction-associated steatohepatitis (MASH). Studies have related weight reduction with changes in MASH, however, few have used imaging to investigate effects on liver health. We evaluated differences in liver response to obesity treatment using disease activity iron corrected T1 (cT1) and proton density fat fraction (PDFF) in patients with both obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Methods: Thirty-four patients with obesity and MASLD were recruited between March 2019 to February 2022 from a tertiary hospital in this longitudinal study; 13 underwent laparoscopic sleeve gastrectomy (LSG) alongside intraoperative liver biopsy, and 21 underwent a 4-month lifestyle modification program (LMP). All patients had multi-parametric magnetic resonance imaging (MRI) at baseline and 4-months. Diagnostic accuracy to identify MASH was assessed using the area under receiver operating characteristic (AUROC) curve. Results: Four (31%) of patients in the LSG group had MASH [non-alcoholic steatohepatitis (NAS) activity score ≥4] on liver biopsy. PDFF and cT1 correlated with the NAS activity score [r=0.81, 95% confidence interval (CI): 0.453 to 0.943, P<0.001] and (r=0.70, 95% CI: 0.228 to 0.907, P=0.008, respectively). There was good AUROC curve for cT1 (0.89, 95% CI: 0.67 to 1.00, P=0.031) and PDFF (0.83, 95% CI: 0.57 to 1.00, P=0.064) to identify MASH. At follow-up, weight reduction -22.8% (P=0.013) vs. -1.3% (P=0.262) resulted in cT1 reduction of -8.04% (864 ms, P=0.025) vs. -3.87% (907 ms, P=0.083) in the LSG vs. LMP group, respectively. Significant differences between interventions were observed for percentage PDFF decrease (-64.52% vs. -29.16%, P=0.001). Both biomarkers were significantly reduced in the LSG group (cT1 by -8.04%, P=0.025, PDFF by -64.52%, P=0.012), while only PDFF (-29.16%, P=0.012) was significantly reduced in the LMP group. Conclusions: MRI biomarkers may have some utility to monitor MASH following intervention in patients with obesity allowing objective comparison between intervention strategies. Compared to LMP, LSG was more effective in improving liver health.

SELECTION OF CITATIONS
SEARCH DETAIL