Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 565
Filter
1.
3 Biotech ; 14(10): 225, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39247457

ABSTRACT

Oxycodone is widely used for pain management and acts via binding to mu- and kappa opioid receptors. It was shown that extended oxycodone usage can result from the demyelination and degeneration of neurons through the stress response, which triggers apoptotic signaling pathways. The striatum and cerebellum are recognized as significant contributors to addiction; however, there is no report on the effect of oxycodone on the cerebellum and striatum and motor coordination. We treated rats daily with oxycodone at 15 mg/kg doses for thirty days. Motor performance and electromyography activity were then evaluated. Stereological methods were performed to assess the number of neurons in the cerebellum and striatum as well as immunohistochemistry for microgliosis and astrogliosis. Furthermore, the Sholl analysis method was utilized to evaluate the cellular structure of both microglia and astrocytes. Results of the rotarod test for motor coordination show no significant (P < 0.05) difference between the oxycodone subjects and those in the control group. In addition, open-field assessments indicated that the application of oxycodone did not alter the amount of distance covered (as an indicator of locomotion) or time spent in the central area (as an indicator of anxiety) (P < 0.001). The electromyography (EMG) test result showed that oxycodone caused a delay in the reaction of the muscular nerves (P < 0.001). Data and results from our experiment revealed that administering oxycodone did not affect astrogliosis and the number of neurons in the cerebellum and striatum (P < 0.05). In contrast, it altered neuromuscular function. In addition, oxycodone administration activated microglia in the cerebellum and striatum. In conclusion, we encourage more research on the adverse effects of oxycodone on the brain.

2.
Exp Neurol ; 382: 114946, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39278587

ABSTRACT

Ischemic stroke is followed by an increased susceptibility to bacterial infections, which exacerbate histological stroke outcome, neurological deficits and memory impairment due to increased neuroinflammation and neurotransmitter dysfunction. Pharmacological activation of nicotinic acetylcholine receptors was suggested to mitigate brain inflammatory responses in ischemic stroke. The functional responses associated with nicotinic acetylcholine receptor activation were unknown. In this study, male NMRI mice subjected to transient intraluminal middle cerebral artery occlusion (MCAO) were intraperitoneally exposed to vehicle treatment or Escherichia coli lipopolysaccharide (LPS; 4 mg/kg)-induced sepsis-like state 24 h post-MCAO, followed by intraperitoneal administration of vehicle or nicotine (0.5 mg/kg) 30 min later. Over 96 h, rectal temperature, neurological deficits, spontaneous locomotor activity, working memory, ischemic injury, synaptic plasticity, and brain inflammatory responses were evaluated by temperature measurement, behavioral analysis, infarct volumetry, electrophysiological recordings, and polymerase-chain reaction analysis. LPS-induced sepsis induced hypothermia, increased general and focal neurological deficits, reduced spontaneous exploration behavior, reduced working memory, and increased infarct volume post-MCAO. Additional treatment with nicotine attenuated LPS-induced hypothermia, reduced neurological deficits, restored exploration behavior, restored working memory, and reduced infarct volume. Local field potential recordings revealed that LPS-induced sepsis decreased long-term potentiation (LTP) in the dentate gyrus post-MCAO, whereas concomitant nicotine exposure restored LTP in the contralateral dentate gyrus. LPS-induced sepsis increased microglial/ macrophage Iba-1 mRNA and astrocytic GFAP mRNA levels post-MCAO, whereas add-on nicotine treatment reduced astrocytic GFAP mRNA. Taken together, these findings indicate that acute nicotine exposure enhances functional stroke recovery. Future studies will have to evaluate the effects of (1) chronic nicotine exposure, a clinically relevant vascular risk factor, and (2) the cessation of nicotine exposure, which is widely recommended post-stroke, but might have detrimental effects in the early stroke recovery phase.

3.
Heliyon ; 10(12): e32731, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39183856

ABSTRACT

Background: An essential component of childhood development is increasing motor competence. Poor motor learning is often thought to underlie impaired motor competence, but this link is unclear in previous studies. Aims: Our aim was to test the relationship between motor competence and motor learning in the acquisition phase. Both reinforcement learning (RL) and error-based learning (EBL) were tested. We hypothesized that slower RL and slower EBL acquisition rates would relate to lower motor competence. Methods and procedures: Eighty-six participants ages 6-12 performed a target throwing task under RL and EBL conditions. The Movement Assessment Battery for Children - 2nd edition (MABC-2) provided a measure of motor competence. We assessed EBL and RL acquisition rates, baseline variability, and baseline bias from the throwing task. Outcomes and results: In a multiple linear regression model, baseline variability (ß = -0.49, p = <0.001) and the EBL acquisition rate (ß = -0.24, p = 0.018) significantly explained the MABC-2 score. Participants with higher baseline variability and slower EBL acquisition had lower motor competence scores. The RL acquisition rate was independent of MABC-2 score suggesting that RL may be less of a contributor to poor motor competence. Conclusions and implications: Children with slower EBL acquisition had lower motor competence scores but RL acquisition was unrelated to the level of motor competence. Emphasizing the unrelated reinforcement mechanisms over error-based mechanisms during motor skill interventions may help children with poor motor competence better acquire new motor skills.

4.
Front Pediatr ; 12: 1320338, 2024.
Article in English | MEDLINE | ID: mdl-39156018

ABSTRACT

The current study aims to provide an in-depth analysis and extension of the Environmental Stress Hypothesis (ESH) framework, focusing on the complex interplay between poor motor skills and internalising problems like anxiety and depression. Using an integrative research review methodology, this study synthesises findings from 38 articles, both empirical and theoretical, building upon previous foundational works. The hypothesis posits that poor motor skills serve as a primary stressor, leading to internalising problems through various secondary stressors. A rigorous comparison of data was conducted, considering study design, findings, and methodologies-while exploring variables such as age, sex, and comorbidities. The study also enhances the ESH framework by including intrapersonal stressors and introducing resource buffers, including optimism and familial support as additional influencing factors. This multi-level approach yields a more nuanced and comprehensive ESH framework, highlighting the need for future studies to consider variables that intersect across multiple domains and how the relationship between poor motor skills and internalising problems may vary across different life stages.

5.
Heliyon ; 10(14): e34296, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100489

ABSTRACT

Demyelinating diseases are commonly associated with epileptic seizures and have limited management options. Hence, the need to investigate potential options for management of such seizures. Antiaris Africana extract (AE) was investigated for effect in chronic demyelinating seizures. Cuprizone treatment induced short but frequent spike discharges in mice. Antiaris Africana extract (300 mg/kg) treatment abolished epileptiform discharges. Cuprizone administration caused severe demyelination in the corpus callosum. After the demyelination phase, myelin content decreased to 22.86 ± 1.92 % in the cuprizone-only group. However, there was an increase to 52.14 ± 3.91 % in cuprizone-only group and 62.00 ± 2.78 % in the Antiaris africana extract group respectively, after a 4-week cuprizone cessation period. Treatment with AE and LEV visibly altered myelin growth. Antiaris africana extract treatment produced significant (P < 0.001, F (3, 16) = 698.4) increase in locomotor activity similar to LEV (P < 0.001,F (2, 12) = 678.7) and DZP (P < 0.001, F (2, 12) = 620.4) and improved beam traversal time (18.71 ± 2.244 s; 95 % CI: 13.22-24.20) while causing significantly (P < 0.05, F (2, 15) = 6.667) fewer stepping errors. Antiaris africana extract inhibits seizures induced by chronic demyelination and has beneficial effects on motor coordination.

6.
PeerJ ; 12: e17865, 2024.
Article in English | MEDLINE | ID: mdl-39135953

ABSTRACT

Background: Gross motor coordination (GMC) plays a crucial factor in children's motor development and daily activities. It encompasses various sub-capacities, such as spatial orientation, rhythm, and motor reaction, collectively referred to as basic coordination capacities (BCC). However, children who are overweight and obese (OW/OB) often display poorer GMC. This study aims to examine the impact of gender and weight status (BMI categories) on children's GMC and BCC. It also seeks to investigate the impact of BCC and BMI on GMC. Method: The study involved 266 participants, 135 in the NW group (boys: n = 75; girls: n = 60) and 131 in the OW/OB group (boys: n = 68; girls: n = 63). An NW status is defined by a BMI z-score between ≥-2SD to ≤1SD, while an OW/OB status corresponds to a BMI z-score > 1SD. Physical activity was assessed using the Physical Activity Questionnaire for Children, developed by the University of Saskatchewan, Canada. We used six field tests to evaluate BCC, including single leg standing test (static balance), YBT (dynamic balance), rhythmic sprint test (rhythm), reaction time test (motor reaction), target standing broad test (kinesthetic differentiation), and numbered medicine ball running test (spatial orientation). GMC was evaluated with Kiphard-Schilling's Body Coordination Test (KTK). Result: The motor quotient (MQ) was primarily affected by weight status (F = 516.599, p < 0.001; gender: F = 6.694, p = 0.01), with no significant interaction effect (F = 0.062, p = 0.803). In BCC, gender had a significant main effect on rhythm capacity (F = 29.611, p < 0.001) and static balance (F = 11.257, p = 0.001) but did not significant influence other sub-capacities (p > 0.05). Weight status impacted dynamic balance (F = 11.164, p = 0.001). The interaction of gender and weight status significantly impacted motor reaction (F = 1.471, p = 0.024) and kinesthetic differentiation (F = 5.454, p = 0.02), but did not affect other sub-capacities (p > 0.05). The physical activity was not significant affected by gender (F = 0.099, p = 0.753), weight status (F = 0.171, p = 0.679) and the interactions of two variables (F = 0.06, p = 0.806). In the regression analysis, except motor reaction (p > 0.05), other BCC sub-capacities influenced GMC to varying extents (ß = -0.103-0.189, p < 0.05). Nonetheless, only two types of balance significantly mediated the relationship between BMI and GMC (BMI→MQ: ß = -0.543, p < 0.001; BMI→YBT: ß = -0.315, p < 0.001; BMI→SLS: ß = -0.282, p < 0.001; SLS→MQ: ß = 0.189, p < 0.001; YBT→MQ: ß = 0.182, p < 0.001). Conclusion: Compared to gender, the main effect of weight status on most GMC and BCC's sub-capacities was more pronounced. OW/OB children exhibited poorer GMC, which is related to their reduced static and dynamic balance due to excess weight. Kinesthetic differentiation, spatial orientation, and rhythm capacity are not significantly associated with BMI, but these sub-capacities positively influence gross motor coordination (GMC), except for hand-eye motor reaction.


Subject(s)
Body Mass Index , Motor Skills , Humans , Male , Female , Child , Motor Skills/physiology , Pediatric Obesity/physiopathology , Pediatric Obesity/epidemiology , Overweight/physiopathology , Overweight/epidemiology , Postural Balance/physiology , Exercise/physiology , Reaction Time/physiology , Psychomotor Performance/physiology
7.
Front Psychol ; 15: 1412266, 2024.
Article in English | MEDLINE | ID: mdl-39105149

ABSTRACT

Purposes: First, to examine the relationship between primary school children's academic achievement and healthy lifestyle habits. Second, to evaluate the effectiveness of two different 5-month physical education interventions (traditional physical education vs. coordinative physical education) on children's academic achievement. Third, to examine whether variations of anthropometric variables, fitness level, gross motor coordination, physical activity level, sedentary time, attentional performance, fruit and vegetable consumption, meal frequency and type of physical education intervention could predict children's academic achievement variations. Methods: Before and after the intervention, Italian language and mathematics skills, anthropometric variables (weight, height, body fat percentage, BMI), physical fitness (aerobic fitness, muscular strength, flexibility), gross motor coordination, attentional performance (processing speed, concentration performance, performance accuracy, attentional and inhibitory control), physical activity level, sedentary time and eating habits (meal frequency, fruit and vegetable consumption) were assessed in 161 Italian primary school children, randomly assigned to a traditional physical education group or to a coordinative physical education group. Results: Physical activity level, gross motor coordination and aerobic fitness moderately predicted mathematics skill (R2 = 17%). Moreover, physical activity level, aerobic fitness and muscular strength moderately predicted Italian language skill (R2 = 21%). Intervention type differently affected academic achievement. Specifically, Italian language and mathematics skills significantly improved only after traditional intervention. Fruit consumption increase was positively associated with the improvement in academic achievement. Coordinative physical education intervention was associated with a lower probability of improvement in Italian language and mathematical skills. Conclusion: Motor ability and lifestyle habits may have a positive influence on academic achievement in children. Unexpectedly, traditional physical education intervention resulted to be more effective on both Italian language and mathematical skills.

8.
Article in English | MEDLINE | ID: mdl-39210565

ABSTRACT

BACKGROUND: Individuals (i.e. children/young adults) with developmental disabilities (DDs) and intellectual disabilities (IDs) often display a variety of physical and motor impairments. It is well known that participation in motor activities can positively impact the development of children's cognitive and social skills. Recently, virtual and digital technologies (e.g. video conferencing applications, virtual reality and video gaming) have been increasingly used to promote better physical/motor outcomes. The efficacy of digital technologies in improving motor outcomes for those with DD/ID varies depending on the technology and population, and the comparative effects of various technologies are unknown. The aim of our study is to conduct a systematic review to comprehensively examine the quantitative and qualitative results of current studies reporting the efficacy of digitally based motor interventions on motor outcomes in individuals with DD/ID. METHODS: Literature published from 1900 to 2024 was searched in four health sciences databases: PubMed, PsycINFO, Scopus and CINAHL. Articles that examined the effects of gross motor/physical activity training using technologies such as exergaming (i.e. exercise through video gaming such as the Wii and Xbox Kinect), virtual reality or telehealth video conferencing applications (i.e. Zoom, Webex or mobile health apps) on the standardised or game-specific gross motor performance of individuals with DD/ID diagnoses that do not typically experience significant walking challenges using experimental or quasi-experimental study designs were included. Thirty relevant articles were retrieved from a search of the databases PubMed (914), PsycINFO (1201), Scopus (1910) and CINAHL (948). RESULTS: Our quantitative synthesis of this published literature suggests strong and consistent evidence of small-to-large improvements in motor skill performance following digital movement interventions. CONCLUSIONS: Our review supports the use of digital motor interventions to support motor skill performance in individuals with DD without ID. Digital technologies can provide a more engaging option for therapists to promote motor skill development in individuals with DD or for caregivers to use as an adjunct to skilled therapy.

9.
Bioengineering (Basel) ; 11(8)2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39199751

ABSTRACT

According to the modular hypothesis for the control of movement, muscles are recruited in synergies, which capture muscle coordination in space, time, or both. In the last two decades, muscle synergy analysis has become a well-established framework in the motor control field and for the characterization of motor impairments in neurological patients. Altered modular control during a locomotion task has been often proposed as a potential quantitative metric for characterizing pathological conditions. Therefore, the purpose of this systematic review is to analyze the recent literature that used a muscle synergy analysis of neurological patients' locomotion as an indicator of motor rehabilitation therapy effectiveness, encompassing the key methodological elements to date. Searches for the relevant literature were made in Web of Science, PubMed, and Scopus. Most of the 15 full-text articles which were retrieved and included in this review identified an effect of the rehabilitation intervention on muscle synergies. However, the used experimental and methodological approaches varied across studies. Despite the scarcity of studies that investigated the effect of rehabilitation on muscle synergies, this review supports the utility of muscle synergies as a marker of the effectiveness of rehabilitative therapy and highlights the challenges and open issues that future works need to address to introduce the muscle synergies in the clinical practice and decisional process.

10.
Podium (Pinar Río) ; 19(2)ago. 2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1569403

ABSTRACT

La Educación Física ha demostrado ser una herramienta eficaz para desarrollar condiciones físicas y mentales en el ser humano. Sin embargo, aún las propuestas a favor de hacer realidad la educación inclusiva en estudiantes con trastorno del espectro autista no logra los niveles mundialmente esperados. Es por ello que en esta obra se plantea como objetivo diseñar un sistema de juegos inclusivos para el desarrollo de la coordinación motriz en estudiantes con trastorno del espectro autista, en la clase de Educación Física. Para lograr este propósito se emplearon como métodos fundamentales del nivel empírico la encuesta, la prueba pedagógica y la observación. Los resultados del diagnóstico apuntan a un deficiente conocimiento por parte de los docentes de Educación Física sobre el tratamiento de los estudiantes con este trastorno, por lo que se procede a la tarea de elaborar un sistema de juegos para el desarrollo de la coordinación motriz que gradualmente los incorpore a la socialización en el grupo, y un sistema evaluativo pertinente donde se pudieron apreciar resultados superiores cuantitativa y cualitativamente.


A Educação Física tem se mostrado uma ferramenta eficaz para desenvolver as condições físicas e mentais do ser humano. No entanto, mesmo as propostas a favor de tornar a educação inclusiva uma realidade para alunos com perturbação do espectro do autismo não atingem os níveis globalmente esperados. Por isso o objetivo deste trabalho é desenhar um sistema de jogos inclusivos para o desenvolvimento da coordenação motora em alunos com transtorno do espectro do autismo, na aula de Educação Física. Para atingir este propósito, o inquérito, o teste pedagógico e a observação foram utilizados como métodos fundamentais a nível empírico. Os resultados do diagnóstico apontam para pouco conhecimento por parte dos professores de Educação Física sobre o tratamento dos alunos com esse transtorno, por isso passam à tarefa de desenvolver um sistema de jogos para o desenvolvimento da coordenação motora que os incorpore gradativamente à socialização em o grupo, e um sistema avaliativo pertinente onde resultados superiores pudessem ser vistos quantitativa e qualitativamente.


Physical Education has proven to be an effective tool to develop physical and mental conditions in human beings. However, even the proposals in favor of making inclusive education a reality for students with autism spectrum disorder do not achieve the globally expected levels. That is why, the objective of this work is to design a system of inclusive games for the development of motor coordination in students with autism spectrum disorder, in the Physical Education class. To achieve this purpose, the survey, the pedagogical test and observation were used as fundamental methods at the empirical level. The results of the diagnosis point to poor knowledge on the part of Physical Education teachers about the treatment of students with this disorder, so it is proceed to the task of developing a system of games for the development of motor coordination that gradually incorporated them into socialization in the group, and a pertinent evaluative system where superior results could be seen quantitatively and qualitatively.

11.
Cerebellum ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017808

ABSTRACT

The cerebellum, traditionally linked to voluntary motor coordination, is now recognized for its role in nonmotor functions, including cognitive and social behaviors. This expanded understanding is vital for identifying neurodevelopmental disorders such as autism spectrum disorder (ASD), where cerebellar abnormalities are common. Recent research has identified specific cerebellar circuits contributing to these diverse functions, revealing interconnected pathways that regulate both motor and social behaviors. The cerebellum communicates extensively with the cerebral cortex, thalamus, and limbic structures through converging and diverging pathways, integrating sensory and motor information to fine-tune outputs and influence higher-order functions. Mouse models have been instrumental in dissecting cerebellar functions, with studies using genetic and neuroanatomical techniques to manipulate specific circuits and observe behavioral outcomes. Disruptions in cerebellar pathways can lead to motor deficits and social impairments, mirroring human neurodevelopmental disorders. This review explores the anatomical and functional organization of cerebellar pathways in mice, their role in behavior, and the implications of cerebellar dysfunction in disorders such as ASD. Understanding these pathways enhances knowledge of cerebellar contributions to behavior and informs therapeutic strategies for cerebellar and neurodevelopmental disorders, emphasizing the integral role of the cerebellum in motor and social functions.

12.
Int J Biol Sci ; 20(9): 3302-3316, 2024.
Article in English | MEDLINE | ID: mdl-38993558

ABSTRACT

Background: Parkinson's disease (PD) is marked by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and cognitive dysfunctions. The molecular mechanisms underlying synaptic alterations in PD remain elusive, with a focus on the role of Itga5 in synaptic integrity and motor coordination and TAT-Itga5 was designed to suppress PTEN activity in this investigation. Methods: This study utilized MPTP-induced PD animal models to investigate the expression and role of Itga5 in the striatum. Techniques included quantitative PCR, Western blotting, immunostaining, CRISPR-CasRx-mediated knockdown, electrophysiological assays, behavioral tests, and mass spectrometry. Results: Itga5 expression was significantly reduced in MPTP-induced PD models. In these models, a marked decrease in dendritic spine density and a shift towards thinner spines in striatal GABA neurons were observed, suggesting impaired synaptic integration. Knockdown of Itga5 resulted in reduced dendritic branching, decreased mushroom spines, and increased thin spines, altering synaptic architecture. Electrophysiological analyses revealed changes in action potential and spontaneous excitatory postsynaptic currents, indicating altered synaptic transmission. Motor behavior assessments showed that Itga5 deficiency led to impairments in fine motor control and coordination. Furthermore, Itga5 was found to interact with PTEN, affecting AKT signaling crucial for synaptic development and motor coordination. Conclusion: The study demonstrates that Itga5 plays a critical role in maintaining synaptic integrity and motor coordination in PD. The Itga5-PTEN-AKT pathway represents a potential therapeutic target for addressing synaptic and motor dysfunctions in PD.


Subject(s)
PTEN Phosphohydrolase , Parkinson Disease , Signal Transduction , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , Male , Mice , Corpus Striatum/metabolism , Mice, Inbred C57BL , Integrin alpha5/metabolism , Integrin alpha5/genetics , Synapses/metabolism , Disease Models, Animal
13.
J Foot Ankle Res ; 17(3): e12036, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38951733

ABSTRACT

BACKGROUND: Motor coordination concerns are estimated to affect 5%-6% of school-aged children. Motor coordination concerns have variable impact on children's lives, with gait and balance often affected. Textured insoles have demonstrated positive impact on balance and gait in adults with motor coordination disorders related to disease or the ageing process. The efficacy of textured insoles in children is unknown. Our primary aim was to identify the feasibility of conducting a randomised controlled trial involving children with motor control issues. The secondary aim was to identify the limited efficacy of textured insoles on gross motor assessment balance domains and endurance in children with movement difficulties. METHODS: An assessor-blinded, randomised feasibility study. We advertised for children between the ages of 5-12 years, with an existing diagnosis or developmental coordination disorder or gross motor skill levels assessed as 15th percentile or below on a norm-referenced, reliable and validated scale across two cities within Australia. We randomly allocated children to shoes only or shoes and textured insoles. We collected data across six feasibility domains; demand (recruitment), acceptability (via interview) implementation (adherence), practicality (via interview and adverse events), adaptation (via interview) and limited efficacy testing (6-min walk test and balance domain of Movement ABC-2 at baseline and 4 weeks). RESULTS: There were 15 children randomised into two groups (eight received shoes alone, seven received shoes and textured insoles). We experienced moderate demand, with 46 potential participants. The insoles were acceptable, however, some parents reported footwear fixture issues requiring modification. The 6-min walk test was described as problematic for children, despite all but one child completing. Social factors impacted adherence and footwear wear time in both groups. Families reported appointment locations and parking impacting practicality. Underpowered, non-significant small to moderate effect sizes were observed for different outcome measures. Improvement in balance measures favoured the shoe and insole group, while gait velocity increase favoured the shoe only group. CONCLUSION: Our research indicates that this trial design is feasible with modifications such as recruiting with a larger multi-disciplinary organisation, providing velcro shoe fixtures and using a shorter timed walk test. Furthermore, progressing to a larger well-powered randomised control trial is justified considering our preliminary, albeit underpowered, efficacy findings. TRIAL REGISTRATION: This trial was retrospectively registered with the Australian and New Zealand Clinical Trial Registration: ACTRN12624000160538.


Subject(s)
Feasibility Studies , Foot Orthoses , Motor Skills Disorders , Postural Balance , Shoes , Humans , Postural Balance/physiology , Child , Male , Female , Motor Skills Disorders/rehabilitation , Child, Preschool , Motor Skills/physiology , Australia , Physical Endurance/physiology , Gait/physiology , Equipment Design
14.
Brain Sci ; 14(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39061373

ABSTRACT

Cysteamine hydrochloride (Cys-HCl) has been established as a potent ulcerogenic agent of the gastrointestinal (GI) system. GI dysfunction and olfactory deficits are the most common clinical symptoms of many movement disorders, including Parkinson's disease (PD). Cys-HCl has been shown to interfere with dopamine, a neurotransmitter crucial for motor, olfactory, and cognitive functions. However, the reports on the effect of Cys-HCl treatment on the behavioral aspects and functions of the dopamine system appear to be inconsistent. Therefore, we revisited the impact of Cys-HCl on the motor function in experimental mice using a battery of behavioral tests, such as the pole test (PT), beam-walking test (BWT), and rotarod test (RDT), while the olfactory ability and cognitive functions were examined through the buried-food test (BFT) and Y-maze test. Furthermore, we investigated the effect of Cys-HCl on the number of dopaminergic tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) and olfactory bulb (OB) of the experimental mice using immunohistochemistry. The results revealed that Cys-HCl administration in the mice induced significant impairments in their motor balance and coordination, as their movement-related performances were markedly reduced in terms of the behavioral tasks. Mice exposed to Cys-HCl showed pronounced reductions in their odor discrimination abilities as well as cognitive impairments. Strikingly, the number of TH-positive neurons was found to be reduced in the SN and OB of the Cys-HCl-treated group, which is a bonafide neuropathogenic hallmark of PD. This study highlights the potential neurotoxic effects of Cys-HCl in experimental brains and suggests further investigation into its role in the pathogenesis of Parkinsonism.

15.
Sci Rep ; 14(1): 16123, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997308

ABSTRACT

Neurological soft signs (NSS), discrete deficits in motor coordination and sensory integration, have shown promise as markers in autism diagnosis. While motor impairments, partly associated with core behavioral features, are frequently found in children with autism, there is limited evidence in adults. In this study, NSS were assessed in adults undergoing initial diagnosis of high-functioning autism (HFA), a subgroup difficult to diagnose due to social adaptation and psychiatric comorbidity. Adults with HFA (n = 34) and 1:1 sex-, age-, and intelligence-matched neurotypical controls were administered a structured NSS examination including motor, sensory, and visuospatial tasks. We showed that adults with HFA have significantly increased motor coordination deficits compared with controls. Using hierarchical cluster analysis within the HFA group, we also identified a subgroup that was particularly highly affected by NSS. This subgroup differed from the less affected by intelligence level, but not severity of autism behavioral features nor global psychological distress. It remains questionable whether motor impairment represents a genuinely autistic trait or is more a consequence of factors such as intelligence. Nevertheless, we conclude that examining NSS in terms of motor coordination may help diagnose adults with HFA and identify HFA individuals who might benefit from motor skills interventions.


Subject(s)
Autistic Disorder , Humans , Male , Female , Adult , Autistic Disorder/physiopathology , Autistic Disorder/diagnosis , Young Adult , Motor Skills Disorders/diagnosis , Motor Skills Disorders/physiopathology , Motor Skills/physiology , Middle Aged , Case-Control Studies , Adolescent , Intelligence
16.
Front Psychol ; 15: 1335050, 2024.
Article in English | MEDLINE | ID: mdl-38903467

ABSTRACT

Head movements that are synchronized with musical rhythms often emerge during musical activities, such as hip hop dance. Although such movements are known to affect the meter and pulse perception of complex auditory rhythms, no studies have investigated their contribution to the performance of sensorimotor synchronization (SMS). In the present study, participants listened to syncopated auditory rhythms and flexed their dominant hand index finger in time with the perceived pulses (4/4 meters). In the first experiment (Exp. 1), the participants moved their heads via voluntary neck flexion to the pulses in parallel with finger SMS (Nodding condition, ND). This performance was compared with finger SMS without nodding (Without Nodding condition, WN). In the second experiment (Exp. 2), we investigated the specificity of the effect of head SMS on finger SMS confirmed in Exp. 1 by asking participants to flex their bilateral index fingers to the pulses (Bimanual condition, BM). We compared the performance of dominant hand finger SMS between the BM and ND conditions. In Exp. 1, we found that dominant hand finger SMS was significantly more stable (smaller standard deviation of asynchrony) in the ND versus WN condition (p < 0.001). In Exp. 2, dominant hand finger SMS was significantly more accurate (smaller absolute value of asynchrony) in the ND versus BM condition (p = 0.037). In addition, the stability of dominant hand finger SMS was significantly correlated with the index of phase locking between the pulses and head SMS across participants in the ND condition (r = -0.85, p < 0.001). In contrast, the stability of dominant hand finger SMS was not significantly correlated with the index of phase locking between pulses and non-dominant hand finger SMS in the BM condition (r = -0.25, p = 0.86 after multiple comparison correction). These findings suggest that SMS modulation depends on the motor effectors simultaneously involved in synchronization: simultaneous head SMS stabilizes the timing of dominant hand finger SMS, while simultaneous non-dominant hand finger SMS deteriorates the timing accuracy of dominant hand finger SMS. The present study emphasizes the unique and crucial role of head movements in rhythmic behavior.

17.
Cells ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38786023

ABSTRACT

Parkinson's disease (PD) is the second-most common neurodegenerative disorder worldwide and is diagnosed based on motor impairments. Non-motor symptoms are also well-recognised in this disorder, and peripheral neuropathy is a frequent but poorly appreciated non-motor sign. Studying how central and peripheral sensory systems are affected can contribute to the development of targeted therapies and deepen our understanding of the pathophysiology of PD. Although the cause of sporadic PD is unknown, chronic exposure to the pesticide rotenone in humans increases the risk of developing the disease. Here, we aimed to investigate whether peripheral neuropathy is present in a traditional model of PD. Mice receiving intrastriatal rotenone showed greatly reduced dopamine terminals in the striatum and a reduction in tyrosine hydroxylase-positive neurons in the Substantia nigra pars compacta and developed progressive motor impairments in hindlimb stepping and rotarod but no change in spontaneous activity. Interestingly, repeated testing using gold-standard protocols showed no change in gut motility, a well-known non-motor symptom of PD. Importantly, we did not observe any change in heat, cold, or touch sensitivity, again based upon repeated testing with well-validated protocols that were statistically well powered. Therefore, this traditional model fails to replicate PD, and our data again reiterate the importance of the periphery to the disorder.


Subject(s)
Disease Models, Animal , Parkinson Disease , Rotenone , Animals , Mice , Parkinson Disease/physiopathology , Parkinson Disease/pathology , Rotenone/pharmacology , Mice, Inbred C57BL , Male , Peripheral Nervous System Diseases/physiopathology , Peripheral Nervous System Diseases/pathology , Corpus Striatum/pathology , Corpus Striatum/metabolism , Dopamine/metabolism
18.
MethodsX ; 12: 102722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774686

ABSTRACT

Eye-hand coordination (EHC) is crucial to our daily activities, and its underlying mechanisms are being intensely studied. The analysis of simultaneous eye and hand movements can provide valuable insights into EHC, particularly for individuals struggling with dexterous control, such as might be caused by stroke or traumatic brain injuries. Despite advancements in motion-capture and eye tracking technologies, there is currently no automated method for visualizing concurrent eye- and hand-movement data. To address this need, we have developed a MATLAB-based dashboard designed for near instantaneous analysis and visualization of eye and hand-tracking data. This paper introduces the design of the dashboard and presents experimental results obtained from its application, leveraging simulated data inspired by our recent work in stroke. This testing suggests that our solution has the potential to significantly aid in understanding and investigating EHC by providing side-by-side and time-locked comparison of eye/hand movements along with their timing and spatio-temporal errors, offering novel opportunities for research and clinical applications.•Continuous eye movement data is collected throughout the experiment•Continuous hand movement data is collected throughout the experiment•Combine datasets and display time-locked eye-hand data in a single dashboard.

19.
Front Psychiatry ; 15: 1363406, 2024.
Article in English | MEDLINE | ID: mdl-38596639

ABSTRACT

Background: Motor coordination difficulties could contribute to social communication deficits in autistic children. However, the exploration of the mechanism implicated in these claims has been limited by the lack of potential confounders such as executive function (EF). Methods: We investigated the role that EF plays in the relationship between motor coordination and social communication in a school-aged autistic population via a structural model in a statistically robust manner. The results of questionnaires, including the Developmental Coordination Disorder questionnaire, the Behavior Rating Inventory of Executive Function, and the Social Responsiveness Scale, were collected to measure motor coordination, social communication deficits, and EF. Results: A total of 182 autistic children (7.61±1.31 years, 87.9% boys) were included in the final analysis. In the model with EF as a mediator, the total effect (ß=-0.599, P<0.001) and the direct effect (ß=-0.331, P =0.003) of motor coordination function on social communication were both significant among autistic children without intellectual disability (ID), as were indirect effects through EF (ß=-0.268, P<0.001). Conclusion: EF partially mediates the motor coordination and social communication correlation among autistic children. We suggest that motor coordination should be included in the routine evaluation of autistic surveillance and rehabilitation procedures.

20.
Games Health J ; 13(4): 252-257, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38656178

ABSTRACT

Purpose: The objective of this research was to develop a musical digital game for rehabilitation of upper limb and to verify its usability and user experience with professionals in the field (physical therapists). Materials and Methods: Thirty working professionals were recruited to evaluate the system. The usability was evaluated with the System Usability Scale (SUS) and the user experience was verified with the Game Flow scale. Results: The overall score of the SUS scale was 88.67 (±9.129); this score is interpreted as "Best Imaginable" (86-100). The user experience rating had most of its domains equal or higher than 4, which indicates that all the requirements for a good user experience were present in the game. Conclusions: The Moniz Game proved to be a game with good usability and can be a tool for application in clinical practice regarding motor coordination. However, further studies are needed to evaluate the effect of the Moniz Game on motor coordination in patients with neurological dysfunctions.


Subject(s)
Music , Video Games , Humans , Video Games/psychology , Video Games/standards , Video Games/statistics & numerical data , Adult , Female , Male , Music/psychology , User-Computer Interface , Upper Extremity/physiology , Middle Aged , Motor Skills/physiology
SELECTION OF CITATIONS
SEARCH DETAIL