Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27.053
Filter
1.
J Environ Sci (China) ; 148: 263-273, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095162

ABSTRACT

The adsorption of pollutants can not only promote the direct surface reaction, but also modify the catalyst itself to improve its photoelectric characteristics, which is rarely studied for water treatment with inorganic photocatalyst. A highly crystalline BiOBr (c-BiOBr) was synthesized by a two-step preparation process. Owing to the calcination, the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr. The complex of organic pollutant and [Bi2O2]2+ could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes (h+). Moreover, the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons, which would coupling with the photoexcitation to promote generate more O2•-. The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants. This work strongly deepens the understanding of the molecular modification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.


Subject(s)
Water Pollutants, Chemical , Adsorption , Water Pollutants, Chemical/chemistry , Catalysis , Bismuth/chemistry , Water Purification/methods
2.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095182

ABSTRACT

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Subject(s)
Copper , Hydrogen Sulfide , Oxidation-Reduction , Titanium , Titanium/chemistry , Adsorption , Copper/chemistry , Hydrogen Sulfide/chemistry , Air Pollutants/chemistry , Plasma Gases/chemistry , Models, Chemical
3.
J Environ Sci (China) ; 148: 451-467, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095179

ABSTRACT

After the ultralow emission transformation of coal-fired power plants, cement production became China's leading industrial emission source of nitrogen oxides. Flue gas dust contents at the outlet of cement kiln preheaters were as high as 80-100 g/m3, and the calcium oxide content in the dust exceeded 60%. Commercial V2O5(-WO3)/TiO2 catalysts suitable for coal-fired flue gas suffer from alkaline earth metal Ca poisoning of cement kiln flue gas. Recent studies have also identified the poisoning of cement kiln selective catalytic reaction (SCR) catalysts by the heavy metals lead and thallium. Investigation of the poisoning process is the primary basis for analyzing the catalytic lifetime. This review summarizes and analyzes the SCR catalytic mechanism and chronicles the research progress concerning this poisoning mechanism. Based on the catalytic and toxification mechanisms, it can be inferred that improving the anti-poisoning performance of a catalyst enhances its acidity, surface redox performance-active catalytic sites, and shell layer protection. The data provide support in guiding engineering practice and reducing operating costs of SCR plants. Finally, future research directions for SCR denitrification catalysts in the cement industry are discussed. This study provides critical support for the development and optimization of poisoning-resistant SCR denitrification catalysts.


Subject(s)
Construction Materials , Catalysis , Air Pollutants/chemistry , Power Plants , China
4.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003068

ABSTRACT

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Subject(s)
Oxidation-Reduction , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Catalysis , Iron/chemistry
5.
J Environ Sci (China) ; 147: 677-687, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003082

ABSTRACT

Due to their resistance to degradation, wide distribution, easy diffusion and potential uptake by organisms, microplastics (MPs) pollution has become a major environmental concern. In this study, PEG-modified Fe3O4 magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene (PE) microspheres compared to other adsorbents (bare Fe3O4, PEI/Fe3O4 and CA/Fe3O4). The maximum adsorption capacity of PE was found to be 2203 mg/g by adsorption isotherm analysis. PEG/Fe3O4 maintained a high adsorption capacity even at low temperature (5°C, 2163 mg/g), while neutral pH was favorable for MP adsorption. The presence of anions (Cl-, SO42-, HCO3-, NO3-) and of humic acids inhibited the adsorption of MPs. It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding. Overall, the study demonstrated that PEG/Fe3O4 can potentially be used as an efficient control against MPs, thus improving the quality of the aquatic environment and of our water resources.


Subject(s)
Microplastics , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Kinetics , Adsorption , Polyethylene/chemistry , Magnetite Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Models, Chemical
6.
Curr Genomics ; 25(3): 212-225, 2024 May 31.
Article in English | MEDLINE | ID: mdl-39086998

ABSTRACT

Background: Chemically modified therapeutic mRNAs have gained momentum recently. In addition to commonly used modifications (e.g., pseudouridine), 5moU is considered a promising substitution for uridine in therapeutic mRNAs. Accurate identification of 5-methoxyuridine (5moU) would be crucial for the study and quality control of relevant in vitro-transcribed (IVT) mRNAs. However, current methods exhibit deficiencies in providing quantitative methodologies for detecting such modification. Utilizing the capabilities of Oxford nanopore direct RNA sequencing, in this study, we present NanoML-5moU, a machine-learning framework designed specifically for the read-level detection and quantification of 5moU modification for IVT data. Materials and Methods: Nanopore direct RNA sequencing data from both 5moU-modified and unmodified control samples were collected. Subsequently, a comprehensive analysis and modeling of signal event characteristics (mean, median current intensities, standard deviations, and dwell times) were performed. Furthermore, classical machine learning algorithms, notably the Support Vector Machine (SVM), Random Forest (RF), and XGBoost were employed to discern 5moU modifications within NNUNN (where N represents A, C, U, or G) 5-mers. Results: Notably, the signal event attributes pertaining to each constituent base of the NNUNN 5-mers, in conjunction with the utilization of the XGBoost algorithm, exhibited remarkable performance levels (with a maximum AUROC of 0.9567 in the "AGTTC" reference 5-mer dataset and a minimum AUROC of 0.8113 in the "TGTGC" reference 5-mer dataset). This accomplishment markedly exceeded the efficacy of the prevailing background error comparison model (ELIGOs AUC 0.751 for site-level prediction). The model's performance was further validated through a series of curated datasets, which featured customized modification ratios designed to emulate broader data patterns, demonstrating its general applicability in quality control of IVT mRNA vaccines. The NanoML-5moU framework is publicly available on GitHub (https://github.com/JiayiLi21/NanoML-5moU). Conclusion: NanoML-5moU enables accurate read-level profiling of 5moU modification with nanopore direct RNA-sequencing, which is a powerful tool specialized in unveiling signal patterns in in vitro-transcribed (IVT) mRNAs.

7.
Curr Genomics ; 25(3): 158-170, 2024 May 31.
Article in English | MEDLINE | ID: mdl-39087001

ABSTRACT

N6-methyladenosine (m6A) is an RNA modification wherein the N6-position of adenosine is methylated. It is one of the most prevalent internal modifications of RNA and regulates various aspects of RNA metabolism. M6A is deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by reader proteins, which modulate splicing, export, translation, and stability of the modified mRNA. Recent evidence suggests that various classes of non- coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long con-coding RNAs (lncRNAs), are also targeted by this modification. Depending on the ncRNA species, m6A may affect the processing, stability, or localization of these molecules. The m6A- modified ncRNAs are implicated in a number of diseases, including cancer. In this review, the author summarizes the role of m6A modification in the regulation and functions of ncRNAs in tumor development. Moreover, the potential applications in cancer prognosis and therapeutics are discussed.

8.
Ultrason Sonochem ; 109: 106977, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39088989

ABSTRACT

This study evaluated the physical and rheological properties of whole rice flour treated for different sonication times (0-15 min). Ultrasonication reduces the particle size of rice flour and improves its solubility. Viscosity tests using RVA and steady shear showed a notable decrease in the viscosity of the rehydrated pregelatinized rice flour. Although no unusual patterns were observed in the XRD analysis, the FT-IR and microstructure morphology findings suggest that ultrasonication led to structural changes in the rice flour. Overall, the study indicates that ultrasonication is a practical and clean method for producing plant-based drinks from rice flour, which could expand its limited applications in the beverage industry.

9.
Exp Dermatol ; 33(8): e15151, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39090854

ABSTRACT

Psoriasis is an immune-mediated, inflammatory disease. Genetic and environmental elements are involved in the nosogenesis of this illness. Epigenetic inheritance serves as the connection between genetic and environmental factors. Histone modification, an epigenetic regulatory mechanism, is implicated in the development of numerous diseases. The basic function of histone modification is to regulate cellular functions by modifying gene expression. Modulation of histone modification, such as regulation of enzymes pertinent to histone modification, can be an alternative approach for treating some diseases, including psoriasis. Herein, we reviewed the regulatory mechanisms and biological effects of histone modifications and their roles in the pathogenesis of psoriasis.


Subject(s)
Epigenesis, Genetic , Histones , Psoriasis , Psoriasis/drug therapy , Psoriasis/metabolism , Psoriasis/genetics , Humans , Histones/metabolism , Animals
10.
Mol Carcinog ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092767

ABSTRACT

Vascular endothelial growth factor A (VEGFA) plays a critical role as a potent angiogenesis factor and is highly expressed in hepatocellular carcinoma (HCC). Although the expression of VEGFA has been strongly linked to the aggressive nature of HCC, the specific posttranscriptional modifications that might contribute to VEGFA expression and HCC angiogenesis are not yet well understood. In this study, we aimed to investigate the epitranscriptome regulation of VEGFA in HCC. A comprehensive analysis integrating MeRIP-seq, RNA-seq, and crosslinking-immunprecipitation-seq data revealed that VEGFA was hypermethylated in HCC and identified the potential m6A regulators of VEGFA including a m6A methyltransferase complex component RBM15 and the two readers, YTHDF2 and IGF2BP3. Through rigorous cell and molecular biology experiments, RBM15 was validated as a key component of methyltransferase complex responsible for m6A methylation of VEGFA, which was subsequently recognized and stabilized by IGF2BP3 and YTHDF2, leading to enhanced VEGFA expression and VEGFA-related functions such as human umbilical vascular endothelial cells (HUVEC) migration and tube formation. In the HCC xenograft model, knockdown of RBM15, IGF2BP3, or YTHDF2 resulted in reduced expression of VEGFA, accompanied by significant inhibition of tumor growth closely associated with VEGFA expression and angiogenesis. Furthermore, our analysis of HCC clinical samples identified positive correlations between the expression levels of VEGFA and the regulators RBM15, IGF2BP3, and YTHDF2. Collectively, these findings offer novel insights into the posttranscriptional modulation of VEGFA and provide potential avenues for alternative approaches to antiangiogenesis therapy targeting VEGFA.

11.
J Pineal Res ; 76(5): e13001, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092800

ABSTRACT

This study explores the 24-h rhythmic cycle of protein O-GlcNAcylation within the brain and highlights its crucial role in regulating the circadian cycle and neuronal function based on zebrafish as an animal model. In our experiments, disruption of the circadian rhythm, achieved through inversion of the light-dark cycle or daytime melatonin treatment, not only impaired the rhythmic changes of O-GlcNAcylation along with altering expression patterns of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) in zebrafish brain but also significantly impeded learning and memory function. In particular, circadian disruption affected rhythmic expression of protein O-GlcNAcylation and OGT in the nuclear fraction. Notably, the circadian cycle induces rhythmic alterations in O-GlcNAcylation of H2B histone protein that correspond to changes in H3 trimethylation. Disruption of the cycle interfered with these periodic histone code alterations. Pharmacological inhibition of OGT with OSMI-1 disrupted the wake-sleep patterns of zebrafish without affecting expression of circadian rhythm-regulating genes. OSMI-1 inhibited the expression of c-fos, bdnf, and calm1, key genes associated with brain function and synaptic plasticity, and decreased the binding of O-GlcNAcylated H2B and OGT to promoter regions of these genes. The collective findings support the potential involvement of circadian cycling of the O-GlcNAc histone code in regulating synaptic plasticity and brain function. Overall, data from this study provide evidence that protein O-GlcNAcylation serves as a pivotal posttranslational mechanism integrating circadian signals and neuronal function to regulate rhythmic physiology.


Subject(s)
Circadian Rhythm , N-Acetylglucosaminyltransferases , Zebrafish , Animals , Zebrafish/metabolism , Circadian Rhythm/physiology , N-Acetylglucosaminyltransferases/metabolism , N-Acetylglucosaminyltransferases/genetics , Cognition/physiology , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , Light , Brain/metabolism
12.
Ultrason Sonochem ; 109: 107010, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094265

ABSTRACT

Purple mangosteen scarfskin polysaccharide has many important physiological functions, but its preparation method, structure, and function need further exploration. A polysaccharide was obtained from mangosteen scarfskin by ultrasonic-assisted extraction and purified. On this basis, its structure and physicochemical properties were investigated. The Congo red experiment was used to determine whether it has a triple helix conformation. The structure of purple mangosteen scarfskin polysaccharide was further analyzed by infrared spectroscopy and nuclear magnetic analysis. The antioxidant activities of the above three polysaccharides were studied by related experiments. It was found that the monosaccharide composition of purple mangosteen scarfskin polysaccharide mainly contained a large amount of arabinose, a small amount of rhamnoose and a very small amount of galacturonic acid, and its core main chain was composed of 1,4-α-arabinose. It did not have this spatial configuration. After the acetylation of purple mangosteen scarfskin polysaccharide, the acetylated derivative with a degree of substitution of 0.33 was obtained. It was found that they had certain scavenging and inhibiting effects on hydroxyl radicals and lipid peroxidation, and their activities were related to the concentration of polysaccharides. Meanwhile, the antioxidant activity of the polysaccharide was significantly enhanced after the modified treatment of acetylation, which indicated that chemical modification could effectively improve some activities of polysaccharide. The above studies provided some reference value for the further research and development of purple mangosteen scarfskin polysaccharide.

13.
Bioelectrochemistry ; 160: 108784, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39094447

ABSTRACT

Infectious diseases have threatened human life for as long as humankind has existed. One of the most crucial aspects of fighting against these infections is diagnosis to prevent disease spread. However, traditional diagnostic methods prove insufficient and time-consuming in the face of a pandemic. Therefore, studies focusing on detecting viruses causing these diseases have increased, with a particular emphasis on developing rapid, accurate, specific, user-friendly, and portable electrochemical biosensor systems. Peptides are used integral components in biosensor fabrication for several reasons, including various and adaptable synthesis protocols, long-term stability, and specificity. Here, we discuss peptide-based electrochemical biosensor systems that have been developed over the last decade for the detection of infectious diseases. In contrast to other reports on peptide-based biosensors, we have emphasized the following points i) the synthesis methods of peptides for biosensor applications, ii) biosensor fabrication approaches of peptide-based electrochemical biosensor systems, iii) the comparison of electrochemical biosensors with other peptide-based biosensor systems and the advantages and limitations of electrochemical biosensors, iv) the pros and cons of peptides compared to other biorecognition molecules in the detection of infectious diseases, v) different perspectives for future studies with the shortcomings of the systems developed in the past decade.

14.
Mol Aspects Med ; 99: 101302, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39094449

ABSTRACT

Modern methods of molecular diagnostics and therapy have revolutionized the field of medicine in recent years by providing more precise and effective tools for detecting and treating diseases. This progress includes a growing exploration of the body's secreted vesicles, known as extracellular vesicles (EVs), for both diagnostic and therapeutic purposes. EVs are a heterogeneous population of lipid bilayer vesicles secreted by almost every cell type studied so far. They are detected in body fluids and conditioned culture media from living cells. EVs play a crucial role in communication between cells and organs, both locally and over long distances. They are recognized for their ability to transport endogenous RNA and proteins between cells, including messenger RNA (mRNA), microRNA (miRNA), misfolded neurodegenerative proteins, and several other biomolecules. This review explores the dual utilization of EVs, serving not only for diagnostic purposes but also as a platform for delivering therapeutic molecules to cells and tissues. Through an exploration of their composition, biogenesis, and selective cargo packaging, we elucidate the intricate mechanisms behind RNA transport between cells via EVs, highlighting their potential use for both diagnostic and therapeutic applications. Finally, it addresses challenges and outlines prospective directions for the clinical utilization of EVs.

15.
Cartilage ; : 19476035241261335, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095949

ABSTRACT

OBJECTIVE: To investigate the cytokine release profile and histological response of human cartilage after exposure to autologous conditioned serum (ACS) and freeze-dried allogenic conditioned serum (FD-CS). DESIGN: Cartilage explants were collected from 6 patients undergoing total knee arthroplasty. ACS and FD-CS were created from patient serum samples. Cartilage samples were divided into 6 groups: (1) untreated control, (2) ACS, (3) FD-CS, (4) untreated interleukin (IL)-1ß (5 ng/ml), (5) IL-1ß + ACS, and (6) IL-1ß + FD-CS. After 12 days, cartilage samples were analyzed with glycosaminoglycan (GAG) concentration normalized to wet weight while comparing cytokine concentrations, and histological scoring. RESULTS: There was a significant decrease in pathology scoring for ACS (P = 0.0368) and FD-CS (P = 0.0368) in the IL-1ß injury groups compared with the untreated IL-1ß insult group. ACS and FD-CS significantly mitigate the IL-1ß induced increase in basic fibroblast growth factor (bFGF) (P = 0.0009 and P = 0.0002, respectively). FD-CS showed a significant decrease in IL-1ß concentration in the presence of IL-1ß insult compared with the untreated IL-1ß group (P < 0.0001). ACS-treated samples had significantly higher concentration of tumor necrosis factor (TNF)-α independent of IL-1ß when compared with samples not treated with biologics (P = 0.0053). CONCLUSIONS: Explanted osteoarthritic cartilage responds favorably and equivalently to treatment with ACS and FD-CS from a histological perspective. Both ACS and FD-CS were able to mitigate the IL-1ß-induced increases in bFGF and FD-CS lowered IL-1ß concentration while increasing interleukin-1 receptor antagonist (IL-1Ra) concentration. Although the cytokine profile of cartilage tissue explants treated with FD-CS appears to be different than that of ACS, this difference does not seem to affect biologic activity of FD-CS.

16.
Bioorg Chem ; 151: 107670, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39096560

ABSTRACT

Pseudolaric Acid B (PAB), a natural product with remarkable anti-tumor activity, is a starting point for new anticancer therapeutics. We designed and synthesized 27 PAB derivatives and evaluated their anti-proliferative activities against four cancer cell lines: MCF-7, HCT-116, HepG2, and A549. Compared with unmodified PAB, the PAB derivatives showed stronger anti-proliferative activity. The ability of compound D3 (IC50 = 0.21 µM) to inhibit HCT-116 cells was approximately 5.3 times that of PAB (IC50 = 1.11 µM) and the antiproliferative action was unrelated to cytotoxicity (SI=20.38), indicating its superior safety profile (PAB; SI=0.95). Compound D3 effectively suppressed the EdU-positive rate and reduced colony formation, arrested HCT-116 cells in the S and G2/M phases and induced apoptosis. In vivo experiments further demonstrated low toxicity of compound D3 while suppressing tumor growth in mice. In summary, given its strong anti-proliferative effect and relative safety, further development of compound D3 is warranted.

17.
Cell Regen ; 13(1): 14, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093347

ABSTRACT

Intestinal epithelial cells (IECs) are pivotal for maintaining intestinal homeostasis through self-renewal, proliferation, differentiation, and regulated cell death. While apoptosis and necroptosis are recognized as distinct pathways, their intricate interplay remains elusive. In this study, we report that Mettl3-mediated m6A modification maintains intestinal homeostasis by impeding epithelial cell death. Mettl3 knockout induces both apoptosis and necroptosis in IECs. Targeting different modes of cell death with specific inhibitors unveils that RIPK1 kinase activity is critical for the cell death triggered by Mettl3 knockout. Mechanistically, this occurs via the m6A-mediated transcriptional regulation of Atf3, a transcription factor that directly binds to Cflar, the gene encoding the anti-cell death protein cFLIP. cFLIP inhibits RIPK1 activity, thereby suppressing downstream apoptotic and necroptotic signaling. Together, these findings delineate the essential role of the METTL3-ATF3-cFLIP axis in homeostatic regulation of the intestinal epithelium by blocking RIPK1 activity.

18.
J Adv Res ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089619

ABSTRACT

INTRODUCTION: Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive. OBJECTIVES: We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss. METHODS: NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo. RESULTS: NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis. CONCLUSIONS: Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.

19.
Arch Sex Behav ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152321

ABSTRACT

Appearance modification practices are ubiquitous, serving to enhance physical attractiveness and accrue social advantages, including increased desirability as a potential mate. Facial cosmetics are frequently used for appearance modification, yet individual differences in makeup usage remain understudied. While makeup usage in women has been linked to traits like narcissism and extraversion, the broader association with Dark Triad traits and how personality influences makeup application across diverse social contexts were less explored. Here we examined these relationships in 1,410 Brazilian women (Mage = 29.9, SD = 10.35), who completed online Big Five and Dark Triad personality measures, reported their usual makeup usage habits, and detailed their makeup usage across different social scenarios. Results revealed makeup usage was positively associated with narcissism and extraversion, and negatively with psychopathy. Additionally, women used less makeup when alone (at home, exercises) and more in social settings, particularly for the first date. However, women with higher narcissism and neuroticism showed larger differences among low and high makeup usage situations, while individuals with higher psychopathy used makeup in similar frequencies among different situations. Further, (1) overall greater users of makeup scored higher on narcissism, conscientiousness, and agreeableness; (2) average users displayed lower psychopathy; and (3) lesser users reported lower narcissism and higher psychopathy. These findings underscore the nuanced relationship between makeup usage and personality, particularly highlighting the influence of narcissism. These findings contribute to the interplay between personality traits and makeup usage, considering interindividual differences and intraindividual variation in understanding cosmetic behaviors among women.

20.
Cell Tissue Res ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152365

ABSTRACT

We have analyzed the organization of the microtubule system in photoreceptor cells and pigment cells within the adult Drosophila compound eye. Immunofluorescence localization of tubulin and of Short stop, a spectraplakin that has been reported to be involved in the anchorage of microtubule minus ends at the membrane, suggests the presence of non-centrosomal microtubule-organizing centers at the distal tip of the visual cells. Ultrastructural analyses confirm that microtubules emanate from membrane-associated plaques at the site of contact with cone cells and that all microtubules are aligned in distal-proximal direction within the photoreceptor cells. Determination of microtubule polarities demonstrated that about 95% of the microtubules in photoreceptor cells are oriented with their plus end in the direction of the synapse. Pigment cells in the eye contain only microtubules aligned in distal-proximal direction, with their plus end pointing towards the retinal floor. There, two populations of microtubules can be distinguished, single microtubules and bundled microtubules, the latter associated with actin filaments. Whereas microtubules in both photoreceptor cells and pigment cells are acetylated and mono/bi-glutamylated on α-tubulin, bundled microtubules in pigment cells are apparently also mono/bi-glutamylated on ß-tubulin, providing the possibility of binding different microtubule-associated proteins.

SELECTION OF CITATIONS
SEARCH DETAIL