Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.906
Filter
1.
Biogeochemistry ; 167(4): 609-629, 2024.
Article in English | MEDLINE | ID: mdl-38707517

ABSTRACT

Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies. Supplementary Information: The online version contains supplementary material available at 10.1007/s10533-024-01122-6.

2.
BMC Genomics ; 25(1): 446, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714962

ABSTRACT

BACKGROUND: Air exposure is an inevitable source of stress that leads to significant mortality in Coilia nasus. Our previous research demonstrated that adding 10‰ NaCl to aquatic water could enhance survival rates, albeit the molecular mechanisms involved in air exposure and salinity mitigation remained unclear. Conversely, salinity mitigation resulted in decreased plasma glucose levels and improved antioxidative activity. To shed light on this phenomenon, we characterized the transcriptomic changes in the C. nasus brain upon air exposure and salinity mitigation by integrated miRNA-mRNA analysis. RESULTS: The plasma glucose level was elevated during air exposure, whereas it decreased during salinity mitigation. Antioxidant activity was suppressed during air exposure, but was enhanced during salinity mitigation. A total of 629 differentially expressed miRNAs (DEMs) and 791 differentially expressed genes (DEGs) were detected during air exposure, while 429 DEMs and 1016 DEGs were identified during salinity mitigation. GO analysis revealed that the target genes of DEMs and DEGs were enriched in biological process and cellular component during air exposure and salinity mitigation. KEGG analysis revealed that the target genes of DEMs and DEGs were enriched in metabolism. Integrated analysis showed that 24 and 36 predicted miRNA-mRNA regulatory pairs participating in regulating glucose metabolism, Ca2+ transport, inflammation, and oxidative stress. Interestingly, most of these miRNAs were novel miRNAs. CONCLUSION: In this study, substantial miRNA-mRNA regulation pairs were predicted via integrated analysis of small RNA sequencing and RNA-Seq. Based on predicted miRNA-mRNA regulation and potential function of DEGs, miRNA-mRNA regulatory network involved in glucose metabolism and Ca2+ transport, inflammation, and oxidative stress in C. nasus brain during air exposure and salinity mitigation. They regulated the increased/decreased plasma glucose and inhibited/promoted antioxidant activity during air exposure and salinity mitigation. Our findings would propose novel insights to the mechanisms underlying fish responses to air exposure and salinity mitigation.


Subject(s)
Brain , Gene Regulatory Networks , Inflammation , MicroRNAs , Oxidative Stress , RNA, Messenger , Salinity , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Brain/metabolism , Animals , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling , Air , Transcriptome
3.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38805646

ABSTRACT

Honey bees are the most important managed insect pollinators in the US and Canadian crop systems. However, the annual mortality of colonies in the past 15 years has been consistently higher than historical records. Because they are eusocial generalist pollinators and amenable to management, honey bees provide a unique opportunity to investigate a wide range of questions at molecular, organismal, and ecological scales. Here, the American Association of Professional Apiculturists (AAPA) and the Canadian Association of Professional Apiculturists (CAPA) created 2 collections of articles featuring investigations on micro and macro aspects of honey bee health, sociobiology, and management showcasing new applied research from diverse groups studying honey bees (Apis mellifera) in the United States and Canada. Research presented in this special issue includes examinations of abiotic and biotic stressors of honey bees, and evaluations and introductions of various stress mitigation measures that may be valuable to both scientists and the beekeeping community. These investigations from throughout the United States and Canada showcase the wide breadth of current work done and point out areas that need further research.


Subject(s)
Beekeeping , Bees/physiology , Animals , Canada , United States , Stress, Physiological , Pollination
4.
Contraception ; : 110506, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38806139

ABSTRACT

In January 2023, the Food & Drug Administration modified the Risk Evaluation and Mitigation Strategy (REMS) program regulating mifepristone to allow direct dispensation from retail pharmacies. In June 2023, we conducted a random, distributive survey of pharmacies in California using secret shopper methodology to investigate the feasibility of accessing mifepristone. One pharmacy had mifepristone immediately available (<24 hours) and misoprostol availability was limited. Accessibility to misoprostol varied by type of pharmacy (p<0.01), but not by region. Even in a reproductive freedom state, access to mifepristone and misoprostol from outpatient retail pharmacies remains limited.

5.
Sci Rep ; 14(1): 12254, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806593

ABSTRACT

Migration of nib Cd to the testa during fermentation can be achieved with high temperatures (> 45 °C) and low nib pH values (< 5.0) using spontaneous fermentation. However, this low pH can lead to low flavor quality. This study used three controlled temperature fermentation treatments on three cacao genotypes (CCN 51, ICS 95, and TCS 01) to test its effects on the nib pH, the migration of nib Cd to the testa, and the liquor flavor quality. All treatments were effective in reducing the total nib Cd concentration. Nevertheless, the treatment with the higher mean temperature (44.25 °C) and acidification (pH 4.66) reached the highest mean nib Cd reductions throughout fermentation, a 1.37 factor in TCS 01, promoting the development of fine-flavor cocoa sensorial notes. In unfermented beans, the Cd concentration of nibs was higher than that of the testa, and the Cd migration proceeded down the total concentration gradient. However, Cd migration was observed against the concentration gradient (testa Cd > nib Cd) from the fourth day. Cd migration could increase by extensive fermentation until the sixth day in high temperatures and probably by the adsorbent capacity of the testa. Genotype-by-treatment interactions were present for the nib Cd reduction, and a universal percentage of decrease of Cd for each genotype with fermentation cannot be expected. Selecting genotypes with highly adsorbent testa combined with controlled temperatures would help reduce the Cd concentration in the cacao raw material, improving its safety and quality.


Subject(s)
Cacao , Cadmium , Fermentation , Cacao/metabolism , Hydrogen-Ion Concentration , Cadmium/metabolism , Taste , Hot Temperature , Flavoring Agents/metabolism , Temperature
6.
Sci Total Environ ; : 173407, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797427

ABSTRACT

Following the B1 dam collapse at Córrego do Feijão Mine, actions were taken to address environmental damage and enhance the quality of water in the Paraopeba River. Natural processes in the river involve gradual reduction of contamination through dispersion and downstream transportation of tailings-a slow, nature-driven process. Dredging, a human intervention, aimed to expedite recovery. Hence, this study aimed to explore dredging's role in reducing contamination in the impacted Paraopeba River zone. Analysis revealed a direct link between dredging and post-collapse turbidity, though recent trends suggest a lessening impact on pre-collapse conditions. Distinct seasonal variations were observed in iron and manganese concentrations, peaking during wet seasons and displaying notable upstream-downstream disparities. An analysis of ratios (downstream/upstream) was conducted to understand and even predict the return to pre-collapse conditions. Wet season averages for iron and manganese decreased by around 90 % over time, with standard deviations reducing by about 48 % and 58 %, respectively. In the dry season, the averages decreased by over 100 %, indicating water quality improvements surpassing pre-collapse levels. Standard deviations also decreased significantly, by approximately 67 % and 79 %, respectively. Employing an exponential decay model revealed that the contribution of dredging in the dry period is negligible, but in the wet period the contribution can be estimated at 28.6 % in the case of iron and 25 % in the case of manganese. While the models performed well based on extensive data, some limitations occur in estimating dredging contribution rates. The model's sensitivity might overlook influential factors, underscoring the importance of considering sediment nature and dredged area extent in understanding water quality dynamics. Despite these potential limitations, this investigation provides crucial insights into the intricate relationship between dredging and water quality in the Paraopeba River. These findings pave the way for future studies aimed at deeper exploration and more accurate assessments of this association.

8.
Indian J Occup Environ Med ; 28(1): 27-32, 2024.
Article in English | MEDLINE | ID: mdl-38783883

ABSTRACT

Context: Due to water scarcity, wastewater is used in agriculture in peri-urban areas. Aims and Settings: We aimed to assess the hazards associated with wastewater farming and develop an incremental improvement plan for the sanitation system of wastewater use for agriculture using Sanitation Safety Planning (SSP) in Bangalore urban district, India. Methods: Interviews and observations were conducted among 100 farmers in the Mugalur Gram Panchayat area. Results: Direct ingestion and ingestion after contact with wastewater due to inadequate hand hygiene are the routes of contact with wastewater. The control measures followed in the community are the cultivation of crops, which do not have direct contact with wastewater, furrow and drip irrigation, and restricted irrigation. Methods to mitigate the hazards are the provision of interval between final irrigation and consumption,washing of produce with freshwater before transportation to market, and hygienic cooking. Conclusion: Occupational hazards and risks associated with wastewater farming can be mitigated through the adoption of locally acceptable preventive measures.

9.
Environ Sci Technol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772914

ABSTRACT

Low-carbon technologies are essential for the aluminum industry to meet its climate targets despite increasing demand. However, the penetration of these technologies is often delayed due to the long lifetimes of the industrial assets currently in use. Existing models and scenarios for the aluminum sector omit this inertia and therefore potentially overestimate the realistic mitigation potential. Here, we introduce a technology-explicit dynamic material flow model for the global primary (smelters) and secondary (melting furnaces) aluminum production capacities. In business-as-usual scenarios, we project emissions from smelters and melting furnaces to rise from 710 Mt CO2-eq./a in 2020 to 920-1400 Mt CO2-eq./a in 2050. Rapid implementation of inert anodes in smelters can reduce emissions by 14% by 2050. However, a limitation of emissions compatible with a 2 °C scenario requires combined action: (1) an improvement of collection and recycling systems to absorb all the available postconsumer scrap, (2) a fast and wide deployment of low-carbon technologies, and (3) a rapid transition to low-carbon electricity sources. These measures need to be implemented even faster in scenarios with a stronger increase in aluminum demand. Lock-in effects are likely: building new capacity using conventional technologies will compromise climate mitigation efforts and would require premature retirement of industrial assets.

10.
Water Res ; 258: 121749, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38762912

ABSTRACT

The objective of this investigation is to assess the performance of various heat exchangers for application in a novel solar-powered zero liquid discharge humidification-dehumidification desalination system. In this study four heat exchangers (HX) having two different flow configurations namely counter flow (cf), cross flow (cr) made up of three different materials namely high-density polyethylene (HDPE), aluminum (Al), and Polypropelyne (PP) were compared in terms of their effectiveness and overall heat transfer coefficient under varying salinity levels (up to 10%) and mixing ratios (0.22-0.45). At a mixing ratio of 0.22 and 0% salinity, PP-HXcr and Al-HXcf exhibited similar effectiveness (∼85%), surpassing that of HDPE-HXcf (∼65%). Despite PP-HXcr's lower thermal conductivity in comparison to Al-HXcf, comparable effectiveness was achieved due to the superior flow distribution in PP-HXcr. Further investigations focused on the impact of salinity on heat exchanger performance. At 3.5% salinity, all heat exchangers experienced a decline in effectiveness and heat transfer coefficient (HTC), with Al-HXcf experiencing a more pronounced decrease compared to PP-HXcr. The higher thermal conductivity of Al-HXcf led to greater salt accumulation, while PP-HXcr demonstrated minimal fouling. As the experiment progressed, fouling increased for all heat exchangers, with the Al-HXcf being practically ineffective at 10% salinity with an effectiveness below 10%. To address the issue of fouling, a rotating cross-flow heat exchanger (RPP-HXcr) was introduced. While the effectiveness of the PP-HXcr drops from 85% to approximately 60% with increasing salinity from 0% to 10%, the RPP-HXcr demonstrates only a marginal decline in effectiveness with increasing salinity. For instance, at mixing ratio of 0.22 when the salinity is increased from 0% to 10%, the effectiveness of RPP-HXcr only drops from 83% to 77%. This exceptional performance was attributed to the continuous contact between the rotating tubes and the incoming feed, effectively preventing fouling and ensuring sustained efficiency. Rotating cross-flow heat exchanger (RPP-HXcr) is introduced and validated as a potentially reliable solution for mitigating fouling, as it demonstrates sustained efficiency and minimal performance degradation across different salinity conditions.

11.
Food Res Int ; 187: 114342, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763635

ABSTRACT

Microplastics, an emerging pollutant, have garnered widespread attention due to potential repercussions on human health and the environment. Given the critical role of seafood in food security, growing concerns about microplastics might be detrimental to meeting future global food demand. This study employed a discrete choice experiment to investigate Chilean consumers' preferences for technology aimed at mitigating microplastic levels in mussels. Using a between-subjects design with information treatments, we examined the impact of informing consumers about potential human health and environmental effects linked to microplastics pollution on their valuation for the technology. We found that the information treatments increased consumers' willingness to pay for mussels. Specifically, consumers were willing to pay a premium of around US$ 4 for 250 g of mussel meat with a 90 % depuration efficiency certification. The provision of health impact information increased the price premium by 56 %, while the provision of environmental information increased it by 21 %. Furthermore, combined health and environmental information significantly increased the probability of non-purchasing behavior by 22.8 % and the risk perception of microplastics for human health by 5.8 %. These results emphasized the critical role of information in shaping consumer preferences and provided evidence for validating investment in research and development related to microplastic pollution mitigation measures.


Subject(s)
Consumer Behavior , Microplastics , Seafood , Humans , Microplastics/analysis , Seafood/analysis , Female , Adult , Male , Food Contamination , Animals , Water Pollutants, Chemical/analysis , Chile , Middle Aged , Young Adult , Bivalvia , Choice Behavior
12.
Curr Psychiatry Rep ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767815

ABSTRACT

PURPOSE OF REVIEW: The current achievement of medical advancement is noteworthy; however, the occurrence of chronic diseases is increasing day by day, with a significant percentage of affected people are suffering from a mental health crisis. This article aims to present a thorough yet brief review of methods that can be employed to build the emotional wellness of chronic patients. RECENT FINDINGS: The mental health care strategies include resilience-building, coping skills training, professional counseling, and lifestyle adaptations. Additionally, the article highlights the efficacy of several modern interventions, such as mindfulness-based therapies, cognitive behavioral therapy, eye movement desensitization, and recovery from stress therapy. The global burden of chronic illness emphasizes the pressing need to mitigate mental health problems among chronic patients. By providing actionable insights, our study clears the path for targeted interventions and holistic approaches for chronic disease patients. Moreover, the article suggests to policymakers and clinicians the need for collaboration and multifaceted interventions.

13.
Sci Total Environ ; : 173441, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782289

ABSTRACT

Rice is a staple food for more than half of humanity, and 90 % of rice is grown and consumed in Asia. However, paddy rice cultivation creates an ideal environment for the production and release of methane (CH4). How to estimate regional CH4 emissions accurately and how to mitigate them efficiently have been of key concern. Here, with a machine learning method, we investigate the spatiotemporal changes, the major controlling factors and mitigation potentials of paddy rice CH4 emissions across Monsoon Asia at a resolution of 0.1° (~10 km). Spatially CH4 emissions are highly heterogeneous, with the Indo-Gangetic Plain, Deltas of the Mekong, and Yangtze River Basin as the hotspots. Nationwide, China, India, Bangladesh and Vietnam are the major emitters. Straw applied on season is a critical controlling factor for CH4 emission in rice fields. The single-season rice contributes to over 80 % of the total emissions. CH4 emissions from Monsoon Asia have notably declined since 2007. Three mitigation strategies, including water management techniques, off-season straw return, and straw to biochar, may reduce CH4 emissions by 27.66 %, 23.78 %, and 21.79 %, respectively, with the most effective strategy being rice cultivation type-specific and environment-specific. Our findings gain new insights into CH4 emissions and mitigations across Monsoon Asia, providing evidence to adopt precise mitigation strategies based on rice cultivation types and local environment.

14.
Environ Monit Assess ; 196(6): 573, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780819

ABSTRACT

This study aimed to predict the dynamics of per- and polyfluoroalkyl substance (PFAS) contamination and ecological vulnerability within coastal regions of Africa utilizing time-averaged remote-sensed data patterns from 2020 to 2023. The analysis identified PFAS contamination hotspots along the coast of Africa, particularly in western Africa around Nigeria and in areas spanning Equatorial Guinea and Guinea-Bissau, with risk influenced by eastward wind patterns, overland runoff, and elevated aerosol optical depth (AOD) values. Regional trends indicated that variations in solar energy absorption and surface air temperature could influence PFAS dynamics in North Africa, South Africa, East Africa, and West Africa. In North Africa, intermediate overland runoff and lower sea-surface temperatures were observed. In South Africa, there were intermediate runoff levels and warmer sea-surface temperatures. East Africa experienced intermediate runoff as well. In West Africa, there was increased susceptibility to high overland runoff and aerosol-related PFAS contamination. From the weighted vulnerability index, significant disparities in environmental conditions across African coastal regions revealed that North Africa had relatively lower vulnerability, while West Africa had the highest susceptibility to per- and polyfluoroalkyl substance (PFAS) contamination. This study emphasizes the necessity for region-specific vulnerability index models and targeted mitigation strategies to address diverse ecological and health risks from PFAS contamination along the African coast. Regional and international collaboration, spearheaded by organizations such as the AU and ECOWAS, is essential, with tailored policies aligned with the SDGs, Agenda 2063, and NEPAD crucial for effective environmental management, urging policymakers to prioritize cooperation and resource sharing for comprehensive sustainability goals.


Subject(s)
Environmental Monitoring , Africa , Water Pollutants, Chemical/analysis , Remote Sensing Technology , Fluorocarbons/analysis
15.
PNAS Nexus ; 3(5): pgae143, 2024 May.
Article in English | MEDLINE | ID: mdl-38694146

ABSTRACT

Travel to academic conferences-where international flights are the norm-is responsible for a sizeable fraction of the greenhouse gas (GHG) emissions associated with academic work. In order to provide a benchmark for comparison with other fields, as well as for future reduction strategies and assessments, we estimate the CO2-equivalent emissions for conference travel in the field of astronomy for the prepandemic year 2019. The GHG emission of the international astronomical community's 362 conferences and schools in 2019 amounted to 42,500 tCO2e, assuming a radiative-forcing index factor of 1.95 for air travel. This equates to an average of 1.0 ± 0.6 tCO2e per participant per meeting. The total travel distance adds up to roughly 1.5 Astronomical Units, that is, 1.5 times the distance between the Earth and the Sun. We present scenarios for the reduction of this value, for instance with virtual conferencing or hub models, while still prioritizing the benefits conferences bring to the scientific community.

16.
Article in English | MEDLINE | ID: mdl-38746647

ABSTRACT

Purpose: In stereotactic body radiation therapy (SBRT) for prostate cancer, intrafraction motion is an important source of treatment uncertainty as it could not be completely smoothed through fractionation. Herein, we compared different arrangements and beam qualities for extreme hypofractionated treatments to minimize beam delivery time and so intrafractional errors. Methods: A retrospective dataset of 11 patients was used. Three volumetric modulated arc therapy (VMAT) beam arrangements were compared for a prescription dose of 40 Gy/5 fractions: two full arcs, 6 MV flattening filter free (FFF); one full arc, 6 MV FFF; one full arc, 10 MV FFF. A plan quality index was defined to compare achievement of the planning goals. Plan complexity was evaluated with the modulation factor. Dose delivery accuracy and efficiency were measured with patient-specific quality assurance plans. Results: All treatment plans fulfilled all dose objectives. No statistical differences were found both in plan quality and complexity. Very accurate dose delivery was achieved with the three arrangements, with mean γ passing rates >96.5 % (2 %/2 mm criteria). Slightly but significantly higher γ passing rates were observed with single-arc 6 MV FFF. Contrariwise, statistically significant reductions of the delivery time were obtained with single-arc geometries: the average delivery times were 1.6 min (-46.1 %) and 1.3 min (-56.2 %) for 6 and 10 MV FFF respectively. Conclusions: The high-quality, very fast and accurate dose delivery of single-arc plans confirmed the suitability of this arrangement for prostate SBRT. In particular, the significant reduction of delivery time would improve treatment robustness against intrafraction prostate motion.

17.
J Dairy Sci ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762115

ABSTRACT

The objective of this study was to determine the potential effect and interaction of 3- nitrooxypropanol (3-NOP; Bovaer®) and whole cottonseed (WCS) on lactational performance, and enteric methane (CH4) emission of dairy cows. A total of 16 multiparous cows, including 8 Holstein Friesian (HF) and 8 Brown Swiss (BS) [224 ± 36 d in milk, 26 ± 3.7 kg milk yield], were used in a split-plot design, where the main plot was the breed of cows. Within each subplot, cows were randomly assigned to a treatment sequence in a replicated 4 × 4 Latin Square design with 2 × 2 factorial arrangements of treatments with 4, 24-d periods. The experimental treatments were: 1) Control (basal TMR), 2) 3-NOP (60 mg/kg TMR DM), 3) WCS (5% TMR DM), and 4) 3-NOP + WCS. The treatment diets were balanced for ether extract, crude protein, and NDF contents (4%, 16%, and 43% of TMR DM, respectively). The basal diets were fed twice daily at 0800 and 1800 h. Dry matter intake (DMI) and milk yield were measured daily, and enteric gas emissions were measured (using the GreenFeed system) during the last 3 d of each 24-d experimental period when animals were housed in tie stalls. There was no difference in DMI on treatment level, whereas the WCS treatment increased ECM yield and milk fat yield. There was no interaction of 3-NOP and WCS for any of the enteric gas emission parameters, but 3-NOP decreased CH4 production (g/d), CH4 yield (g/kg DMI), and CH4 intensity (g/kg ECM) by 13, 14 and 13%, respectively. Further, an unexpected interaction of breed by 3-NOP was observed for different enteric CH4 emission metrics: HF cows had a greater CH4 mitigation effect compared with BS cows for CH4 production (g/d; 18 vs. 8%), CH4 intensity (g/kg MY; 19% vs. 3%) and CH4 intensity (g/kg ECM; 19 vs. 4%). Hydrogen production was increased by 2.85 folds in HF and 1.53 folds in BS cows receiving 3-NOP. Further, there was a 3-NOP ' Time interaction for both breeds. In BS cows, 3-NOP tended to reduce CH4 production by 18% at around 4 h after morning feeding but no effect was observed at other time points. In HF cows, the greatest mitigation effect of 3-NOP (29.6%) was observed immediately after morning feeding and it persisted at around 23% to 26% for 10 h until the second feed provision, and 3 h thereafter, in the evening. In conclusion, supplementing 3-NOP at 60 mg/kg DM to a high fiber diet resulted in 18 to 19% reduction in enteric CH4 emission in Swiss Holstein Friesian cows. The lower response to 3-NOP by BS cows was unexpected and has not been observed in other studies. These results should be interpreted with caution due to low number of cows per breed. Lastly, supplementing WCS at 5% of DM improved ECM and milk fat yield but did not enhance CH4 inhibition effect of 3-NOP of dairy cows.

18.
BMC Health Serv Res ; 24(1): 625, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745281

ABSTRACT

BACKGROUND: The COVID-19 pandemic control strategies disrupted the smooth delivery of essential health services (EHS) globally. Limited evidence exists on the health systems lens approach to analyzing the challenges encountered in maintaining EHS during the COVID-19 pandemic. This study aimed to identify the health system challenges encountered and document the mitigation strategies and adaptations made across geopolitical zones (GPZs) in Nigeria. METHODS: The national qualitative survey of key actors across the six GPZs in Nigeria involved ten states and the Federal Capital Territory (FCT) which were selected based on resilience, COVID-19 burden and security considerations. A pre-tested key informant guide was used to collect data on service utilization, changes in service utilization, reasons for changes in primary health centres' (PHCs) service volumes, challenges experienced by health facilities in maintaining EHS, mitigation strategies implemented and adaptations to service delivery. Emerging sub-themes were categorized under the appropriate pillars of the health system. RESULTS: A total of 22 respondents were interviewed. The challenges experienced in maintaining EHS cut across the pillars of the health systems including: Human resources shortage, shortages in the supply of personal protective equipments, fear of contracting COVID-19 among health workers misconception, ignorance, socio-cultural issues, lockdown/transportation and lack of equipment/waiting area (. The mitigation strategies included improved political will to fund health service projects, leading to improved accessibility, affordability, and supply of consumables. The health workforce was motivated by employing, redeploying, training, and incentivizing. Service delivery was reorganized by rescheduling appointments and prioritizing some EHS such as maternal and childcare. Sustainable systems adaptations included IPC and telehealth infrastructure, training and capacity building, virtual meetings and community groups set up for sensitization and engagement. CONCLUSION: The mitigation strategies and adaptations implemented were important contributors to EHS recovery especially in the high resilience LGAs and have implications for future epidemic preparedness plans.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Nigeria/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Delivery of Health Care/organization & administration , Qualitative Research , Politics
19.
Environ Res ; 252(Pt 4): 119074, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705449

ABSTRACT

China's carbon emission trading policy plays a crucial role in achieving both its "3060" dual carbon objectives and the United Nations Sustainable Development Goal 13 (SDG 13) on climate action. The policy's effectiveness in reducing pollution and mitigating carbon emissions holds significant importance. This paper investigated whether China's carbon emission trading policy affects pollution reduction (PM2.5 and SO2) and carbon mitigation (CO2) in pilot regions, using panel data from 30 provinces and municipalities in China from 2005 to 2019 and employing a multi-period difference-in-differences (DID) model. Furthermore, it analyzed the heterogeneity of carbon market mechanisms and regional variations. Finally, it examined the governance pathways for pollution reduction and carbon mitigation from a holistic perspective. The results indicate that: (1) China's carbon emission trading policy has reduced CO2 emissions by 18% and SO2 emissions by 36% in pilot areas, with an immediate impact on the "carbon mitigation" effect, while the "pollution reduction" effect exhibits a time lag. (2) Higher carbon trading prices lead to stronger "carbon mitigation" effect, and larger carbon market scales are associated with greater "pollution reduction" effects on PM2.5. Governance effects on pollution reduction and carbon mitigation vary among pilot regions: Carbon markets of Beijing, Chongqing, Shanghai, and Tianjin show significant governance effects in both "pollution reduction" and "carbon mitigation", whereas Guangdong's carbon market exhibits only a "pollution reduction" effect, and Hubei's carbon market demonstrates only a "carbon mitigation" effect. (3) Currently, China's carbon emission trading policy achieves pollution reduction and carbon mitigation through "process management" and "end-of-pipe treatment". This study could provide empirical insights and policy implications for pollution reduction and carbon mitigation, as well as for the development of China's carbon emission trading market.

20.
Article in English | MEDLINE | ID: mdl-38733461

ABSTRACT

Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.

SELECTION OF CITATIONS
SEARCH DETAIL
...