Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Cell Rep ; 42(11): 113417, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37950872

ABSTRACT

EGFRT790M mutation causes resistance to the first-generation tyrosine kinase inhibitors (TKIs) in patients with non-small cell lung cancer (NSCLC). However, the therapeutic options for sensitizing first TKIs and delaying the emergence of EGFRT790M mutant are limited. In this study, we show that quercetin directly binds with glucose-6-phosphate dehydrogenase (G6PD) and inhibits its enzymatic activity through competitively abrogating NADP+ binding in the catalytic domain. This inhibition subsequently reduces intracellular NADPH levels, resulting in insufficient substrate for methionine reductase A (MsrA) to reduce M790 oxidization of EGFRT790M and inducing the degradation of EGFRT790M. Quercetin synergistically enhances the therapeutic effect of gefitinib on EGFRT790M-harboring NSCLCs and delays the acquisition of the EGFRT790M mutation. Notably, high levels of G6PD expression are correlated with poor prognosis and the emerging time of EGFRT790M mutation in patients with NSCLC. These findings highlight the potential implication of quercetin in overcoming EGFRT790M-driven TKI resistance by directly targeting G6PD.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , ErbB Receptors/metabolism , Quercetin/pharmacology , Quercetin/therapeutic use , Protein Kinase Inhibitors/pharmacology , Glucosephosphate Dehydrogenase , Mutation/genetics , Drug Resistance, Neoplasm/genetics
2.
Geroscience ; 45(5): 3003-3017, 2023 10.
Article in English | MEDLINE | ID: mdl-37391679

ABSTRACT

Methionine restriction (MR) extends lifespan in various model organisms, and understanding the molecular effectors of MR could expand the repertoire of tools targeting the aging process. Here, we address to what extent the biochemical pathway responsible for redox metabolism of methionine plays in regulating the effects of MR on lifespan and health span. Aerobic organisms have evolved methionine sulfoxide reductases to counter the oxidation of the thioether group contained in the essential amino acid methionine. Of these enzymes, methionine sulfoxide reductase A (MsrA) is ubiquitously expressed in mammalian tissues and has subcellular localization in both the cytosol and mitochondria. Loss of MsrA increases sensitivity to oxidative stress and has been associated with increased susceptibility to age-associated pathologies including metabolic dysfunction. We rationalized that limiting the available methionine with MR may place increased importance on methionine redox pathways, and that MsrA may be required to maintain available methionine for its critical uses in cellular homeostasis including protein synthesis, metabolism, and methylation. Using a genetic mutant mouse lacking MsrA, we tested the requirement for this enzyme in the effects of MR on longevity and markers of healthy aging late in life. When initiated in adulthood, we found that MR had minimal effects in males and females regardless of MsrA status. MR had minimal effect on lifespan with the exception of wild-type males where loss of MsrA slightly increased lifespan on MR. We also observed that MR drove an increase in body weight in wild-type mice only, but mice lacking MsrA tended to maintain more stable body weight throughout their lives. We also found that MR had greater benefit to males than females in terms of glucose metabolism and some functional health span assessments, but MsrA generally had minimal impact on these metrics. Frailty was also found to be unaffected by MR or MsrA in aged animals. We found that in general, MsrA was not required for the beneficial effects of MR on longevity and health span.


Subject(s)
Methionine Sulfoxide Reductases , Methionine , Male , Female , Animals , Mice , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Methionine/metabolism , Longevity/physiology , Racemethionine , Body Weight , Mammals/metabolism
3.
Nurs Rep ; 13(1): 404-411, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36976689

ABSTRACT

Sarcopenia is a progressive aging syndrome with severe socioeconomic costs. Therefore, the early diagnosis of sarcopenia is required to secure early treatment and to enhance quality of life. The Mini Sarcopenia Risk Assessment (MSRA) questionnaire, which is available in seven-item (MSRA-7) and five-item (MSRA-5) versions, is a sarcopenia screening tool that was translated into Greek, adapted, and validated in this study. The present study was developed in an outpatient hospital setting, from April 2021 to June 2022. The MSRA-7 and MSRA-5 questionnaires were translated backwards and forwards and adapted to the Greek language. To validate the MSRA questionnaire as a pre-screening tool to identify the risk of sarcopenia in the older Greek population, both the MSRA-7 and MSRA-5 versions were correlated with the Greek version of the SARC-F questionnaire, which is a widely accepted and well-known tool used in sarcopenia screening. Ninety elderly subjects aged 65-89 years-old with no mobility impairments participated in this study. The questionnaires' content validity was assessed using the Content Validity Ratio, and the Content Validity Index was calculated for the instrument. The intra-rater reliability was assessed by calculating the Intra-class Correlation Coefficient between the initial assessment and the reassessment of the MSRA questionnaire, which was 0.986, with a 95% Confidence Interval of 0.961-0.995. Concurrent validity was assessed between the Greek MSRA questionnaires and the SARC-F questionnaire using the Spearman's rank correlation coefficient (p). The Greek MSRA-7 questionnaire had a very high correlation with the SARC-F questionnaire (rho = -0.741, p < 0.001), as did the Greek MSRA-5 questionnaire (rho = -0.724, p < 0.001). The proofs of content validity, concurrent validity, and intra-rater reliability provided for the Greek versions of the MSRA, designated them as reliable pre-screening tools for the detection of sarcopenia in the older population and in clinical practice.

4.
Biochimie ; 211: 1-15, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36809827

ABSTRACT

Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.


Subject(s)
Macrophages , Methionine Sulfoxide Reductases , Mycobacterium smegmatis , Animals , Mice , Macrophages/microbiology , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Mycobacterium smegmatis/enzymology , Mycobacterium smegmatis/genetics , Oxidative Stress , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
5.
Micromachines (Basel) ; 14(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838119

ABSTRACT

There are various errors in practical applications of micromachined silicon resonant accelerometers (MSRA), among which the composition of random errors is complex and uncertain. In order to improve the output accuracy of MSRA, this paper proposes an MSRA random error suppression method based on an improved grey wolf and particle swarm optimized extreme learning machine (IGWPSO-ELM). A modified wavelet threshold function is firstly used to separate the white noise from the useful signal. The output frequency at the previous sampling point and the sequence value are then added to the current output frequency to form a three-dimensional input. Additional improvements are made on the particle swarm optimized extreme learning machine (PSO-ELM): the grey wolf optimization (GWO) is fused into the algorithm and the three factors (inertia, acceleration and convergence) are non-linearized to improve the convergence efficiency and accuracy of the algorithm. The model trained offline using IGWPSO-ELM is applied to predicting compensation experiments, and the results show that the method is able to reduce velocity random walk from the original 4.3618 µg/√Hz to 2.1807 µg/√Hz, bias instability from the original 2.0248 µg to 1.3815 µg, and acceleration random walk from the original 0.53429 µg·âˆšHz to 0.43804 µg·âˆšHz, effectively suppressing the random error in the MSRA output.

6.
Int J Mol Sci ; 23(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36233020

ABSTRACT

Oxidized low-density lipoprotein (oxLDL)-induced oxidative stress and apoptosis are considered as critical contributors to cardiovascular diseases. Methionine sulfoxide reductase A (MSRA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. Here, we firstly provide evidence that recombinant humanized IgG1 antibody treatment upregulated the expression of MSRA in THP-1 cells to defend against oxLDL-induced oxidative stress and apoptosis. It was also observed that the upregulation of MSRA is regulated by the forkhead box O transcription factor (FOXO1), and the acetylation of FOXO1 increased when exposed to oxLDL but declined when treated with recombinant humanized IgG1 antibody. In addition, we identified that silent information regulator 1 (SIRT1) suppresses FOXO1 acetylation. Importantly, SIRT1 or FOXO1 deficiency impaired the anti-oxidative stress and anti-apoptotic effect of recombinant humanized IgG1 antibody. Together, our results suggest that recombinant humanized IgG1 antibody exerts its anti-oxidative stress and anti-apoptotic function by upregulation of MSRA via the Sirt1-FOXO1 axis.


Subject(s)
Methionine Sulfoxide Reductases , Sirtuin 1 , Apoptosis , Forkhead Box Protein O1/metabolism , Humans , Immunoglobulin G/metabolism , Immunoglobulin G/pharmacology , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Macrophages/metabolism , Methionine Sulfoxide Reductases/metabolism , Monocytes/metabolism , Oxidative Stress , Sirtuin 1/genetics , Sirtuin 1/metabolism , THP-1 Cells , Transcription Factors/metabolism , Up-Regulation
7.
BMC Geriatr ; 22(1): 761, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36114480

ABSTRACT

BACKGROUND: The 3-item SARC-F (SARC-F-3) and the 5-item Mini Sarcopenia Risk Assessment (MSRA-5) questionnaires have been recently proposed to screen elderly people regarding the risk of sarcopenia. However, no studies have investigated their performances in Alzheimer's disease (AD). METHODS: We conducted a single-center observational study, including 130 consecutive AD patients (mean age: 70.71 ± 8.50 y, 54.6% women) who attended a center for neurodegenerative diseases. Sarcopenia was diagnosed using the European Working Group on Sarcopenia in Older People of 2010 (EWGSOP1) and of 2018 (EWGSOP2) criteria. Sensitivity, specificity, positive and negative likelihood ratio, and the area under the receiver operating characteristic curve (AUC) were used to assess the diagnostic performance of SARC-F-3 and MSRA-5. RESULTS: SARC-F-3 showed a sensitivity of 9.7%, a specificity of 82.8% and an AUC of 0.41 using EWGSOP1, whereas the sensitivity was of 16.7%, specificity of 84.7% and AUC of 0.58 using EWGSOP2. The MSRA-5 displayed a sensitivity of 3.2%, a specificity of 89.9% and an AUC of 0.41 using EWGSOP1, whereas sensitivity was of 0%, specificity of 91.1% and the AUC of 0.55 using EWGSOP2 criteria. The questionnaires showed a moderate agreement (Cohen's k = 0.53). CONCLUSIONS: In our sample of AD patients, a sizable number of sarcopenic individuals were misidentified by SARC-F-3 and MSRA-5, making those questionnaires unsuitable for sarcopenia screening. Considering that sarcopenia has a high prevalence in dementia and that its correct and timely identification is paramount for optimal management of patients, the development and validation of an ad-hoc sarcopenia screening tool for AD patients is highly desirable.


Subject(s)
Alzheimer Disease , Sarcopenia , Aged , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Cross-Sectional Studies , Female , Geriatric Assessment , Humans , Male , Risk Assessment , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Surveys and Questionnaires
8.
Appl Environ Microbiol ; 88(11): e0003822, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35575549

ABSTRACT

Reactive oxygen species (ROS) can cause destructive damage to biological macromolecules and protein dysfunction in bacteria. Methionine sulfoxide reductase (Msr) with redox-active Cys and/or seleno-cysteine (Sec) residues can restore physiological functions of the proteome, which is essential for oxidative stress tolerance of the extremophile Deinococcus radiodurans. However, the underlying mechanism regulating MsrA enzyme activity in D. radiodurans under oxidative stress has remained elusive. Here, we identified the function of MsrA in response to oxidative stress. msrA expression in D. radiodurans was significantly upregulated under oxidative stress. The msrA mutant showed a deficiency in antioxidative capacity and an increased level of dabsyl-Met-S-SO, indicating increased sensitivity to oxidative stress. Moreover, msrA mRNA was posttranscriptionally regulated by a small RNA, DsrO. Analysis of the molecular interaction between DsrO and msrA mRNA demonstrated that DsrO increased the half-life of msrA mRNA and then upregulated MsrA enzyme activity under oxidative stress compared to the wild type. msrA expression was also transcriptionally regulated by the DNA-repairing regulator DrRRA, providing a connection for further analysis of protein restoration during DNA repair. Overall, our results provide direct evidence that DsrO and DrRRA regulate msrA expression at two levels to stabilize msrA mRNA and increase MsrA protein levels, revealing the protective roles of DsrO signaling in D. radiodurans against oxidative stress. IMPORTANCE The repair of oxidized proteins is an indispensable function allowing the extremophile D. radiodurans to grow in adverse environments. Msr proteins and various oxidoreductases can reduce oxidized Cys and Met amino acid residues of damaged proteins to recover protein function. Consequently, it is important to investigate the molecular mechanism maintaining the high reducing activity of MsrA protein in D. radiodurans during stresses. Here, we showed the protective roles of an sRNA, DsrO, in D. radiodurans against oxidative stress. DsrO interacts with msrA mRNA to improve msrA mRNA stability, and this increases the amount of MsrA protein. In addition, we also showed that DrRRA transcriptionally regulated msrA gene expression. Due to the importance of DrRRA in regulating DNA repair, this study provides a clue for further analysis of MsrA activity during DNA repair. This study indicates that protecting proteins from oxidation is an effective strategy for extremophiles to adapt to stress conditions.


Subject(s)
Deinococcus , Methionine Sulfoxide Reductases , Deinococcus/genetics , Deinococcus/metabolism , Methionine/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Oxidative Stress/physiology , RNA/metabolism , RNA, Messenger/metabolism
9.
Vet Res ; 53(1): 3, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35012652

ABSTRACT

Trueperella pyogenes (T. pyogenes) is an opportunistic pathogen associated with a variety of diseases in many domestic animals. Therapeutic treatment options for T. pyogenes infections are becoming limited due to antimicrobial resistance, in which efflux pumps play an important role. This study aims to evaluate the inhibitory activity of luteolin, a natural flavonoid, on the MsrA efflux pump and investigate its mechanism. The results of antimicrobial susceptibility testing indicated that the susceptibility of msrA-positive T. pyogenes isolates to six macrolides increased after luteolin treatment, while the susceptibility of msrA-negative isolates showed no change after luteolin treatment. It is suspected that luteolin may increase the susceptibility of T. pyogenes isolates by inhibiting MsrA activity. After 1/2 MIC luteolin treatment for 36 h, the transcription level of the msrA gene and the expression level of the MsrA protein decreased by 55.0-97.7% and 36.5-71.5%, respectively. The results of an affinity test showed that the equilibrium dissociation constant (KD) of luteolin and MsrA was 6.462 × 10-5 M, and hydrogen bonding was predominant in the interaction of luteolin and MsrA. Luteolin may inhibit the ATPase activity of the MsrA protein, resulting in its lack of an energy source. The current study illustrates the effect of luteolin on MsrA in T. pyogenes isolates and provides insight into the development of luteolin as an innovative agent in combating infections caused by antimicrobial-resistant bacteria.


Subject(s)
Actinomycetaceae , Drug Resistance, Bacterial , Luteolin , Macrolides , Actinomycetaceae/drug effects , Animals , Animals, Domestic , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial/drug effects , Luteolin/pharmacology , Macrolides/pharmacology , Microbial Sensitivity Tests/veterinary
10.
Pulmonology ; 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34674978

ABSTRACT

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is multi-factorial disorder which results from environmental influences and genetic factors. We aimed to investigate whether methionine sulfoxide reductase A (MSRA) rs10903323 gene polymorphism is associated with COPD development and severity in Serbian adult population. METHODS: The study included 155 patients with COPD and 134 healthy volunteers. Genotyping was determined performing home-made polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The difference between the inhibitory activities of normal and oxidized Alpha-1-Antitrypsin (A1AT) against elastase and trypsin was used for determination of Oxidized Alpha-1-Antitrypsin (OxyA1AT) (expressed as % and g/L). Functional activity of A1AT was presented as a specific inhibitor activity to elastase (SIA-Elastase, kU/g). RESULTS: Frequencies of the genotypes AA, AG and GG were 80.0%, 20.0%, 0% in COPD patients and 80.5%, 18.5% and 1.5% in the control group, and there was no significant difference in genotype or allele distributions between groups. Serum level of A1AT (g/L) and OxyA1AT was significantly higher in COPD patients than in the control group, but functional activity of A1AT (SIA-Elastase) was significantly lower in COPD patients than in the control group. In COPD group, increased level of OxyA1AT was present in G allele carriers who were smokers relative to G allele carriers who were not smokers. In the smoker group of patients with severe and very severe COPD (GOLD3+4), significant increase in OxyA1AT level was present in G allele carriers compared to AA homozygotes. CONCLUSION: These findings suggest that MSRA rs10903323 gene polymorphism is probably not a risk for COPD by itself but could represent a COPD modifier, since minor, G allele, is associated with an increased level of oxidized A1AT, indicating impaired ability of MSRA to repair oxidized A1AT in COPD-smokers, and in severe form of COPD.

11.
Biology (Basel) ; 10(7)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34356479

ABSTRACT

Macrolide-resistant methicillin-resistant Staphylococcus aureus (MAC-MRSA) is one of the most clinically relevant pathogens due to its significant ability of resistance acquisition to different antimicrobial agents. This study aimed to evaluate antimicrobial susceptibility and the use of different combinations of azithromycin with other antibiotics for combating MAC resistance. Seventy-two Staphylococci (38.5%) (n = 187), showed resistance to MACs; of these, 53 isolates (73.6%, n = 72) were S. aureus and 19 (26.4%, n = 72) were coagulase-negative staphylococci (CoNS). Out of the 53 S. aureus and 19 CoNS isolates, 38 (71.7%, n = 53) and 9 (47.4%, n = 19) were MRSA and methicillin-resistant CoNS, respectively. The constitutive MACs, lincosamides and streptogramin-B (cMLS) comprised the predominant phenotype among S. aureus isolates (54.7%) and CoNS isolates (78.9%). The PCR analysis showed that the ermC gene was the most prevalent (79.2%), followed by msrA (48.6%), and ermA (31.9%). Azithromycin combinations with either linezolid, ceftriaxone, gentamicin, or cefotaxime provided synergy in 42.1%, 44.7%, 31.6% and 7.9% of the 38 MAC-MRSA isolates, respectively. Statistical analysis showed significant association between certain MAC resistance genotypes and the synergistic effect of certain azithromycin combinations (p value < 0.05). In conclusion, azithromycin combinations with either linezolid, or ceftriaxone showed synergism in most of the MAC-resistant MRSA clinical isolates.

12.
Metabolites ; 11(7)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34357352

ABSTRACT

Oxidative stress has been acknowledged as a major factor in aging, senescence and neurodegenerative conditions. Mammalian models are susceptible to these stresses following the restoration of oxygen after anoxia; however, some organisms including the freshwater turtle Trachemys scripta can withstand repeated anoxia and reoxygenation without apparent pathology. T. scripta thus provides us with an alternate vertebrate model to investigate physiological mechanisms of neuroprotection. The objective of this study was to investigate the antioxidant methionine sulfoxide reductase system (Msr) in turtle neuronal tissue. We examined brain transcript and protein levels of MsrA and MsrB and examined the potential for the transcription factor FOXO3a to regulate the oxygen-responsive changes in Msr in vitro. We found that Msr mRNA and protein levels are differentially upregulated during anoxia and reoxygenation, and when cells were exposed to chemical oxidative stress. However, while MsrA and MsrB3 levels increased when cell cultures were exposed to chemical oxidative stress, this induction was not enhanced by treatment with epigallocatechin gallate (EGCG), which has previously been shown to enhance FOXO3a levels in the turtle. These results suggest that FOXO3a and Msr protect the cells from oxidative stress through different molecular pathways, and that both the Msr pathway and EGCG may be therapeutic targets to treat diseases related to oxidative damage.

13.
Acta Neuropsychiatr ; 33(6): 307-316, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34396949

ABSTRACT

The objective is to determine whether variability in the MSRA gene, related to obesity and several psychiatric conditions, may be relevant for psychopathological symptoms common in Anorexia Nervosa (AN) and/or for the susceptibility to the disorder. A total of 629 women (233 AN patients and 396 controls) were genotyped for 14 tag-SNPs. Psychometric evaluation was performed with the EDI-2 and SCL-90R questionnaires. Genetic associations were carried out by logistic regression controlling for age and adjusting for multiple comparisons (FDR method). Two tag-SNPs, rs11249969 and rs81442 (with a pairwise r2 value of 0.41), were associated with the global EDI-2 score, which measures EDI-related psychopathology (adjusted FDR-q = 0.02 and 0.04, respectively). Moreover, rs81442 significantly modulated all the scales of the SCL-90R test that evaluates general psychopathology (FDR-q values ranged from 4.1E-04 to 0.011). A sliding-window analysis using adjacent 3-SNP haplotypes revealed a proximal region of the MSRA gene spanning 187.8 Kbp whose variability deeply affected psychopathological symptoms of the AN patients. Depression was the symptom that showed the strongest association with any of the constructed haplotypes (FDR-q = 3.60E-06). No variants were found to be linked to AN risk or anthropometric parameters in patients or controls. Variability in the MSRA gene locus modulates psychopathology often presented by AN patients.


Subject(s)
Anorexia Nervosa , Antioxidants , Anorexia Nervosa/genetics , Female , Genotype , Haplotypes , Humans , Polymorphism, Single Nucleotide , Psychopathology
14.
Andrology ; 9(6): 1943-1957, 2021 11.
Article in English | MEDLINE | ID: mdl-34245495

ABSTRACT

BACKGROUND: The excessive reactive oxygen species produced during semen-freezing and -thawing damage the macromolecules resulting in impairment of cellular functions. Proteins are the primary targets of oxidative damage, wherein methionine residues are more prone to oxidation and get converted into methionine sulfoxide, thus affecting the protein function. The methionine sulfoxide reductase A (MsrA) catalyzes the conversion of methionine sulfoxide to methionine and restores the functionality of defective proteins. OBJECTIVES: To establish the expression of MsrA in male reproductive organs, including semen and its effect on quality of cryopreserved semen upon exogenous supplementation, taking buffalo semen as a model. MATERIALS AND METHODS: The expression of MsrA was established by immunohistochemistry, PCR, and Western blots. Further, the effect of recombinant MsrA (rMsrA) supplementation on the quality of cryopreserved spermatozoa was assessed in three treatment groups containing 1.0, 1.5, and 2.0 µg of rMsrA/50 million spermatozoa in egg yolk glycerol extender along with a control group; wherein the post-thaw progressive motility, viability, membrane integrity, and zona binding ability of cryopreserved spermatozoa were studied. RESULTS: The MsrA was expressed in buffalo testis, epididymis, accessory sex glands, and spermatozoa except in seminal plasma. In group 2, the supplementation has resulted in a significant (p < 0.05) improvement as compared to the control group in mean progressive motility (47.50 ± 2.50 vs. 36.25 ± 2.63), viability (56.47 ± 1.85 vs. 48.05 ± 2.42), HOST (50.76 ± 1.73 vs. 44.29 ± 1.29), and zona binding ability of spermatozoa (149.50 ± 8.39 vs. 29.50 ± 2.85). DISCUSSION AND CONCLUSION: In the absence of native MsrA of seminal plasma, the supplementations of rMsrA may repair the oxidatively damaged seminal plasma proteins and exposed sperm plasma membrane proteins resulting in better quality with a fivefold increase in fertilizability of frozen-thawed spermatozoa. The findings can be extended to other species to improve the semen quality with the variation in the amounts of rMsrA supplementation.


Subject(s)
Cryopreservation , Cryoprotective Agents/administration & dosage , Fertilization , Methionine Sulfoxide Reductases/administration & dosage , Spermatozoa/drug effects , Animals , Buffaloes , Cryoprotective Agents/metabolism , Dietary Supplements , Male , Methionine Sulfoxide Reductases/metabolism , Models, Animal , Oxidative Stress/drug effects , Semen , Semen Analysis , Semen Preservation
15.
Redox Biol ; 42: 101918, 2021 06.
Article in English | MEDLINE | ID: mdl-33674251

ABSTRACT

Methionine sulfoxide reductase A (MsrA) is a widely expressed antioxidant enzyme that counteracts oxidative protein damage and contributes to protein regulation by reversing oxidation of protein methionine residues. In retinal pigment epithelial (RPE) cells in culture, MsrA overexpression increases phagocytic capacity by supporting mitochondrial ATP production. Here, we show elevated retinal protein carbonylation indicative of oxidation, decreased RPE mitochondrial membrane potential, and attenuated RPE phagocytosis in msra-/- mice. Moreover, electroretinogram recordings reveal decreased light responses specifically of cone photoreceptors despite normal expression and localization of cone opsins. Impairment in msra-/- cone-driven responses is similar from 6 weeks to 13 months of age. These functional changes match dramatic decreases in lectin-labeled cone sheaths and reduction in cone arrestin in msra-/- mice. Strikingly, cone defects in light response and in lectin-labeled cone sheath are completely prevented by dark rearing. Together, our data show that msra-/- mice provide a novel small animal model of preventable cone-specific photoreceptor dysfunction that may have future utility in analysis of cone dystrophy disease mechanisms and testing therapeutic approaches aiming to alleviate cone defects.


Subject(s)
Antioxidants , Methionine Sulfoxide Reductases , Animals , Antioxidants/metabolism , Methionine Sulfoxide Reductases/genetics , Methionine Sulfoxide Reductases/metabolism , Mice , Mitochondria/metabolism , Oxidative Stress , Phagocytosis
16.
J Bioenerg Biomembr ; 53(2): 149-156, 2021 04.
Article in English | MEDLINE | ID: mdl-33635515

ABSTRACT

The present study aimed to evaluate the in vitro efflux pump inhibitory capacity of hydroxyamines derived from lapachol and norlachol, where compounds 3, 4, and 5 were tested against the S. aureus strains: RN4220 carrying the pUL5054 plasmid; and IS-58, endowed with the PT181 plasmid. The substances were synthesized from 2-hydroxy-quinones, lapachol and nor-lapachol obtaining the corresponding 2-methoxylated derivatives via dimethyl sulfate alkylation in a basic medium, which then reacted chemoselectively with 2-ethanolamine and 3-propanolamine to form the corresponding amino alcohols. The antibacterial action of the substances was quantified by determining the Minimum Inhibitory Concentration (MIC), while a microdilution assay was carried out to ascertain efflux pump inhibition of Staphylococcus aureus strains carrying the MsrA macrolide and the TetK tetracycline efflux pumps with the substances at a sub-inhibitory concentration. The results were subjected to statistical analysis by an ANOVA test and Bonferroni post hoc test. The MIC from the substances exhibited a value ≥ 1024 µg/mL. However, a significant reduction (p < 0.0001) of the erythromycin, tetracycline and ethidium bromide MIC was demonstrated when these were in combination with the substances, with this effect being due to a supposed efflux pump inhibition. The tested substances demonstrated effectiveness at decreasing the MIC of erythromycin, tetracycline and ethidium bromide, potentially by inhibiting the MsrA macrolide and the TetK tetracycline efflux pumps present in the tested S. aureus strains.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Naphthoquinones/therapeutic use , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Naphthoquinones/pharmacology
17.
Transl Cancer Res ; 10(3): 1295-1312, 2021 Mar.
Article in English | MEDLINE | ID: mdl-35116456

ABSTRACT

BACKGROUND: We demonstrated that drinking hydrogen-rich water (HRW) inhibits endometrial tumor growth in our previous work. This research is to identify differentially expressed proteins (DEPs) between HRW and purified water groups in a xenograft mouse model of endometrial cancer (EC). METHODS: Samples were analyzed using tandem mass tags (TMTs) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). DEPs were identified using bioinformatics to determine potential molecular functions and immunohistochemical (IHC) staining. RESULTS: In total, 11 DEPs were identified in the HRW group relative to the control. The up-regulated proteins included Gatad1, Ttyh3, Nek4, Dyrk2, and Gimap1, while the down-regulated proteins included SP1, Msl1, Plekha7, Dtwd2, MSRA, and KRAS. Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were associated with the binding region, biological regulation, endocrine resistance, estrogen signaling, choline metabolism in cancer and human cytomegalovirus infection. Furthermore, network analysis indicated that KRAS and MSRA interact with YWHAE. KRAS, YWHAE and SP1 were strongly expressed, while MSRA was weak expressed in atypical hyperplasia and EC tissue as well as in HRW group in xenograft tumor tissue. CONCLUSIONS: KRAS, YWHAE, SP1 and MSRA might be regarded as focused biomarkers to assess the prognosis of EC.

18.
Life Sci ; 264: 118675, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33127513

ABSTRACT

Among the bacterial resistance mechanisms, efflux pumps are responsible for expelling xenobiotics, including bacterial cell antibiotics. Given this problem, studies are investigating new alternatives for inhibiting bacterial growth or enhancing the antibiotic activity of drugs already on the market. With this in mind, this study aimed to evaluate the antibacterial activity of Estragole against the RN4220 Staphylococcus aureus strain, which carries the MsrA efflux pump, as well as Estragole's toxicity in the Drosophila melanogaster arthropod model. The broth microdilution method was used to perform the Minimum Inhibitory Concentration (MIC) tests. Estragole was used at a Sub-Inhibitory Concentration (MIC/8) in association with erythromycin and ethidium bromide to assess its combined effect. As for Estragole's toxicity evaluation over D. melanogaster, the fumigation bioassay and negative geotaxis methods were used. The results were expressed as an average of sextuplicate replicates. A Two-way ANOVA followed by Bonferroni's post hoc test was used. The present study demonstrated that Estragole did not show a direct antibacterial activity over the RN4220 S. aureus strain, since it obtained a MIC ≥1024 µg/mL. The association of estragole with erythromycin demonstrated a potentiation of the antibiotic effect, reducing the MIC from 512 to 256 µg/mL. On the other hand, when estragole was associated with ethidium bromide (EtBr), an antagonism was observed, increasing the MIC of EtBr from 32 to 50.7968 µg/mL, demonstrating that estragole did not inhibited directly the MsrA efflux pump mechanism. We conclude that estragole has no relevant direct effect over bacterial growth, however, when associated with erythromycin, this reduced its MIC, potentiating the effect of the antibiotic.


Subject(s)
Anisoles/toxicity , Anti-Bacterial Agents/toxicity , Drug Resistance, Multiple, Bacterial/drug effects , Staphylococcus aureus/drug effects , Allylbenzene Derivatives , Animals , Anisoles/administration & dosage , Anti-Bacterial Agents/administration & dosage , Dose-Response Relationship, Drug , Drosophila melanogaster , Drug Resistance, Multiple, Bacterial/physiology , Erythromycin/administration & dosage , Flavoring Agents/administration & dosage , Flavoring Agents/toxicity , Microbial Sensitivity Tests/methods , Staphylococcus aureus/physiology
19.
Protein Pept Lett ; 28(1): 11-17, 2021.
Article in English | MEDLINE | ID: mdl-32586239

ABSTRACT

BACKGROUND: The increase in reactive oxygen species (ROS) production during cryopreservation of semen, leads to oxidation of biomolecules affecting the functionality of spermatozoa. Methionine residues in proteins are highly prone to oxidation and get converted into methionine sulfoxide (MetO). Methionine sulfoxide reductase A (MsrA) can improve the functionality of spermatozoa by reducing the MetO to methionine restoring the lost functionality of the affected proteins. OBJECTIVE: The expression of catalytically active recombinant MsrA (rMsrA). METHODS: The msrA gene was PCR amplified, cloned and sequenced. Further, the recombinant clone was used for protein expression and purification. The protein was getting precipitated during dialysis in Tris-buffer. Hence, the purified rMsrA was dialyzed at 4°C against the Tris-buffer pH 7.5 containing MgCl2, KCl, NaCl, urea and triton X-100. During dialysis, changes of buffer were done at every 12 h interval with stepwise reduction in the concentrations of NaCl, urea and triton X-100. The final dialysis was done with buffer containing 10 mM MgCl2, 30 mM KCl, and 150 mM NaCl, 25 mM Tris-HCl pH 7.5. The activity of the rMsrA was checked spectrophotometrically. RESULTS: The protein BLAST of buffalo MsrA with bovine sequence showed 14 amino acid mismatches. The rMsrA has been purified under denaturing conditions as it was forming inclusion bodies consistently during protein expression. After renaturation, the purified 33 kDa rMsrA was catalytically active by biochemical assay. CONCLUSION: The rMsrA expressed in prokaryotic system is catalytically active and can be used for supplementation to semen extender to repair the oxidatively damaged seminal plasma proteins that occur during cryopreservation.


Subject(s)
Cloning, Molecular , Gene Expression , Methionine Sulfoxide Reductases , Animals , Cattle , Male , Methionine Sulfoxide Reductases/biosynthesis , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
20.
Clin Interv Aging ; 15: 2415-2422, 2020.
Article in English | MEDLINE | ID: mdl-33380792

ABSTRACT

INTRODUCTION: Sarcopenia is highly prevalent among residents of assisted-living facilities. However, the optimal screening tools are not clear. Therefore, we compared the performance of four recommended screening tools for predicting sarcopenia. METHODS: The study recruited 177 people over 65 years of age in assisted-living facilities. Appendicular muscle mass index was measured using bioelectrical impedance analysis. Calf circumference (CC), handgrip, six-meters walking speed, and screening questionnaires including SARC-CalF, SARC-F and 5-item Mini Sarcopenia Risk Assessment (MSRA-5) were evaluated. The diagnosis criteria for sarcopenia were based on the Asian Working Group for Sarcopenia 2019 consensus. The area under the receiver operating characteristic curves (AUC) was used to contrast the diagnostic accuracy of screening tools. RESULTS: The prevalence of sarcopenia was 52.7% among men and 51.2% among women. After adjusting for age, sex, body mass index and SARC-CalF score, CC remained significantly associated with sarcopenia in logistic regression analysis. The prediction model for sarcopenia based on CC alone had the highest accuracy compared to SARC-CalF, MSRA-5 and SARC-F (AUC, 0.819 vs 0.734 vs 0.600 vs 0.576; sensitivity/specificity, 80.4%/71.8% vs 38.0%/80.0% vs 60.7%/54.2% vs 10.9%/91.8%). Differences in AUCs between the prediction models were statistically significant (CC vs. SARC-CalF, P = 0.0181; SARC-CalF vs. MSRA-5, P = 0.0042). Optimal cutoff values for predicting sarcopenia were CC <34 cm in men and <33 cm in women. CONCLUSION: To predict sarcopenia based on low CC alone is accurate, easy and inexpensive for use in assisted-living facility settings. Further validation studies in different populations are suggested.


Subject(s)
Ethnicity , Geriatric Assessment/methods , Leg/anatomy & histology , Sarcopenia/diagnosis , Sarcopenia/ethnology , Aged , Aged, 80 and over , Assisted Living Facilities , Body Mass Index , China , Female , Hand Strength , Humans , Male , Prevalence , ROC Curve , Risk Assessment , Sensitivity and Specificity , Walking Speed
SELECTION OF CITATIONS
SEARCH DETAIL