Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 632
Filter
1.
Environ Res ; : 119795, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39147187

ABSTRACT

Urban Heat Island (UHI) is acknowledged to generate harmful consequences on human health, and it is one of the main anthropogenic challenges to face in modern cities. Due to the urban dynamic complexity, a full microclimate decoding is required to design tailored mitigation strategies for reducing heat-related vulnerability. This study proposes a new method to assess intra-urban microclimate variability by combining for the first time two dedicated monitoring systems consisting of fixed and mobile techniques. Data from three fixed weather stations were used to analyze long-term trends, while mobile devices (a vehicle and a wearable) were used in short-term monitoring campaigns conducted in summer and winter to assess and geo-locate microclimate spatial variations. Additionally, data from mobile devices were used as input for Kriging interpolation in the urban area of Florence (Italy) as case study. Mobile monitoring sessions provided high-resolution spatial data, enabling the detection of hyperlocal variations in air temperature. The maximum air temperature amplitudes were verified with the wearable system: 3.3 °C in summer midday and 4.3 °C in winter morning. Physiological Equivalent Temperature (PET) demonstrated to be similar when comparing green areas and their adjacent built-up zone, showing up the microclimate mitigation contribution of greenery in its surrounding. Results also showed that mixing the two data acquisition and varied analysis techniques succeeded in investigating the UHI and the site-specific role of potential mitigation actions. Moreover, mobile dataset was reliable for elaborating maps by interpolating the monitored parameters. Interpolation results also demonstrated the possibility of optimizing mobile monitoring campaigns by focusing on targeted streets and times of day since interpolation errors increased by 10% only with reduced input samples. This allowed a better detection of the site-specific granularity, which is important for urban planning and policymaking, adaptation, and risk mitigation actions to overcome the UHI and anthropogenic climate change effects.

2.
Oecologia ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39073568

ABSTRACT

Urban environments are warmer than the rural surroundings, impacting plant phenotypic traits. When plants are present over areas with contrasted conditions such as along urbanization gradients, their phenotypes may differ, and these differences depend on different processes, including phenotypic plasticity, maternal environmental effects and genetic differentiation (local adaptation and/or genetic drift). Successful establishment of alien species along environmental gradients has been linked to high phenotypic plasticity and rapid evolutionary responses, which are easier to track for species with a known residence time. The mechanisms explaining trait variation in plants in urban versus rural microclimatic conditions have received little attention. Using the alien Veronica persica as model species, we measured leaf traits in urban and rural populations and performed a reciprocal common-garden experiment to study how germination, leaf, growth, and flowering traits varied in response to experimental microclimate (rural or urban) and population origin environment (rural or urban). Veronica persica displayed phenotypic plasticity in all measured traits, with reduced germination, development, and flowering under urban microclimate which suggests more stressful growing conditions in the urban than in the rural microclimate. No significant effect of the rural or urban origin environment was detected, providing no evidence for local adaptation to urban or rural environments. Additionally, we found limited signs of maternal environmental effects. We noted the importance of the mother plant and the population identities suggesting genetically based differences. Our results indicate that urban environments are more hostile than rural ones, and that V. persica does not show any adaptation to urban environments despite genetic differences between populations.

3.
Microorganisms ; 12(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39065220

ABSTRACT

Fungi have always posed an unquestionable threat to heritage collections worldwide. Now, in a future of climate change, biological risk factors may have to be considered even more than before. Models and simulations to assess possible impacts a changing outdoor climate will have on indoor environments and, in turn, on biodeterioration are still underdeveloped and require a more substantial data basis. This study aimed at filling some of these knowledge gaps through a broad-based approach combining microclimatic and microbiological monitoring in four historic libraries in Austria with an uncontrolled indoor climate: Altenburg Abbey, Melk Abbey, Klosterneuburg Monastery and the Capuchin Monastery in Vienna. Data were generated from thermohygrometric sensors, cultivation-dependent air- and surface sampling and further surface dust sampling for cultivation-independent analyses. Results gave insights on the status quo of microbiological loads in the libraries and outdoor-indoor relationships. Influences of the geographic location and room-use on corresponding indoor fungal profiles were identified. Lower fungal diversities were found at the most rural site with the strongest climatic fluctuations and extreme values than in the most urban, sheltered library with a very stable climate. Further, the humidity-stabilizing potential of large collections of hygroscopic materials, such as books, was also examined. Implications for a sustainable approach to prevent future biodeterioration are discussed, supporting the long-term preservation of these valuable historic collections.

4.
Integr Comp Biol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39081076

ABSTRACT

In the era of big data, ecological research is experiencing a transformative shift, yet advancements in thermal ecology and the study of animal responses to climate conditions remain limited. This review discusses how big data analytics and artificial intelligence (AI) can significantly enhance our understanding of microclimates and animal behaviors under changing climatic conditions. We explore AI's potential to refine microclimate models and analyze data from advanced sensors and camera technologies, which capture detailed, high-resolution information. This integration allows researchers to dissect complex ecological and physiological processes with unprecedented precision. We describe how AI can enhance microclimate modeling through improved bias correction and downscaling techniques, providing more accurate estimates of the conditions that animals face under various climate scenarios. Additionally, we explore AI's capabilities in tracking animal responses to these conditions, particularly through innovative classification models that utilize sensors such as accelerometers and acoustic loggers. Moreover, the widespread usage of camera traps can benefit from AI-driven image classification models to accurately identify thermoregulatory responses, such as shade usage and panting. AI is therefore instrumental in monitoring how animals interact with their environments, offering vital insights into their adaptive behaviors. Finally, we discuss how these advanced data-driven approaches can inform and enhance conservation strategies. Detailed mapping of microhabitats essential for species survival under adverse conditions can guide the design of climate-resilient conservation and restoration programs that prioritize habitat features crucial for biodiversity resilience. In conclusion, the convergence of AI, big data, and ecological science heralds a new era of precision conservation, essential for addressing the global environmental challenges of the 21st century.

5.
Sci Rep ; 14(1): 16135, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997416

ABSTRACT

While the succession of terrestrial plant communities is well studied, less is known about succession on dead wood, especially how it is affected by environmental factors. While temperate forests face increasing canopy mortality, which causes considerable changes in microclimates, it remains unclear how canopy openness affects fungal succession. Here, we used a large real-world experiment to study the effect of closed and opened canopy on treatment-based alpha and beta fungal fruiting diversity. We found increasing diversity in early and decreasing diversity at later stages of succession under both canopies, with a stronger decrease under open canopies. However, the slopes of the diversity versus time relationships did not differ significantly between canopy treatments. The community dissimilarity remained mainly stable between canopies at ca. 25% of species exclusively associated with either canopy treatment. Species exclusive in either canopy treatment showed very low number of occupied objects compared to species occurring in both treatments. Our study showed that canopy loss subtly affected fungal fruiting succession on dead wood, suggesting that most species in the local species pool are specialized or can tolerate variable conditions. Our study indicates that the fruiting of the fungal community on dead wood is resilient against the predicted increase in canopy loss in temperate forests.


Subject(s)
Biodiversity , Forests , Fungi , Wood , Wood/microbiology , Trees/microbiology , Fruiting Bodies, Fungal/growth & development
6.
Food Chem ; 460(Pt 1): 140508, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39047494

ABSTRACT

This study aimed to clarify how microclimate diversity altered volatilomics in Cabernet Sauvignon grapes and wines. Four row-oriented vineyards were selected, and metabolites of grapes and wines were determined from separate canopy sides. Results showed that shaded sides received 59% of the solar radiation and experienced 55% of the high-temperature days compared to the exposed sides on average. Grape primary metabolites were slightly affected by the canopy side. Herbaceous aromas were consistently more abundant in grapes and wines from shaded clusters. Heat-stressed canopy sides accelerated terpenoid loss and increased norisoprenoid levels in grapes, while ß-damascenone in north-side wines was 13%-32% higher than that in south-side wines of the east-west vineyard. The northeast-southwest vineyard showed the most notable variation in taste and aroma sensory scores, with four parameters significantly different. There were 32 aroma series identified in wines, and banana, pineapple, and strawberry odors were highly correlated with aroma sensory score.

7.
Food Res Int ; 191: 114644, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059899

ABSTRACT

With the increasing threat of global warming, the cultivation of wine grapes in high-altitude with cool-temperature climates has become a viable option. However, the precise mechanism of environmental factors regulating grape quality remains unclear. Therefore, principal component analysis (PCA) was utilized to evaluate the quality of wine grape (Cabernet Sauvignon) in six high-altitude wine regions (1987, 2076, 2181, 2300, 2430, 2540 m). Structural equation modeling (SEM) was applied for the first time to identify the environmental contribution to grape quality. The wine grape quality existed spatial variation in basic physical attributes (BP), basic chemical compositions (BC), phenolic compounds (PC) and individual phenols. The PCA models (variance > 85 %) well separate wine grapes from the six altitudes into three groups according to scores. The score of grapes at 2300 m was significantly high (3.83), and the grapes of 2540 m showed a significantly low score (1.46). Subsequently, the malic acid, total tannin, total phenol, titratable acid, total anthocyanin, and skin thickness were the main differing indexes. SEM model characterized the relational network of differing indexes and microclimatic factors, which showed that temperature and extreme air temperature had a greater direct effect on differing indexes than light, with great contributions from soil temperature (0.98**), day-night temperature difference (0.825*), and day air temperature (0.789**). Our findings provided a theoretical basis for grape cultivation management in high-altitude regions and demonstrated that the SEM model is a useful tool for exploring the relationship between climate and fruit quality.


Subject(s)
Altitude , Microclimate , Principal Component Analysis , Vitis , Wine , Vitis/chemistry , Wine/analysis , Phenols/analysis , Temperature , Fruit/chemistry , Anthocyanins/analysis , Tannins/analysis , Malates/analysis
8.
Glob Chang Biol ; 30(7): e17443, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39054811

ABSTRACT

Light availability profoundly influences plant communities, especially below dense tree canopies in forests. Canopy disturbances, altering forest floor light conditions, together with other environmental changes such as climate change, nitrogen deposition and legacy effects from previous land-use will simultaneously impact forest understorey communities. Yet, knowledge on the individual effects of these drivers and their potential interactions remains scarce. Here we performed a forest mesocosm experiment to assess the influence of warming, illumination (simulating canopy opening), nitrogen deposition and soil land-use history (comparing ancient and post-agricultural forest soil) on understorey community composition trajectories over a 7-year period. Strikingly, understorey communities primarily evolved in response to the deeply shaded ambient forest conditions, with experimental treatments exerting only secondary influences. The overruling trajectory steered all mesocosms towards slow-colonizing forest specialist communities dominated by spring geophytes with lower nutrient-demand. The illumination treatment and, to a lesser extent, warming and agricultural land-use legacy slowed down this trend by advancing fast-growing resource-acquisitive generalist species. Warm ambient temperatures induced thermophilization of plant communities in all treatments, including control plots, towards higher dominance of warm-adapted species. Nitrogen addition accelerated this thermophilization process and increased the community light-demand signature. Land-use legacy effects were limited in our study. Our findings underscore the essential role of limited light availability in preserving forest specialists in understorey communities and highlight the importance of maintaining a dense canopy cover to attenuate global change impacts. It is crucial to integrate this knowledge in forest management adaptation to global change, particularly in the face of increasing demands for wood and wood products and intensified natural canopy disturbances.


Subject(s)
Climate Change , Forests , Nitrogen , Soil , Soil/chemistry , Nitrogen/analysis , Light , Trees/growth & development , Temperature , Agriculture/methods
9.
Glob Chang Biol ; 30(7): e17424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39044435

ABSTRACT

Extreme droughts are globally increasing in frequency and severity. Most research on drought in forests focuses on the response of trees, while less is known about the impacts of drought on forest understory species and how these effects are moderated by the local environment. We assessed the impacts of a 45-day experimental summer drought on the performance of six boreal forest understory plants, using a transplant experiment with rainout shelters replicated across 25 sites. We recorded growth, vitality and reproduction immediately, 2 months, and 1 year after the simulated drought, and examined how differences in ambient soil moisture and canopy cover among sites influenced the effects of drought on the performance of each species. Drought negatively affected the growth and/or vitality of all species, but the effects were stronger and more persistent in the bryophytes than in the vascular plants. The two species associated with older forests, the moss Hylocomiastrum umbratum and the orchid Goodyera repens, suffered larger effects than the more generalist species included in the experiment. The drought reduced reproductive output in the moss Hylocomium splendens in the next growing season, but increased reproduction in the graminoid Luzula pilosa. Higher ambient soil moisture reduced some negative effects of drought on vascular plants. Both denser canopy cover and higher soil moisture alleviated drought effects on bryophytes, likely through alleviating cellular damage. Our experiment shows that boreal understory species can be adversely affected by drought and that effects might be stronger for bryophytes and species associated with older forests. Our results indicate that the effects of drought can vary over small spatial scales and that forest landscapes can be actively managed to alleviate drought effects on boreal forest biodiversity. For example, by managing the tree canopy and protecting hydrological networks.


Subject(s)
Droughts , Forests , Seasons , Soil , Soil/chemistry , Water/analysis , Taiga , Reproduction , Trees/growth & development
10.
J Environ Manage ; 365: 121494, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897079

ABSTRACT

Floating photovoltaics (FPV) are an emerging renewable energy technology. Although they have received extensive attention in recent years, understanding of their environmental impacts is limited. To address this knowledge gap, we measured water temperature and meteorological parameters for six months under FPV arrays and in the control open water site and constructed a numerical model reflecting the water energy balance. Our results showed that FPV arrays caused diurnal variation in water temperature and microclimate. Specifically, we found that FPV had a cooling effect on their host waterbody during the daytime and a heat preservation effect at night, reducing diurnal variation. The diel oscillation of water temperature below FPV panels lagged behind that of open waters by approximately two hours. The microclimate conditions below FPV panels also changed, with wind speed decreasing by 70%, air temperature increasing during the daytime (averaging +2.01°C) and decreasing at night (averaging -1.27°C). Notably, the trend in relative humidity was the opposite (-3.72%, +14.43%). Correlation analysis showed that the degree of water temperature affected by FPV was related to local climate conditions. The numerical model could capture the energy balance characteristics with a correlation coefficient of 0.80 between the simulated and actual data. The shortwave radiation and latent heat flux below FPV panels was significantly reduced, and the longwave radiation emitted by FPV panels became one of the heat sources during the daytime. The combined variations of these factors dominated the water energy balance below FPV panels. The measured data and simulation results serve as a foundation for evaluating the impact of FPV systems on water temperature, energy budget, and aquatic environment, which would also provide a more comprehensive understanding of FPV systems.


Subject(s)
Temperature , Water , Models, Theoretical
11.
Microbiol Spectr ; 12(7): e0061024, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38842309

ABSTRACT

Host-associated microbiomes are shaped by both their environment and host genetics, and often impact host performance. The scale of host genetic variation important to microbes is largely unknown yet fundamental to the community assembly of host-associated microbiomes, with implications for the eco-evolutionary dynamics of microbes and hosts. Using Ipomoea hederacea, ivyleaf morning glory, we generated matrilines differing in quantitative genetic variation and leaf shape, which is controlled by a single Mendelian locus. We then investigated the relative roles of Mendelian and quantitative genetic variation in structuring the leaf microbiome and how these two sources of genetic variation contributed to microbe heritability. We found that despite large effects of the environment, both Mendelian and quantitative genetic host variation contribute to microbe heritability and that the cumulative small effect genomic differences due to matriline explained as much or more microbial variation than a single large effect Mendelian locus. Furthermore, our results are the first to suggest that leaf shape itself contributes to variation in the abundances of some phyllosphere microbes.IMPORTANCEWe investigated how host genetic variation affects the assembly of Ipomoea hederacea's natural microbiome. We found that the genetic architecture of leaf-associated microbiomes involves both quantitative genetic variation and Mendelian traits, with similar contributions to microbe heritability. The existence of Mendelian and quantitative genetic variation for host-associated microbes means that plant evolution at the leaf shape locus or other quantitative genetic loci has the potential to shape microbial abundance and community composition.


Subject(s)
Genetic Variation , Ipomoea , Microbiota , Plant Leaves , Plant Leaves/microbiology , Plant Leaves/genetics , Microbiota/genetics , Ipomoea/microbiology , Ipomoea/genetics , Bacteria/genetics , Bacteria/classification , Quantitative Trait Loci
12.
Plant Environ Interact ; 5(3): e10153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863691

ABSTRACT

Macroclimate drives vegetation distributions, but fine-scale topographic variation can generate microclimate refugia for plant persistence in unsuitable areas. However, we lack quantitative descriptions of topography-driven microclimatic variation and how it shapes forest structure, diversity, and composition. We hypothesized that topographic variation and the presence of the forest overstory cause spatiotemporal microclimate variation affecting tree performance, causing forest structure, diversity, and composition to vary with topography and microclimate, and topography and the overstory to buffer microclimate. In a 20.2-ha inventory plot in the North American Great Plains, we censused woody stems ≥1 cm in diameter and collected detailed topographic and microclimatic data. Across 59-m of elevation, microclimate covaried with topography to create a sharp desiccation gradient, and topography and the overstory buffered understory microclimate. The magnitude of microclimatic variation mirrored that of regional-scale variation: with increasing elevation, there was a decrease in soil moisture corresponding to the difference across ~2.1° of longitude along the east-to-west aridity gradient and an increase in air temperature corresponding to the difference across ~2.7° of latitude along the north-to-south gradient. More complex forest structure and higher diversity occurred in moister, less-exposed habitats, and species occupied distinct topographic niches. Our study demonstrates how topographic and microclimatic gradients structure forests in putative climate-change refugia, by revealing ecological processes enabling populations to be maintained during periods of unfavorable macroclimate.

13.
Article in English | MEDLINE | ID: mdl-38856004

ABSTRACT

Tree hollows support a specialised species-rich fauna. We review the habitat requirements of saproxylic (= deadwood dependent) invertebrates which occupy tree hollows. We focus on studies quantifying relationships between species occurrence patterns and characteristics of tree hollows, hollow trees, and the surrounding landscape. We also explore the processes influencing species occurrence patterns by reviewing studies on the spatio-temporal dynamics of populations, including their dispersal and genetic structure. Our literature search in the database Scopus identified 52 relevant publications, all of which were studies from Europe. The dominant taxonomic group studied was beetles. Invertebrates in hollow trees were often more likely to be recorded in trees with characteristics reflecting a large amount of resources or a stable and warm microclimate, such as a large diameter, large amounts of wood mould (= loose material accumulated in the hollows mainly consisting of decaying wood), a high level of sun exposure, and with entrance holes that are large and either at a low or high height, and in dry hollows, with entrances not directed upwards. A stable microclimate is probably a key factor why some species of saproxylic invertebrates are confined to tree hollows. Other factors that are different in comparison to downed dead wood is the fact that hollows at a given height from the ground provide shelter from ground-living predators, that hollows persist for longer, and that the content of nutrients might be enhanced by the accumulation of dead leaves, insect frass, and remains from dead insects. Several studies have identified a positive relationship between species occupancy per tree and the amount of habitat in the surrounding landscape, with a variation in the spatial scale at which characteristics of the surrounding landscape had the strongest effect over spatial scales from 200 to 3000 m. We found empirical support for the extinction threshold hypothesis, which predicts that the frequency of species presence per tree is greater if a certain number of trees are aggregated into a few large clusters of hollow trees rather than distributed among many small clusters. Observed thresholds in species occurrence patterns can be explained by colonisation-extinction dynamics, with species occupancy per tree influenced by variation in rates of immigration. Consistent with this assumption, field studies suggest that dispersal rate and range can be low for invertebrates occupying tree hollows, although higher in a warmer climate. For one species in which population dynamics has been studied over 25 years (Osmoderma eremita), the observed population dynamics have characteristics of a "habitat-tracking metapopulation", as local extinctions from trees occur possibly because those trees become unsuitable as well as due to stochastic processes in small populations. The persistence of invertebrate fauna confined to tree hollows may be improved by prolonging the standing life of existing hollow trees. It is also important to recruit new generations of hollow trees, preferably close to existing larger groups of hollow trees. Thus, the spatio-temporal dynamics of hollow trees is crucial for the invertebrate fauna that rely upon them.

14.
Sci Total Environ ; 941: 173572, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823707

ABSTRACT

Forest canopy gaps can influence understorey microclimate and ecosystem functions such as decomposition. Gaps can arise from silviculture or tree mortality, increasingly influenced by climate change. However, to what degree canopy gaps affect the buffered microclimate in the understorey under macroclimatic changes is unclear. We, therefore, investigated the effect of forest gaps differing in structure and size (25 gaps: single tree gaps up to 0.67 ha cuttings) on microclimate and soil biological activity compared to closed forest in a European mixed floodplain forest. During the investigation period in the drought year 2022 between May and October, mean soil moisture and temperature as well as soil and air temperature fluctuations increased with increasing openness. In summer, the highest difference of monthly means between cuttings and closed forest in the topsoil was 3.98 ± 9.43 % volumetric moisture and 2.05 ± 0.89 °C temperature, and in the air at 30 cm height 0.61 ± 0.35 °C temperature. For buffering, both the over- and understorey tree layers appeared as relevant with a particularly strong influence of understorey density on soil temperature. Three experiments, investigating soil biological activity by quantifying decomposition rates of tea and wooden spatulas as well as mesofauna feeding activity with bait-lamina stripes, revealed no significant differences between gaps and closed forest. However, we found a positive significant effect of mean soil temperature on feeding activity throughout the season. Although soil moisture decreased during this period, it showed no counteracting effect on feeding activity. Generally, very few significant relationships were observed between microclimate and soil biological activity in single experiments. Despite the dry growing season, decomposition rates remained high, suggesting temperature had a stronger influence than soil moisture. We conclude that the microclimatic differences within the gap gradient of our experiment were not strong enough to affect soil biological activity considerably.


Subject(s)
Climate Change , Forests , Microclimate , Soil , Soil/chemistry , Temperature , Trees , Ecosystem , Seasons
15.
Int J Biometeorol ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850441

ABSTRACT

Riparian corridors often act as low-land climate refugia for temperate tree species in their southern distribution range. A plausible mechanism is the buffering of regional climate extremes by local physiographic and biotic factors. We tested this idea using a 3-year-long microclimate dataset collected along the Ciron river, a refugia for European beech (Fagus sylvatica) in southwestern France. Across the whole network, canopy gap fraction was the main predictor for spatial microclimatic variations, together with two other landscape features (elevation above the river and woodland fraction within a 300m radius). However, within the riparian forest only (canopy gap fraction < 25%, distance to the river < 150m), variations of up to -4°C and + 15% in summertime daily maximum air temperature and minimum relative humidity, respectively, were still found from the plateau to the cooler, moister river banks, only ~ 5-10m below. Elevation above the river was then identified as the main predictor, and explained the marked variations from the plateau to the banks much better than canopy gap fraction. The microclimate measured near the river is as cool but moister than the macroclimate encountered at 700-1000m asl further east in F. sylvatica's main distribution range. Indeed, at all locations, we found that air relative humidity was higher than expected from a temperature-only effect, suggesting that extra moisture is brought by the river. Our results explain well why beech trees in this climate refugium are restricted to the river gorges where microtopographic variations are the strongest and canopy gaps are rare.

16.
Sci Total Environ ; 942: 173783, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-38851335

ABSTRACT

The demonstration of survival of forest stands in relatively stable refugia during cold glacial stages has offered an increased understanding of the response of vegetation to climate change, but also provides insight into considerations for the conversation of biodiversity hotspots. However, refugia studies in China remain in question due to the lack of plant macrofossils, especially those of endemic and relict species. Palynology, while more broad brush, provides a method for exploring whether refugia occur, and can provide some details of palaeovegetation composition and temporal dynamics. Here, three pollen records derived from subalpine wetlands in central China, spanning the Last Glacial Maximum (LGM), have been coupled with biome and mean annual precipitation (MAP) reconstructions to identify the presence of trees that endured cold climate. The results indicated that some forest, including temperate deciduous broadleaf forest and cool mixed forest, survived the LGM at the three locations, and was thus at odds with the hypothesis that forests were replaced by herbs and grasses in central China at that time. Refugia favored by protection from cold air drainage and the availability of adequate water can explain the survival of the trees during otherwise harsh episodes. Our findings are consistent with other records from central China that argue for tree dominated refugia during the LGM.


Subject(s)
Climate Change , Refugium , China , Forests , Wetlands , Biodiversity , Trees , Ecosystem
17.
Technol Health Care ; 32(S1): 487-499, 2024.
Article in English | MEDLINE | ID: mdl-38759071

ABSTRACT

BACKGROUND: Shoes upper has been shown to affect the shoe microclimate (temperature and humidity). However, the existing data on the correlation between the microclimate inside footwear and the body's physical factors is still quite limited. OBJECTIVE: This study examined whether shoes air permeability would influence foot microclimate and spatial characteristics of lower limb and body. METHODS: Twelve recreational male habitual runners were instructed to finish an 80 min experimental protocol, wearing two running shoes with different air permeability. RESULTS: Participants wearing CLOSED upper structure shoe exhibited higher in-shoe temperature and relative humidity. Although there was no significant difference, shank temperature and metabolism in OPEN upper structure shoes were lower. CONCLUSIONS: This indicates that the air permeability of shoes can modify the microclimate of the feet, potentially affecting the lower limb temperature. This study provides relevant information for the design and evaluation of footwear.


Subject(s)
Humidity , Microclimate , Running , Shoes , Humans , Male , Running/physiology , Adult , Young Adult , Temperature , Foot/physiology , Body Temperature/physiology , Equipment Design
18.
Int J Biometeorol ; 68(7): 1235-1252, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38691211

ABSTRACT

There are concerns regarding high surface temperatures on synthetic grass sports surfaces influencing the surrounding thermal environment, potentially increasing heat stress and impacting athlete safety. As such, studies have investigated changes to the thermal environment surrounding synthetic grass surfaces in comparison to both natural grass, and synthetic surfaces with different features, but this body of research has not been systematically reviewed. Therefore, this systematic review aimed to (i) determine if there are differences in the thermal environment surrounding synthetic grass surfaces compared with natural grass surfaces, and (ii) determine if there are differences in the thermal environment between different types of synthetic grass surfaces. A systematic review adhering to the PRISMA guidelines was performed. The eligibility criteria required investigations to report at least one of the following environmental parameters on or directly above both a synthetic surface and a comparator group of either natural grass or an alternative synthetic grass surface used in sport: Air temperature, mean radiant temperature, humidity, wind velocity, unified heat stress indices (i.e. wet-bulb-globe temperature and heat index) and/or surface temperature. Twenty-three studies were identified. The only parameters that were consistently higher on synthetic grass compared to natural grass were the air temperature (range: 0.5-1.2 °C) and surface temperature (range: 9.4-33.7 °C), while the mean radiant temperature, humidity, wind velocity and wet-bulb-globe temperature remained similar or required more data to determine if any differences exist. Synthetic grass surfaces consisting of styrene butadiene rubber infill or a shock pad had increased surface temperatures, whereas surfaces with thermoplastic elastomer infill, Cool climate turf fibres or HydroChill had lower surface temperatures. This systematic review has demonstrated that air and surface temperatures can be increased on synthetic sports surfaces, compared to natural grass surfaces. However, it is uncertain whether the differences are enough to increase an individual's heat stress risk and cause concern for athlete safety. While modifications to the turf infill or fibres can reduce synthetic surface temperatures, the effect of these features on the thermal environment as a whole is unclear. This review was prospectively registered with the Open Science Framework (Open Science Framework registration   https://doi.org/10.17605/OSF.IO/BTKGE ).


Subject(s)
Poaceae , Sports , Humans , Temperature , Surface Properties
19.
Int J Biometeorol ; 68(7): 1315-1326, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705900

ABSTRACT

Winter cold wave adaptation strategies in hot climates due to climate change didn't receive the deserved attention from previous studies. Therefore, this study comprehensively investigates the impact of various windbreak parameters on mitigating winter cold stress in hot steppe-arid climate. A microclimate model for a residential campus was built and validated through on-site measurement on a typical winter day to assess thirty-two scenarios for tree characteristics and spatial configuration windbreak parameters based on PET, wind speed, and Air Temperature (AT). Moreover, four configurations, that had best results on mitigating cold stress in winter, were tested during typical summer conditions to couple the assessment of cold and hot seasons. Additionally, environmental analysis for all scenarios was conducted. The results revealed that the most effective parameters for mitigating cold stress are tree distribution, Leaf Area Density (LAD), row number, spacing, and shape. Double rows of high LAD and medium height trees with small spacing yielded the best cold stress mitigation effect. Furthermore, the windbreak reduced the cold stress in the morning and night by 19.31% and 18.06%, respectively. It reduced AT and wind speed at night by 0.79 °C and 2.56 m/s, respectively. During summer, very hot PET area was reduced by 21.79% and 19.5% at 12:00 and 15:00, respectively.


Subject(s)
Climate Change , Microclimate , Models, Theoretical , Seasons , Trees , Wind , Cold Temperature
20.
Conserv Physiol ; 12(1): coae030, 2024.
Article in English | MEDLINE | ID: mdl-38798718

ABSTRACT

Defining plant ecophysiological responses across natural distributions enables a greater understanding of the niche that plants occupy. Much of the foundational knowledge of species' ecology and responses to environmental change across their distribution is often lacking, particularly for rare and threatened species, exacerbating management and conservation challenges. Combining high-resolution species distribution models (SDMs) with ecophysiological monitoring characterized the spatiotemporal variation in both plant traits and their interactions with their surrounding environment for the range-restricted Aluta quadrata Rye & Trudgen, and a common, co-occurring generalist, Eremophila latrobei subsp. glabra (L.S.Sm.) Chinnock., from the semi-arid Pilbara and Gascoyne region in northwest Western Australia. The plants reflected differences in gas exchange, plant health and plant water relations at sites with contrasting suitability from the SDM, with higher performance measured in the SDM-predicted high-suitability site. Seasonal differences demonstrated the highest variation across ecophysiological traits in both species, with higher performance in the austral wet season across all levels of habitat suitability. The results of this study allow us to effectively describe how plant performance in A. quadrata is distributed across the landscape in contrast to a common, widespread co-occurring species and demonstrate a level of confidence in the habitat suitability modelling derived from the SDM in predicting plant function determined through intensive ecophysiology monitoring programmes. In addition, the findings also provide a baseline approach for future conservation actions, as well as to explore the mechanisms underpinning the short-range endemism arid zone systems.

SELECTION OF CITATIONS
SEARCH DETAIL