Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biochimie ; 216: 120-125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37844754

ABSTRACT

In Colombia, the Micrurus genus comprises 30 species, including M. mipartitus and M. dumerilii, which are of major clinical relevance due to their wide geographical distribution and the number of snakebites inflicted by them. These neurotoxic envenomations are characterized by neuromuscular paralysis attributed to venom components such as three-finger toxins (3FTx) and phospholipases (PLA2). Additionally, there is limited information available on the neutralizing coverage of commercially available antivenoms, underscoring the need to perform studies to assess the cross-neutralizing ability of these life-saving products. Therefore, we present an in-depth immunorecognition analysis by the anticoral-INS antivenom from Colombia on the M. mipartitus and M. dumerilii venoms. The antivenom cross-recognized the whole venoms and their components with different intensities. For instance, the antivenom showed better recognition on PLA2s than on 3FTxs in both venoms. Moreover, at doses tested, the antivenom totally neutralized the lethal effect of M. dumerilii venom; however, it did not neutralize this effect induced by M. mipartitus venom and its main toxic components from the southwestern region of the department of Antioquia. Furthermore, the anticoral-INS antivenom displayed better cross-immunorecognition of PLA2-predominant Micrurus venoms than of 3FTx-predominant Micrurus venoms. This highlights the need to include venoms from both types of venom patterns in the immunization mixture to produce antivenoms against coral snakes. Finally, our results suggest the need for further research to optimize the composition of immunizing mixtures for antivenom production and improve their efficacy against coral snake envenomation in Colombia and the Americas.


Subject(s)
Antivenins , Coral Snakes , Animals , Antivenins/pharmacology , Elapid Venoms/toxicity , Phospholipases A2 , Elapidae
2.
Toxicol Lett ; 374: 77-84, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36528173

ABSTRACT

The coralsnake Micrurus dumerilii (Elapidae) is reported to cause envenomings of medical importance. Previous studies characterized the protein composition of its venom, with phospholipase A2 (PLA2) proteins the most abundant. However, it is unknown which venom components are responsible for its lethal toxicity. Fractionation of M. dumerilii venom from Colombia was carried out using RP-HPLC and each fraction was screened for lethal effect in mice at a dose of 20 µg by intraperitoneal route. Results showed that only one fraction, F9, was lethal. This fraction displayed PLA2 activity, induced indirect hemolysis in vitro, as well as edema and myotoxicity in vivo. SDS-PAGE of unreduced F9 evidenced two bands of 8 and 15 kDa, respectively, consistent with the detection of proteins with masses of 13,217.77 Da, 7144.06 Da, and 7665.55 Da. Tryptic digestion of F9 followed by nESI-MS/MS revealed peptide sequences matching proteins of the three-finger toxin (3FTx) and PLA2 families. Immunization of a rabbit with F9 proteins elicited antibody titers up to 1:10,000 by ELISA. After serum fractionation with caprylic acid, the obtained IgG was able to neutralize the lethal effect of the complete venom of M. dumerilii using a challenge of 2 ×LD50 at the IgG/venom ratio of 50:1 (w/w). In conclusion, present results show that the lethal effect of M. dumerilii venom in mice is mainly driven by one fraction which contains 3FTx and PLA2 proteins. The antibodies produced against this fraction cross-recognized other PLA2s and neutralized the lethal effect of whole M. dumerilii venom, pointing out to the potential usefulness of F9 as a relevant antigen for improving current coral snake antivenoms.


Subject(s)
Coral Snakes , Animals , Mice , Rabbits , Tandem Mass Spectrometry , Elapid Venoms/toxicity , Elapidae/metabolism , Antivenins/pharmacology , Phospholipases A2/metabolism , Immunoglobulin G/metabolism , Lethal Dose 50
3.
Toxins (Basel) ; 14(12)2022 11 24.
Article in English | MEDLINE | ID: mdl-36548722

ABSTRACT

Micrurus dumerilii is a coral snake of clinic interest in Colombia. Its venom is mainly composed of phospholipases A2 being MdumPLA2 the most abundant protein. Nevertheless, Micrurus species produce a low quantity of venom, which makes it difficult to produce anticoral antivenoms. Therefore, in this work, we present the recombinant expression of MdumPLA2 to evaluate its biological activities and its immunogenic potential to produce antivenoms. For this, a genetic construct rMdumPLA2 was cloned into the pET28a vector and expressed heterologously in bacteria. His-rMdumPLA2 was extracted from inclusion bodies, refolded in vitro, and isolated using affinity and RP-HPLC chromatography. His-rMdumPLA2 was shown to have phospholipase A2 activity, a weak anticoagulant effect, and induced myonecrosis and edema. The anti-His-rMdumPLA2 antibodies produced in rabbits recognized native PLA2, the complete venom of M. dumerilii, and a phospholipase from another species of the Micrurus genus. Antibodies neutralized 100% of the in vitro phospholipase activity of the recombinant toxin and a moderate percentage of the myotoxic activity of M. dumerilii venom in mice. These results indicate that His-rMdumPLA2 could be used as an immunogen to improve anticoral antivenoms development. This work is the first report of an M. dumerilii functional recombinant PLA2.


Subject(s)
Antivenins , Coral Snakes , Elapid Venoms , Phospholipases A2 , Animals , Mice , Rabbits , Antivenins/biosynthesis , Antivenins/genetics , Antivenins/immunology , Elapid Venoms/enzymology , Phospholipases A2/biosynthesis , Phospholipases A2/genetics , Phospholipases A2/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/immunology
4.
Biologicals ; 68: 40-45, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32928631

ABSTRACT

New world Coral snakes comprise 82 species of medical importance distributed from southeastern United States to Argentina. In Colombia, Micrurus mipartitus and M. dumerilii are responsible for most coral snakebite accidents. Although infrequent, the severity of these envenomings, as well as the limited information available on the neutralizing coverage of commercially available antivenoms, underscores the need to perform studies to assess the cross-neutralizing ability of these life-saving immunobiologicals. In the present work, we evaluated the cross-recognition and neutralization ability of two equine therapeutic antivenoms: PROBIOL and SAC-ICP. PROBIOL antivenom showed cross-recognition towards both M. mipartitus and M. dumerilii venoms, with a significantly higher binding to the latter in both whole-venom ELISA and fractionated-venom immunoprofiling. In contrast, SAC-ICP antivenom cross-recognized M. dumerilii venom, but not that of M. mipartitus. Lethality of M. dumerilii venom was neutralized by both antivenoms, with a slightly higher potency for the SAC-ICP antivenom. However, the lethality of M. mipartitus venom was not neutralized by any of the two antivenoms. Results uncover the need to include M. mipartitus venom, or its most relevant toxins, in the production of coral snake antivenoms to be used in Colombia, to assure the neutralizing coverage for this species.


Subject(s)
Antivenins/immunology , Coral Snakes/immunology , Elapid Venoms/immunology , Horses/immunology , Snake Bites/immunology , Animals , Antivenins/administration & dosage , Colombia , Coral Snakes/classification , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Female , Male , Mice , Neutralization Tests/methods , Snake Bites/prevention & control , Species Specificity
5.
Toxicon ; 170: 85-93, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31557485

ABSTRACT

Micrurus mipartitus and M. dumerilii are the most medically important coral snakes in Colombia. Proteomic characterization of their venoms has previously shown that proteins of the three-finger toxin (3FTx) family are abundant components, especially in M. mipartitus (61%) and to a lesser extent in M. dumerilii (28%). In order to increase knowledge on these toxins, in this work a major 3FTx of M. dumerilii venom (8% of the venom proteins), named Clarkitoxin-I-Mdum, was isolated and characterized. Its amino acid sequence comprises 66 residues, with an isotope-averaged molecular mass of 7537 ±â€¯2 Da and a theoretical pI of 9.36, presenting the conserved pattern of eight cysteines that classifies it as a short-chain (type I) 3FTx. Clarkitoxin-I-Mdum was not lethal to mice by intravenous or intracerebroventricular route and was not cytolytic to myogenic cells in vitro. On the other hand, five coding sequences for 3FTxs were obtained from the venom gland of M. mipartitus. These novel toxin sequences were named Mm3FTx-01 to Mm3FTx-05, all of them also presenting the eight conserved cysteines of short-chain 3FTxs. Phylogenetic analysis revealed high variability of 3FTxs from Micrurus, and ELISA using antibodies raised to the major 3FTxs from M. mipartitus and M. dumerilii confirmed their immunochemical divergence. These results highlight the relevance of performing further studies aiming at a deeper understanding of the functional and antigenic relationships among specific Micrurus toxins, with important implications for the production of antivenoms.


Subject(s)
Coral Snakes , Elapid Venoms/chemistry , Proteome , Amino Acid Sequence , Animals , Cell Line , Elapid Venoms/toxicity , Mice , Phylogeny
6.
J Proteomics ; 136: 262-73, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26883873

ABSTRACT

In Colombia, nearly 2.8% of the 4200 snakebite accidents recorded annually are inflicted by coral snakes (genus Micrurus). Micrurus dumerilii has a broad distribution in this country, especially in densely populated areas. The proteomic profile of its venom was here studied by a bottom-up approach combining RP-HPLC, SDS-PAGE and MALDI-TOF/TOF. Venom proteins were assigned to eleven families, the most abundant being phospholipases A2 (PLA2; 52.0%) and three-finger toxins (3FTx; 28.1%). This compositional profile shows that M. dumerilii venom belongs to the 'PLA2-rich' phenotype, in the recently proposed dichotomy for Micrurus venoms. Enzymatic and toxic venom activities correlated with protein family abundances. Whole venom induced a conspicuous myotoxic, cytotoxic and anticoagulant effect, and was mildly edematogenic and proteolytic, whereas it lacked hemorrhagic activity. Some 3FTxs and PLA2s reproduced the lethal effect of venom. A coral snake antivenom to Micrurus nigrocinctus demonstrated significant cross-recognition of M. dumerilii venom proteins, and accordingly, ability to neutralize its lethal effect. The combined compositional, functional, and immunological data here reported for M. dumerilii venom may contribute to a better understanding of these envenomings, and support the possible use of anti-M. nigrocinctus coral snake antivenom in their treatment. BIOLOGICAL SIGNIFICANCE: Coral snakes represent a highly diversified group of elapids in the New World, with nearly 70 species within the genus Micrurus. Owing to their scarce yields, the biochemical composition and toxic activities of coral snake venoms have been less well characterized than those of viperid species. In this work, an integrative view of the venom of M. dumerilii, a medically relevant coral snake from Colombia, was obtained by a combined proteomic, functional, and immunological approach. The venom contains proteins from at least eleven families, with a predominance of phospholipases A2 (PLA2), followed by three-finger toxins (3FTx). According to its compositional profile, M. dumerilii venom can be grouped with those of several Micrurus species from North and Central America that present a PLA2-predominant phenotype, to date it is the most southerly coral snake species to do so. Other coral snake species that a 'PLA2-rich' venom, M. dumerilii venom contains both components that form MitTx, a pain-inducing heterodimeric complex recently characterized from the venom of Micrurus tener, also present in Micrurus mosquitensis and M. nigrocinctus venoms. In addition to a lethal three-finger toxin, PLA2s participate in the toxicity of M. dumerilii venom, some of them displaying ability to induce cytolysis, muscle necrosis, and lethality to mice. An antivenom to M. nigrocinctus demonstrated significant cross-recognition of M. dumerilii venom proteins, and accordingly, ability to neutralize its lethal effect, being of potential therapeutic usefulness in these envenomings.


Subject(s)
Antivenins/chemistry , Elapid Venoms , Elapidae/metabolism , Proteome , Animals , Elapid Venoms/chemistry , Elapid Venoms/metabolism , Mice , Proteome/chemistry , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL