Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37.090
Filter
1.
Front Microbiol ; 15: 1415931, 2024.
Article in English | MEDLINE | ID: mdl-38952450

ABSTRACT

Exploring the effects of seasonal variation on the gut microbiota of cold-water fish plays an important role in understanding the relationship between seasonal variation and cold-water fish. Gut samples of cold-water fish and environmental samples were collected during summer and winter from the lower reaches of the Yalong River. The results of the 16S rRNA sequencing showed that significant differences were identified in the composition and diversity of gut bacteria of cold-water fish. Co-occurrence network complexity of the gut bacteria of cold-water fish was higher in summer compared to winter (Sum: nodes: 256; edges: 20,450; Win: nodes: 580; edges: 16,725). Furthermore, from summer to winter, the contribution of sediment bacteria (Sum: 5.3%; Win: 23.7%) decreased in the gut bacteria of cold-water fish, while the contribution of water bacteria (Sum: 0%; Win: 27.7%) increased. The normalized stochastic ratio (NST) and infer community assembly mechanisms by phylogenetic bin-based null model analysis (iCAMP) showed that deterministic processes played a more important role than stochastic processes in the microbial assembly mechanism of gut bacteria of cold-water fish. From summer to winter, the contribution of deterministic processes to gut bacteria community assembly mechanisms decreased, while the contribution of stochastic processes increased. Overall, these results demonstrated that seasonal variation influenced the gut bacteria of cold-water fish and served as a potential reference for future research to understand the adaptation of fish to varying environments.

2.
Front Microbiol ; 15: 1381883, 2024.
Article in English | MEDLINE | ID: mdl-38952448

ABSTRACT

Biotic stresses, such as plant viruses, e.g., cotton leaf curl virus (CLCuV), can alter root-associated and leaf-associated microbial diversities in plants. There are complex ecological dynamics at play, with each microbe contributing to a multitude of biotic and abiotic interactions, thus deciding the stability of the plant's ecosystem in response to the disease. Deciphering these networks of interactions is a challenging task. The inferential research in microbiome is also at a nascent stage, often constrained by the underlying analytical assumptions and the limitations with respect to the depth of sequencing. There is also no real consensus on network-wide statistics to identify the influential microbial players in a network. Guided by the latest developments in network science, including recently published metrics such as Integrated View of Influence (IVI) and some other centrality measures, this study provides an exposé of the most influential nodes in the rhizospheric and phyllospheric microbial networks of the cotton leaf curl disease (CLCuD) susceptible, partially tolerant, and resistant cotton varieties. It is evident from our results that the CLCuD-resistant Gossypium arboreum possesses an equal share of keystone species, which helps it to withstand ecological pressures. In the resistant variety, the phyllosphere harbors the most influential nodes, whereas in the susceptible variety, they are present in the rhizosphere. Based on hubness score, spreading score, and IVI, the top 10 occurring keystone species in the FDH-228 (resistant) variety include Actinokineospora, Cohnella, Thermobacillus, Clostridium, Desulfofarcimen, and MDD-D21. Elusimicrobia, Clostridium-sensu-stricto_12, Candidatus woesebacteria, and Dyella were identified as the most influential nodes in the PFV-1 (partially tolerant) variety. In the PFV-2 (susceptible) variety, the keystone species were identified as Georginia, Nesterenkonia, Elusimicrobia MVP-88, Acetivibrio, Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-54. This concept deciphers the diseased and healthy plant's response to viral disease, which may be microbially mediated.

3.
Cureus ; 16(6): e61476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38952583

ABSTRACT

Microbial detection and antimicrobial resistance (AMR) surveillance are critical components of public health efforts to combat infectious diseases and preserve the efficacy of antimicrobial agents. While foundational in microbial identification, traditional cultural methods are often laborious, time-consuming, and limited in their ability to detect AMR markers. In response to these challenges, innovative paradigms have emerged, leveraging advances in molecular biology, genomics, proteomics, nanotechnology, and bioinformatics. This comprehensive review provides an overview of innovative approaches beyond traditional cultural methods for microbial detection and AMR surveillance. Molecular-based techniques such as polymerase chain reaction (PCR) and next-generation sequencing (NGS) offer enhanced sensitivity and specificity, enabling the rapid identification of microbial pathogens and AMR determinants. Mass spectrometry-based methods provide rapid and accurate detection of microbial biomarkers, including matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and biosensor technologies. Nanotechnology approaches, such as nanoparticle-based assays and nanopore sequencing, offer novel platforms for sensitive and label-free detection of pathogens and AMR markers. Embracing these innovative paradigms holds immense promise for improving disease diagnosis, antibiotic stewardship, and AMR containment efforts. However, challenges such as cost, standardization, and integration with existing healthcare systems must be addressed to realize the full potential of these technologies. By fostering interdisciplinary collaboration and innovation, we can strengthen our ability to detect, monitor, and combat AMR, safeguarding public health for generations.

4.
PeerJ ; 12: e17620, 2024.
Article in English | MEDLINE | ID: mdl-38952982

ABSTRACT

Background: This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods: Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results: The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.


Subject(s)
Fungicides, Industrial , Photosynthesis , Soil Microbiology , Fungicides, Industrial/pharmacology , Photosynthesis/drug effects , Microbiota/drug effects , Solanum melongena/microbiology , Plant Roots/microbiology , Soil/chemistry , RNA, Ribosomal, 16S/genetics
5.
Front Immunol ; 15: 1298971, 2024.
Article in English | MEDLINE | ID: mdl-38953021

ABSTRACT

Introduction: More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods: A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results: The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion: The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.


Subject(s)
Gastrointestinal Microbiome , Phenols , Humans , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Phenols/toxicity , Benzhydryl Compounds/toxicity , Fluorocarbons , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Coculture Techniques , Environmental Pollutants/toxicity , Bacteria/drug effects , Bacteria/immunology
6.
Front Pharmacol ; 15: 1395673, 2024.
Article in English | MEDLINE | ID: mdl-38953105

ABSTRACT

Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.

7.
Appl Environ Microbiol ; : e0027624, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953654

ABSTRACT

Tattooing and use of permanent makeup (PMU) have dramatically increased over the last decade, with a concomitant increase in ink-related infections. Studies have shown evidence that commercial tattoo and PMU inks are frequently contaminated with pathogenic microorganisms. Considering that tattoo inks are placed into the dermal layer of the skin where anaerobic bacteria can thrive and cause infections in low-oxygen environments, the prevalence of anaerobic and aerobic bacteria should be assessed in tattoo and PMU inks. In this study, we tested 75 tattoo and PMU inks using the analytical methods described in the FDA Bacteriological Analytical Manual Chapter 23 for the detection of both aerobic and anaerobic bacterial contamination, followed by 16S rRNA gene sequencing for microbial identification. Of 75 ink samples, we found 26 contaminated samples with 34 bacterial isolates taxonomically classified into 14 genera and 22 species. Among the 34 bacterial isolates, 19 were identified as possibly pathogenic bacterial strains. Two species, namely Cutibacterium acnes (four strains) and Staphylococcus epidermidis (two strains) were isolated under anaerobic conditions. Two possibly pathogenic bacterial strains, Staphylococcus saprophyticus and C. acnes, were isolated together from the same ink samples (n = 2), indicating that tattoo and PMU inks can contain both aerobic (S. saprophyticus) and anaerobic bacteria (C. acnes). No significant association was found between sterility claims on the ink label and the absence of bacterial contamination. The results indicate that tattoo and PMU inks can also contain anaerobic bacteria. IMPORTANCE: The rising popularity of tattooing and permanent makeup (PMU) has led to increased reports of ink-related infections. This study is the first to investigate the presence of both aerobic and anaerobic bacteria in commercial tattoo and PMU inks under aerobic and anaerobic conditions. Our findings reveal that unopened and sealed tattoo inks can harbor anaerobic bacteria, known to thrive in low-oxygen environments, such as the dermal layer of the skin, alongside aerobic bacteria. This suggests that contaminated tattoo inks could be a source of infection from both types of bacteria. The results emphasize the importance of monitoring these products for both aerobic and anaerobic bacteria, including possibly pathogenic microorganisms.

8.
Article in English | MEDLINE | ID: mdl-38953765

ABSTRACT

Microbial electrochemical technologies represent innovative approaches to contaminated soil and groundwater remediation and provide a flexible framework for removing organic and inorganic contaminants by integrating electrochemical and biological techniques. To simulate in situ microbial electrochemical treatment of groundwater plumes, this study investigates Cr(VI) reduction within a bioelectrochemical continuous flow (BECF) system equipped with soil-buried electrodes, comparing it to abiotic and open-circuit controls. Continuous-flow systems were tested with two chromium-contaminated solutions (20-50 mg Cr(VI)/L). Additional nutrients, buffers, or organic substrates were introduced during the tests in the systems. With an initial Cr(VI) concentration of 20 mg/L, 1.00 mg Cr(VI)/(L day) bioelectrochemical removal rate in the BECF system was observed, corresponding to 99.5% removal within nine days. At the end of the test with 50 mg Cr(VI)/L (156 days), the residual Cr(VI) dissolved concentration was two orders of magnitude lower than that in the open circuit control, achieving 99.9% bioelectrochemical removal in the BECF. Bacteria belonging to the orders Solirubrobacteriales, Gaiellales, Bacillales, Gemmatimonadales, and Propionibacteriales characterized the bacterial communities identified in soil samples; differently, Burkholderiales, Mycobacteriales, Cytophagales, Rhizobiales, and Caulobacterales characterized the planktonic bacterial communities. The complexity of the microbial community structure suggests the involvement of different microorganisms and strategies in the bioelectrochemical removal of chromium. In the absence of organic carbon, microbial electrochemical removal of hexavalent chromium was found to be the most efficient way to remove Cr(VI), and it may represent an innovative and sustainable approach for soil and groundwater remediation. Integr Environ Assess Manag 2024;00:1-17. © 2024 The Author(s). Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

9.
Bioelectrochemistry ; 160: 108769, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38955054

ABSTRACT

The structure and surface physicochemical properties of anode play a crucial role in microbial fuel cells (MFCs). To enhance the enrichment of exoelectrogen and facilitate extracellular electron transfer (EET), a three-dimensional macroporous graphene aerogel with polydopamine coating was successfully introduced to modify carbon brush (PGA/CB). The three-dimensional graphene aerogel (GA) with micrometer pores improved the space utilization efficiency of microorganisms. Polydopamine (PDA) coating enhanced the physicochemical properties of the electrode surface by introducing abundant functional groups and nitrogen-containing active sites. MFCs equipped with PGA/CB anodes (PGA/CB-MFCs) demonstrated superior power generation compared to GA/CB-MFCs and CB-MFCs (MFCs with GA/CB and CB anodes respectively), including a 23.0 % and 30.1 % reduction in start-up time, and an increase in maximum power density by 2.43 and 1.24 times respectively. The higher bioelectrochemical activity exhibited by the biofilm of PGA/CB anode and the promoted riboflavin secretion by PGA modification imply the enhanced EET efficiency. 16S rRNA high-throughput sequence analysis of the biofilms revealed successful enrichment of Geobacter on PGA/CB anodes. These findings not only validate the positive impact of the synergistic effects between GA and PDA in promoting EET and improving MFC performance but also provide valuable insights for electrode design in other bioelectrochemical systems.

10.
Front Microbiol ; 15: 1406661, 2024.
Article in English | MEDLINE | ID: mdl-38957617

ABSTRACT

In recent years, the rise in greenhouse gas emissions from agriculture has worsened climate change. Efficiently utilizing agricultural waste can significantly mitigate these effects. This study investigated the ecological benefits of returning peach branch waste to fields (RPBF) through three innovative strategies: (1) application of peach branch organic fertilizer (OF), (2) mushroom cultivation using peach branches as a substrate (MC), and (3) surface mulching with peach branches (SM). Conducted within a peach orchard ecosystem, our research aimed to assess these resource utilization strategies' effects on soil properties, microbial community, and carbon cycle, thereby contributing to sustainable agricultural practices. Our findings indicated that all RPBF treatments enhance soil nutrient content, enriching beneficial microorganisms, such as Humicola, Rhizobiales, and Bacillus. Moreover, soil AP and AK were observed to regulate the soil carbon cycle by altering the compositions and functions of microbial communities. Notably, OF and MC treatments were found to boost autotrophic microorganism abundance, thereby augmenting the potential for soil carbon sequestration and emission reduction. Interestingly, in peach orchard soil, fungal communities were found to contribute more greatly to SOC content than bacterial communities. However, SM treatment resulted in an increase in the presence of bacterial communities, thereby enhancing carbon emissions. Overall, this study illustrated the fundamental pathways by which RPBF treatment affects the soil carbon cycle, providing novel insights into the rational resource utilization of peach branch waste and the advancement of ecological agriculture.

11.
Bioresour Technol ; : 131061, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960005

ABSTRACT

Starch is an attractive feedstock in biorefinery processes, while the low natural conversion rate of most microorganisms limits its applications. Herein, starch metabolic pathway was systematically investigated using Bacillus licheniformis DW2 as the host organism. Initially, the effects of overexpressing amylolytic enzymes on starch hydrolysis were evaluated. Subsequently, the transmembrane transport system and intracellular degradation module were modified to accelerate the uptake of hydrolysates and their further conversion to glucose-6-phosphate. The DW2-derived strains exhibited robust growth in starch medium, and productivity of bacitracin and subtilisin were improved by 38.5% and 32.6%, with an 32.3% and 22.9% increase of starch conversion rate, respectively. Lastly, the employment of engineering strategies enabled another B. licheniformis WX-02 to produce poly-γ-glutamic acid from starch with a 2.1-fold increase of starch conversion rate. This study not only provided excellent B. licheniformis chassis for sustainable bioproduction from starch, but shed light on researches of substrate utilization.

12.
Sci Total Environ ; : 174341, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960166

ABSTRACT

Although benthic microbial community offers crucial insights into ecosystem services, they are underestimated for coastal sediment monitoring. Sepetiba Bay (SB) in Rio de Janeiro, Brazil, holds long-term metal pollution. Currently, SB pollution is majorly driven by domestic effluents discharge. Here, functional prediction analysis inferred from 16S rRNA gene metabarcoding data reveals the energy metabolism profiles of benthic microbial assemblages along the metal pollution gradient. Methanogenesis, denitrification, and N2 fixation emerge as dominant pathways in the eutrophic/polluted internal sector (Spearman; p < 0.05). These metabolisms act in the natural attenuation of sedimentary pollutants. The methane (CH4) emission (mcr genes) potential was found more abundant in the internal sector, while the external sector exhibited higher CH4 consumption (pmo + mmo genes) potential. Methanofastidiosales and Exiguobacterium, possibly involved in CH4 emission and associated with CH4 consumers respectively, are the main taxa detected in SB. Furthermore, SB exhibits higher nitrous oxide (N2O) emission potential since the norB/C gene proportions surpass nosZ up to 4 times. Blastopirellula was identified as the main responsible for N2O emissions. This study reveals fundamental contributions of the prokaryotic community to functions involved in greenhouse gas emissions, unveiling their possible use as sentinels for ecosystem monitoring.

13.
Int J Biol Macromol ; : 133575, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960239

ABSTRACT

Traditional plastics reshaped the society thanks to their brilliant properties and cut-price manufacturing costs. However, their protracted durability and limited recycling threaten the environment. Worthy alternatives seem to be polyhydroxyalkanoates, compostable biopolymers produced by several microbes. The most common 3-hydroxybutyrate homopolymer has limited applications calling for copolymers biosynthesis to enhance material properties. As a growing number of researches assess the discovery of novel comonomers, great endeavors are dedicated as well to copolymers production scale-up, where the choice of the microbial carbon source significantly affects the overall economic feasibility. Diving into novel metabolic pathways, engineered strains, and cutting-edge bioprocess strategies, this review aims to survey up-to-date publications about copolymers production, focusing primarily on precursors origins. Specifically, in the core of the review, copolymers precursors have been divided into three categories based on their economic value: the costliest structurally related ones, the structurally unrelated ones, and finally various low-cost waste streams. The combination of cheap biomasses, efficient pretreatment strategies, and robust microorganisms paths the way towards the development of versatile and circular polymers. Conceived to researchers and industries interested in tackling polyhydroxyalkanoates production, this review explores an angle often underestimated yet of prime importance: if PHAs copolymers offer advanced properties and sustainable end-of-life, the feedstock choice for their upstream becomes a major factor in the development of plastic substitutes.

14.
Environ Res ; : 119522, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960356

ABSTRACT

Constructed wetlands (CWs) have been widely used to ensure effective domestic wastewater treatment. Microorganisms-derived CWs have received extensive attention as they play a crucial role. However, research on the succession patterns of microbial communities and the influencing mechanisms of internal environmental factors throughout entire CW operations remains limited. In this context, three parallel-operated CWs were established in this study to assess the microbial communities and their influencing environmental factors at different substrate depths throughout the operation process using 16S rRNA gene high-throughput sequencing and metagenomic sequencing. The results showed gradual reproduction and accumulation of the microbial communities throughout the CW operation. Although gradual increases in the richness and diversity of the microbial communities were found, there were decreases in the functional expression of the dominant microbial species. The excessive accumulation of microorganisms will decrease the oxidation-reduction potential (ORP) within CWs and attenuate their influence on effluent.. Dissolved oxygen (DO) was the major factor influencing the microbial community succession over the CW operation. The main identified functional bacterial genera responsible for the ammonium oxidation, nitrification, and denitrification processes in the CWs were Nitrosospira, Nitrobacter, Nitrospira, Rhodanobacter, and Nakamurella. The narG gene was identified as a key functional gene linking various components of nitrogen cycling, while pH, electrical conductivity (EC), and ORP were the major environmental factors affecting the metabolism characteristics of nitrogen functional microorganisms. This study provides a theoretical basis for the effective regulation of related microbial communities to achieve long-term, efficient, and stable CW operations.

15.
J Appl Microbiol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960411

ABSTRACT

AIM: We investigated whether there was interspecies and intraspecies variation in spore germination of twelve strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS: Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. 100 beads from each combination (total of 1,200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS: Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant-growth promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.

16.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Article in English | MEDLINE | ID: mdl-38960484

ABSTRACT

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Subject(s)
Gastrointestinal Microbiome , Metalloproteins , Reactive Oxygen Species , Xenobiotics , Xenobiotics/metabolism , Humans , Metalloproteins/metabolism , Metalloproteins/chemistry , Metalloproteins/genetics , Reactive Oxygen Species/metabolism
17.
Nutr Rev ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960726

ABSTRACT

Microbial transglutaminase (mTG) is a frequently consumed processed food additive, and use of its cross-linked complexes is expanding rapidly. It was designated as a processing aid and was granted the generally recognized as safe (GRAS) classification decades ago, thus avoiding thorough assessment according to current criteria of toxicity and public health safety. In contrast to the manufacturer's declarations and claims, mTG and/or its transamidated complexes are proinflammatory, immunogenic, allergenic, pathogenic, and potentially toxic, hence raising concerns for public health. Being a member of the transglutaminase family and functionally imitating the tissue transglutaminase, mTG was recently identified as a potential inducer of celiac disease. Microbial transglutaminase and its docked complexes have numerous detrimental effects. Those harmful aspects are denied by the manufacturers, who claim the enzyme is deactivated when heated or by gastric acidity, and that its covalently linked isopeptide bonds are safe. The present narrative review describes the potential side effects of mTG, highlighting its thermostability and activity over a broad pH range, thus, challenging the manufacturers' and distributers' safety claims. The national food regulatory authorities and the scientific community are urged to reevaluate mTG's GRAS status, prioritizing public health protection against the possible risks associated with this enzyme and its health-damaging consequences.

18.
Int Ophthalmol ; 44(1): 308, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958789

ABSTRACT

PURPOSE: This study aimed to investigate the demographics, clinical characteristics, and management outcomes of patients with acute infectious endophthalmitis (AIE). METHODS: This retrospective chart review was conducted on all patients admitted with the clinical diagnosis of infectious endophthalmitis from 2017 to 2022. Demographic data, patients' clinical characteristics, the type of acute infectious endophthalmitis (post-operative, post-traumatic, bleb-associated, and endogenous endophthalmitis), the type of surgical procedure in the post-operative cases, the microbiologic analysis results of vitreous samples, therapeutic measures, and visual outcomes of patients were recorded. RESULTS: In this study, 182 participants, including 122 male (67%) and 60 (33%) female, were involved. The mean age of patients was 54.56 ± 21 years, with a range of 1-88 years old. The most prevalent type of AIE was post-operative (59.9%), followed by endogenous (19.2%), post-traumatic (17%), and bleb-associated (3.8%). The most common type of intraocular surgery in the post-operative subgroups of AIE patients was phacoemulsification (57.8%). The median (interquartile range) of the primary and final BCVA of patients was 1.5 (1.35, 1.85) and 0.65 (0.35, 1.35), respectively. Vitreous haziness grade (OR, 2.89; 95% CI, 1.11-5.74; p = 0.009) and the primary VA (OR, 60.34; 95% CI, 2.87-126.8; p = 0.008) revealed statistical significance for final vision loss. CONCLUSION: AIE is a devastating condition with poor visual outcomes, which presents with acute inflammatory signs and symptoms regardless of its type. However, prompt and appropriate treatment leads to visual recovery to a functional level in many patients.


Subject(s)
Endophthalmitis , Eye Infections, Bacterial , Visual Acuity , Humans , Endophthalmitis/diagnosis , Endophthalmitis/microbiology , Endophthalmitis/epidemiology , Endophthalmitis/therapy , Male , Female , Retrospective Studies , Middle Aged , Aged , Adult , Aged, 80 and over , Adolescent , Eye Infections, Bacterial/diagnosis , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/epidemiology , Eye Infections, Bacterial/therapy , Young Adult , Acute Disease , Child , Child, Preschool , Infant , Anti-Bacterial Agents/therapeutic use , Vitreous Body/microbiology , Vitreous Body/pathology , Vitrectomy/methods
19.
Glob Chang Biol ; 30(7): e17391, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946293

ABSTRACT

Heat released from soil organic carbon (SOC) decomposition (referred to as microbial heat hereafter) could alter the soil's thermal and hydrological conditions, subsequently modulate SOC decomposition and its feedback with climate. While understanding this feedback is crucial for shaping policy to achieve specific climate goal, it has not been comprehensively assessed. This study employs the ORCHIDEE-MICT model to investigate the effects of microbial heat, referred to as heating effect, focusing on their impacts on SOC accumulation, soil temperature and net primary productivity (NPP), as well as implication on land-climate feedback under two CO2 emissions scenarios (RCP2.6 and RCP8.5). The findings reveal that the microbial heat decreases soil carbon stock, predominantly in upper layers, and elevates soil temperatures, especially in deeper layers. This results in a marginal reduction in global SOC stocks due to accelerated SOC decomposition. Altered seasonal cycles of SOC decomposition and soil temperature are simulated, with the most significant temperature increase per unit of microbial heat (0.31 K J-1) occurring at around 273.15 K (median value of all grid cells where air temperature is around 273.15 K). The heating effect leads to the earlier loss of permafrost area under RCP8.5 and hinders its restoration under RCP2.6 after peak warming. Although elevated soil temperature under climate warming aligns with expectation, the anticipated accelerated SOC decomposition and large amplifying feedback on climate warming were not observed, mainly because of reduced modeled initial SOC stock and limited NPP with heating effect. These underscores the multifaceted impacts of microbial heat. Comprehensive understanding of these effects would be vital for devising effective climate change mitigation strategies in a warming world.


Subject(s)
Carbon , Climate Change , Hot Temperature , Soil , Soil/chemistry , Carbon/analysis , Soil Microbiology , Models, Theoretical , Seasons
20.
J Biomed Mater Res B Appl Biomater ; 112(7): e35436, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961592

ABSTRACT

Submicron-textured surfaces have been a promising approach to mitigate biofilm development and control microbial infection. However, the use of the single surface texturing approach is still far from ideal for achieving complete control of microbial infections on implanted biomedical devices. The use of a surface topographic modification that might improve the utility of standard antibiotic therapy could alleviate the complications of biofilms on devices. In this study, we characterized the biofilms of Staphylococcus aureus and Pseudomonas aeruginosa on smooth and submicron-textured polyurethane surfaces after 1, 2, 3, and 7 days, and measured the efficacy of common antibiotics against these biofilms. Results show that the submicron-textured surfaces significantly reduced biofilm formation and growth, and that the efficacy of antibiotics against biofilms grown on textured surfaces was improved compared with smooth surfaces. The antibiotic efficacy appears to be related to the degree of biofilm development. At early time points in biofilm formation, antibiotic treatment reveals reasonably good antibiotic efficacy against biofilms on both smooth and textured surfaces, but as biofilms mature, the efficacy of antibiotics drops dramatically on smooth surfaces, with lesser decreases seen for the textured surfaces. The results demonstrate that surface texturing with submicron patterns is able to improve the use of standard antibiotic therapy to treat device-centered biofilms by slowing the development of the biofilm, thereby offering less resistance to antibiotic delivery to the bacteria within the biofilm community.


Subject(s)
Anti-Bacterial Agents , Biofilms , Pseudomonas aeruginosa , Staphylococcus aureus , Surface Properties , Biofilms/drug effects , Biofilms/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyurethanes/chemistry , Polyurethanes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...