ABSTRACT
This article presents a checklist of metazoan parasites of snakes from Argentina, along with a comprehensive review of the relevant literature published between 1922 and June 2023, covering various aspects of interest. We compiled 34 species of metazoan endoparasites from 28 studies. The subclass Digenea showed the highest number of species (n = 22 species), followed by the phylum Nematoda (n = 8 species), and the subclass Pentastomida (n = 3 species and 1 taxa inquirenda). Dipsadidae was the family of snakes with the most species examined for metazoan endoparasites (n = 20 species). In contrast, Viperidae had the largest number of specimens surveyed (n = 343). Of 23 provinces, 15 (65.2%) presented at least one report of metazoan endoparasites in snakes. The northeastern provinces showed the highest richness of metazoan endoparasites and host diversity. Many articles focused on taxonomy, but studies on parasite ecology were not found. Although taxonomic accuracy was high in most reports, some records were correctly deposited in zoological collections or geo-referenced. This is the first attempt to include all groups of metazoan endoparasites of snakes from Argentina in a single checklist in the last century.
Subject(s)
Snakes , Animals , Snakes/parasitology , Argentina , Checklist , Parasites/classification , Parasites/isolation & purification , Nematoda/classification , Nematoda/isolation & purification , Parasitic Diseases, Animal/parasitology , Parasitic Diseases, Animal/epidemiology , BiodiversityABSTRACT
The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.
Subject(s)
Ciona intestinalis , Mitochondrial Proteins , Oxidative Phosphorylation , Animals , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/enzymology , Humans , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Subunits/metabolism , Protein Subunits/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/enzymology , Urochordata/genetics , Urochordata/enzymology , Electron Transport , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Phylogeny , Plant ProteinsABSTRACT
Fish parasite communities can be directly influenced by characteristics of host species. However, little is known about the host-parasite relationships in commercially important fish of the southeastern Atlantic. To address this knowledge gap, a comparative analysis of the parasite communities of three sympatric Clupeiformes was conducted. Cetengraulis edentulus (Engraulidae), Opisthonema oglinum (Clupeidae) and Sardinella brasiliensis (Clupeidae) were collected from an estuarine lagoon near Rio de Janeiro, Brazil. Prevalence, abundance and aggregation were estimated for infrapopulations; richness, diversity, evenness and dominance for infracommunities. The three component communities were compared using both quantitative and qualitative components. Canonical discriminant analysis was used to determine if a host population could be characterised by the component community of its parasites. Multivariate models revealed that host species, a proxy for diet and phylogenetic relationships, was the main factor influencing the composition of parasite infracommunities. Diet was found to be the main factor shaping the communities of endoparasites, in which digeneans were dominant and best indicator of host population. Ectoparasites (copepods, isopods and monogeneans) displayed strong host-specificity with some species restricted to a single host population. The similarity of the component communities of the two clupeid populations demonstrated the influence of host phylogeny. Parasite infracommunities exhibited low diversity and high dominance, with many taxa restricted to a single host species (specialists) and few occurring in more than one (generalists). Host phylogeny and by extension, diet, morphology and coevolution with parasites appear to be important factors in determining the host-parasite relationships of clupeiform fish in the southeastern Atlantic.
Subject(s)
Fish Diseases , Parasites , Animals , Brazil/epidemiology , Fish Diseases/epidemiology , Fish Diseases/parasitology , Fishes/parasitology , Host-Parasite Interactions , Parasites/genetics , PhylogenyABSTRACT
The decisive role of Embryology in understanding the evolution of animal forms is founded and deeply rooted in the history of science. It is recognized that the emergence of multicellularity would not have been possible without the formation of the first embryo. We speculate that biophysical phenomena and the surrounding environment of the Ediacaran ocean were instrumental in co-opting a neoplastic functional module (NFM) within the nucleus of the first zygote. Thus, the neoplastic process, understood here as a biological phenomenon with profound embryologic implications, served as the evolutionary engine that favored the formation of the first embryo and cancerous diseases and allowed to coherently create and recreate body shapes in different animal groups during evolution. In this article, we provide a deep reflection on the Physics of the first embryogenesis and its contribution to the exaptation of additional NFM components, such as the extracellular matrix. Knowledge of NFM components, structure, dynamics, and origin advances our understanding of the numerous possibilities and different innovations that embryos have undergone to create animal forms via Neoplasia during evolutionary radiation. The developmental pathways of Neoplasia have their origins in ctenophores and were consolidated in mammals and other apical groups.
ABSTRACT
The Neoproterozoic included changes in oceanic redox conditions, the configuration of continents and climate, extreme ice ages (Sturtian and Marinoan), and the rise of complex life forms. A much-debated topic in geobiology concerns the influence of atmospheric oxygenation on Earth and the origin and diversification of animal lineages, with the most widely popularized hypotheses relying on causal links between oxygen levels and the rise of animals. The vast majority of extant animals use aerobic metabolism for growth and homeostasis; hence, the binding and transportation of oxygen represent a vital physiological task. Considering the blood pigment hemocyanin (Hc) is present in sponges and ctenophores, and likely to be present in the common ancestor of animals, we investigated the evolution and date of Hc emergence using bioinformatics approaches on both transcriptomic and genomic data. Bayesian molecular dating suggested that the ancestral animal Hc gene arose approximately 881 Ma during the Tonian Period (1000-720 Ma), prior to the extreme glaciation events of the Cryogenian Period (720-635 Ma). This result is corroborated by a recently discovered fossil of a putative sponge ~890 Ma and modern molecular dating for the origin of metazoans of ~1,000-650 Ma (but does contradict previous inferences regarding the origin of Hc ~700-600 Ma). Our data reveal that crown-group animals already possessed hemocyanin-like blood pigments, which may have enhanced the oxygen-carrying capacity of these animals in hypoxic environments at that time or acted in the transport of hormones, detoxification of heavy metals, and immunity pathways.
Subject(s)
Fossils , Hemocyanins , Animals , Bayes Theorem , Oceans and Seas , Oxygen/analysis , PhylogenyABSTRACT
Animal tissues need to be properly oxygenated for carrying out catabolic respiration and, as such, natural selection has presumably favored special molecules that can reversibly bind and transport oxygen. Hemoglobins, hemocyanins, and hemerythrins (Hrs) fulfill this role, with Hrs being the least studied. Knowledge of oxygen-binding proteins is crucial for understanding animal physiology. Hr genes are present in the three domains of life, Archaea, Bacteria, and Eukaryota; however, within Animalia, Hrs has been reported only in marine species in six phyla (Annelida, Brachiopoda, Priapulida, Bryozoa, Cnidaria, and Arthropoda). Given this observed Hr distribution, whether all metazoan Hrs share a common origin is circumspect. We investigated Hr diversity and evolution in metazoans, by employing in silico approaches to survey for Hrs from of 120 metazoan transcriptomes and genomes. We found 58 candidate Hr genes actively transcribed in 36 species distributed in 11 animal phyla, with new records in Echinodermata, Hemichordata, Mollusca, Nemertea, Phoronida, and Platyhelminthes. Moreover, we found that "Hrs" reported from Cnidaria and Arthropoda were not consistent with that of other metazoan Hrs. Contrary to previous suggestions that Hr genes were absent in deuterostomes, we find Hr genes present in deuterostomes and were likely present in early bilaterians, but not in nonbilaterian animal lineages. As expected, the Hr gene tree did not mirror metazoan phylogeny, suggesting that Hrs evolutionary history was complex and besides the oxygen carrying capacity, the drivers of Hr evolution may also consist of secondary functional specializations of the proteins, like immunological functions.