Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.859
Filter
1.
Methods Mol Biol ; 2856: 213-221, 2025.
Article in English | MEDLINE | ID: mdl-39283454

ABSTRACT

The compartmentalization of chromatin reflects its underlying biological activities. Inferring chromatin sub-compartments using Hi-C data is challenged by data resolution constraints. Consequently, comprehensive characterizations of sub-compartments have been limited to a select number of Hi-C experiments, with systematic comparisons across a wide range of tissues and conditions still lacking. Our original Calder algorithm marked a significant advancement in this field, enabling the identification of multi-scale sub-compartments at various data resolutions and facilitating the inference and comparison of chromatin architecture in over 100 datasets. Building on this foundation, we introduce Calder2, an updated version of Calder that brings notable improvements. These include expanded support for a wider array of genomes and organisms, an optimized bin size selection approach for more accurate chromatin compartment detection, and extended support for input and output formats. Calder2 thus stands as a refined analysis tool, significantly advancing genome-wide studies of 3D chromatin architecture and its functional implications.


Subject(s)
Algorithms , Chromatin , Software , Chromatin/genetics , Chromatin/metabolism , Computational Biology/methods , Humans , Animals
2.
Photoacoustics ; 40: 100646, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39351140

ABSTRACT

Photoacoustic tomography (PAT) is an innovative biomedical imaging technology, which has the capacity to obtain high-resolution images of biological tissue. In the extremely limited-view cases, traditional reconstruction methods for photoacoustic tomography frequently result in severe artifacts and distortion. Therefore, multiple diffusion models-enhanced reconstruction strategy for PAT is proposed in this study. Boosted by the multi-scale priors of the sinograms obtained in the full view and the limited-view case of 240°, the alternating iteration method is adopted to generate data for missing views in the sinogram domain. The strategy refines the image information from global to local, which improves the stability of the reconstruction process and promotes high-quality PAT reconstruction. The blood vessel simulation dataset and the in vivo experimental dataset were utilized to assess the performance of the proposed method. When applied to the in vivo experimental dataset in the limited-view case of 60°, the proposed method demonstrates a significant enhancement in peak signal-to-noise ratio and structural similarity by 23.08 % and 7.14 %, respectively, concurrently reducing mean squared error by 108.91 % compared to the traditional method. The results indicate that the proposed approach achieves superior reconstruction quality in extremely limited-view cases, when compared to other methods. This innovative approach offers a promising pathway for extremely limited-view PAT reconstruction, with potential implications for expanding its utility in clinical diagnostics.

3.
J Imaging Inform Med ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354294

ABSTRACT

The increasing prevalence of skin diseases necessitates accurate and efficient diagnostic tools. This research introduces a novel skin disease classification model leveraging advanced deep learning techniques. The proposed architecture combines the MobileNet-V2 backbone, Squeeze-and-Excitation (SE) blocks, Atrous Spatial Pyramid Pooling (ASPP), and a Channel Attention Mechanism. The model was trained on four diverse datasets such as PH2 dataset, Skin Cancer MNIST: HAM10000 dataset, DermNet. dataset, and Skin Cancer ISIC dataset. Data preprocessing techniques, including image resizing, and normalization, played a crucial role in optimizing model performance. In this paper, the MobileNet-V2 backbone is implemented to extract hierarchical features from the preprocessed dermoscopic images. The multi-scale contextual information is fused by the ASPP model for generating a feature map. The attention mechanisms contributed significantly, enhancing the extraction ability of inter-channel relationships and multi-scale contextual information for enhancing the discriminative power of the features. Finally, the output feature map is converted into probability distribution through the softmax function. The proposed model outperformed several baseline models, including traditional machine learning approaches, emphasizing its superiority in skin disease classification with 98.6% overall accuracy. Its competitive performance with state-of-the-art methods positions it as a valuable tool for assisting dermatologists in early classification. The study also identified limitations and suggested avenues for future research, emphasizing the model's potential for practical implementation in the field of dermatology.

4.
Front Hum Neurosci ; 18: 1436205, 2024.
Article in English | MEDLINE | ID: mdl-39386280

ABSTRACT

Deep brain stimulation (DBS) has long been the conventional method for targeting deep brain structures, but noninvasive alternatives like transcranial Temporal Interference Stimulation (tTIS) are gaining traction. Research has shown that alternating current influences brain oscillations through neural modulation. Understanding how neurons respond to the stimulus envelope, particularly considering tTIS's high-frequency carrier, is vital for elucidating its mechanism of neuronal engagement. This study aims to explore the focal effects of tTIS across varying amplitudes and modulation depths in different brain regions. An excitatory-inhibitory network using the Izhikevich neuron model was employed to investigate responses to tTIS and compare them with transcranial Alternating Current Stimulation (tACS). We utilized a multi-scale model that integrates brain tissue modeling and network computational modeling to gain insights into the neuromodulatory effects of tTIS on the human brain. By analyzing the parametric space, we delved into phase, amplitude, and frequency entrainment to elucidate how tTIS modulates endogenous alpha oscillations. Our findings highlight a significant difference in current intensity requirements between tTIS and tACS, with tTIS requiring notably higher intensity. We observed distinct network entrainment patterns, primarily due to tTIS's high-frequency component, whereas tACS exhibited harmonic entrainment that tTIS lacked. Spatial resolution analysis of tTIS, conducted via computational modeling and brain field distribution at a 13 Hz stimulation frequency, revealed modulation in deep brain areas, with minimal effects on the surface. Notably, we observed increased power within intrinsic and stimulation bands beneath the electrodes, attributed to the high stimulus signal amplitude. Additionally, Phase Locking Value (PLV) showed slight increments in non-deep areas. Our analysis indicates focal stimulation using tTIS, prompting further investigation into the necessity of high amplitudes to significantly affect deep brain regions, which warrants validation through clinical experiments.

5.
Comput Methods Programs Biomed ; 257: 108433, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39362064

ABSTRACT

BACKGROUND AND OBJECTIVE: Oxygen is carried to the brain by blood flow through generations of vessels across a wide range of length scales. This multi-scale nature of blood flow and oxygen transport poses challenges on investigating the mechanisms underlying both healthy and pathological states through imaging techniques alone. Recently, multi-scale models describing whole brain perfusion and oxygen transport have been developed. Such models rely on effective parameters that represent the microscopic properties. While parameters of the perfusion models have been characterised, those for oxygen transport are still lacking. In this study, we set to quantify the parameters associated with oxygen transport and their uncertainties. METHODS: Effective parameter values of a continuum-based porous multi-scale, multi-compartment oxygen transport model are systematically estimated. In particular, geometric parameters that capture the microvascular topologies are obtained through statistically accurate capillary networks. Maximum consumption rates of oxygen are optimised to uniquely define the oxygen distribution over depth. Simulations are then carried out within a one-dimensional tissue column and a three-dimensional patient-specific brain mesh using the finite element method. RESULTS: Effective values of the geometric parameters, vessel volume fraction and surface area to volume ratio, are found to be 1.42% and 627 [mm2/mm3], respectively. These values compare well with those acquired from human and monkey vascular samples. Simulation results of the one-dimensional tissue column show qualitative agreement with experimental measurements of tissue oxygen partial pressure in rats. Differences between the oxygenation level in the tissue column and the brain mesh are observed, which highlights the importance of anatomical accuracy. Finally, one-at-a-time sensitivity analysis reveals that the oxygen model is not sensitive to most of its parameters; however, perturbations in oxygen solubilities and plasma to whole blood oxygen concentration ratio have a considerable impact on the tissue oxygenation. CONCLUSIONS: The findings of this study demonstrate the validity of using a porous continuum approach to model organ-scale oxygen transport and draw attention to the significance of anatomy and parameters associated with inter-compartment diffusion.

6.
Sci Rep ; 14(1): 23239, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369065

ABSTRACT

Network is an essential tool today, and the Intrusion Detection System (IDS) can ensure the safe operation. However, with the explosive growth of data, current methods are increasingly struggling as they often detect based on a single scale, leading to the oversight of potential features in the extensive traffic data, which may result in degraded performance. In this work, we propose a novel detection model utilizing multi-scale transformer namely IDS-MTran. In essence, the collaboration of multi-scale traffic features broads the pattern coverage of intrusion detection. Firstly, we employ convolution operators with various kernels to generate multi-scale features. Secondly, to enhance the representation of features and the interaction between branches, we propose Patching with Pooling (PwP) to serve as a bridge. Next, we design multi-scale transformer-based backbone to model the features at diverse scales, extracting potential intrusion trails. Finally, to fully capitalize these multi-scale branches, we propose the Cross Feature Enrichment (CFE) to integrate and enrich features, and then output the results. Sufficient experiments show that compared with other models, the proposed method can distinguish different attack types more effectively. Specifically, the accuracy on three common datasets NSL-KDD, CIC-DDoS 2019 and UNSW-NB15 has all exceeded 99%, which is more accurate and stable.

7.
Int J Biol Macromol ; : 136363, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374729

ABSTRACT

Soybean cellulose nanofibrils (SCNFs) were formed by autoclave-enzymatic hydrolysis combined with ball milling. SCNFs were blended with sodium alginate (SA) to encapsulate lactic acid bacteria (LAB) through inotropic gelation. The effect of SCNFs on the multiscale structure of SA beads, leading to changes in the survival and release of LAB during simulated digestion, was investigated. Microscopy and rheological testing indicated that SCNF10-30 was well-dispersed in the SA paste in the form of interlaced nanofibrils, and could reduce the deformation of the paste under stress by 47.31 %. Multiscale structural analysis indicated SCNF10-30 not only increased the immobilized water of SA beads by 15.59 % by coordinating calcium, but also regulated the in situ-assembly of SA beads, including an increase in the scale of dimers from 6.73 nm to 8.32 nm and improved arrangement, thus forming a dense gel network. LAB viability of SA-SCNF10-30 in simulated digestion was increased by 1.3 log CFU/g compared to SA beads. Cellulose nanofibrils improved gastrointestinal survival and controlled release of LAB better than fiber rods. This study provides a strategy to regulate the multiscale structure of SA beads through nanofibrils to enable stabilization and sustainable release of LAB in gastrointestinal fluids.

8.
J Math Biol ; 89(4): 46, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354121

ABSTRACT

We consider a stochastic individual-based model of adaptive dynamics on a finite trait graph G = ( V , E ) . The evolution is driven by a linear birth rate, a density dependent logistic death rate and the possibility of mutations along the directed edges in E. We study the limit of small mutation rates for a simultaneously diverging population size. Closing the gap between Bovier et al. (Ann Appl Probab 29(6):3541-358, 2019) and Coquille et al. (Electron J Probab 26:1-37, 2021) we give a precise description of transitions between evolutionary stable conditions (ESC), where multiple mutations are needed to cross a valley in the fitness landscape. The system shows a metastable behaviour on several divergent time scales, corresponding to the widths of these fitness valleys. We develop the framework of a meta graph that is constituted of ESCs and possible metastable transitions between them. This allows for a concise description of the multi-scale jump chain arising from concatenating several jumps. Finally, for each of the various time scales, we prove the convergence of the population process to a Markov jump process visiting only ESCs of sufficiently high stability.


Subject(s)
Biological Evolution , Genetic Fitness , Markov Chains , Mathematical Concepts , Models, Genetic , Mutation , Stochastic Processes , Population Density , Mutation Rate , Animals , Adaptation, Physiological , Birth Rate , Population Dynamics/statistics & numerical data
9.
Int J Numer Method Biomed Eng ; : e3872, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375849

ABSTRACT

We develop a cluster-based model order reduction (called C-pRBMOR) approach for efficient homogenization of bones, compatible with a large variety of generalized standard material (GSM) models. To this end, the pRBMOR approach based on a mixed incremental potential formulation is extended to a clustered version for a significantly improved computational efficiency. The microscopic modeling of bones falls into a mixed incremental class of the GSM framework, originating from two potentials. An offline phase of the C-pRBMOR approach includes both a clustering analysis spatially decomposing the micro-domain within an RVE and a space-time decomposition of the microscopic plastic strain fields. A comparative study on two different clustering approaches and two algorithms for mode identification is additionally conducted. For an online analysis, a cluster-enhanced version of evolution equations for the reduced variables is derived from an effective incremental variational formulation, rendering a very small set of nonlinear equations to be numerically solved. Several numerical examples show the effectiveness of the C-pRBMOR approach. A striking acceleration rate beyond 104 against conventional FE computations and that beyond 103 against the original pRBMOR approach are observed.

10.
Discov Oncol ; 15(1): 520, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39363121

ABSTRACT

Most advanced lung adenocarcinoma (LUAD) patient deaths are attributed to metastasis. However, the complete understanding of the metastatic mechanism in LUAD remains elusive. Single-cell RNA-seq (scRNA-seq), spatial RNA-seq (stRNA-seq) and bulk RNA-seq of primary LUAD were integrated to investigate metastatic driver genes, cell-cell interactions, and spatial colocalization of cells and ligand-receptor pairs. A lung adenocarcinoma metastasis risk scoring model (LMRS) was established to estimate the risk of metastasis in LUAD. Forty-two metastasis driver genes were identified and tumor epithelial cells were classified into two subtypes. Epithelial cell subclass characterized by susceptibility to metastasis are referred to as Epithelial_LM, and the remaining as Epithelial_LL. Epithelial_LM subtype has intimate ligand-receptor interactions with inflammatory endothelial cells (iendo), inflammatory cancer-associated fibroblasts (iCAF), and NKT cells. Epithelial_LM cells have a spatial colocalization relationship with these three types of cells. The LMRS was established and its efficacy was verified in bulk RNA-seq. We identified a subclass of epithelial cells prone to metastasis and demonstrated the contribution of inflammatory stromal cells and NKT cells in facilitating tumor metastasis.

11.
Comput Biol Med ; 182: 109204, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39366296

ABSTRACT

In the field of computer-aided medical diagnosis, it is crucial to adapt medical image segmentation to limited computing resources. There is tremendous value in developing accurate, real-time vision processing models that require minimal computational resources. When building lightweight models, there is always a trade-off between computational cost and segmentation performance. Performance often suffers when applying models to meet resource-constrained scenarios characterized by computation, memory, or storage constraints. This remains an ongoing challenge. This paper proposes a lightweight network for medical image segmentation. It introduces a lightweight transformer, proposes a simplified core feature extraction network to capture more semantic information, and builds a multi-scale feature interaction guidance framework. The fusion module embedded in this framework is designed to address spatial and channel complexities. Through the multi-scale feature interaction guidance framework and fusion module, the proposed network achieves robust semantic information extraction from low-resolution feature maps and rich spatial information retrieval from high-resolution feature maps while ensuring segmentation performance. This significantly reduces the parameter requirements for maintaining deep features within the network, resulting in faster inference and reduced floating-point operations (FLOPs) and parameter counts. Experimental results on ISIC2017 and ISIC2018 datasets confirm the effectiveness of the proposed network in medical image segmentation tasks. For instance, on the ISIC2017 dataset, the proposed network achieved a segmentation accuracy of 82.33 % mIoU, and a speed of 71.26 FPS on 256 × 256 images using a GeForce GTX 3090 GPU. Furthermore, the proposed network is tremendously lightweight, containing only 0.524M parameters. The corresponding source codes are available at https://github.com/CurbUni/LMIS-lightweight-network.

12.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(4): 700-707, 2024 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-39218595

ABSTRACT

Atrial fibrillation (AF) is a life-threatening heart condition, and its early detection and treatment have garnered significant attention from physicians in recent years. Traditional methods of detecting AF heavily rely on doctor's diagnosis based on electrocardiograms (ECGs), but prolonged analysis of ECG signals is very time-consuming. This paper designs an AF detection model based on the Inception module, constructing multi-branch detection channels to process raw ECG signals, gradient signals, and frequency signals during AF. The model efficiently extracted QRS complex and RR interval features using gradient signals, extracted P-wave and f-wave features using frequency signals, and used raw signals to supplement missing information. The multi-scale convolutional kernels in the Inception module provided various receptive fields and performed comprehensive analysis of the multi-branch results, enabling early AF detection. Compared to current machine learning algorithms that use only RR interval and heart rate variability features, the proposed algorithm additionally employed frequency features, making fuller use of the information within the signals. For deep learning methods using raw and frequency signals, this paper introduced an enhanced method for the QRS complex, allowing the network to extract features more effectively. By using a multi-branch input mode, the model comprehensively considered irregular RR intervals and P-wave and f-wave features in AF. Testing on the MIT-BIH AF database showed that the inter-patient detection accuracy was 96.89%, sensitivity was 97.72%, and specificity was 95.88%. The proposed model demonstrates excellent performance and can achieve automatic AF detection.


Subject(s)
Algorithms , Atrial Fibrillation , Electrocardiography , Neural Networks, Computer , Signal Processing, Computer-Assisted , Atrial Fibrillation/diagnosis , Atrial Fibrillation/physiopathology , Humans , Electrocardiography/methods , Machine Learning , Heart Rate , Deep Learning
13.
Heliyon ; 10(16): e35965, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224347

ABSTRACT

With the development of automated malware toolkits, cybersecurity faces evolving threats. Although visualization-based malware analysis has proven to be an effective method, existing approaches struggle with challenging malware samples due to alterations in the texture features of binary images during the visualization preprocessing stage, resulting in poor performance. Furthermore, to enhance classification accuracy, existing methods sacrifice prediction time by designing deeper neural network architectures. This paper proposes PAFE, a lightweight and visualization-based rapid malware classification method. It addresses the issue of texture feature variations in preprocessing through pixel-filling techniques and applies data augmentation to overcome the challenges of class imbalance in small sample datasets. PAFE combines multi-scale feature fusion and a channel attention mechanism, enhancing feature expression through modular design. Extensive experimental results demonstrate that PAFE outperforms the current state-of-the-art methods in both efficiency and effectiveness for malware variant classification, achieving an accuracy rate of 99.25 % with a prediction time of 10.04 ms.

14.
Heliyon ; 10(16): e35957, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39220904

ABSTRACT

Defect detection is critical to industrial quality control in leather production engineering. The various sizes and locations of defects in leather, as well as significant differences within the same class and indistinctive variations between different classes of defects, contribute to the complexity of the problem. To address this challenge, we propose a Multi-Layer Residual Convolutional Attention (MLRCA) approach. MLRCA enhances its ability to capture both intra-class and inter-class differences by enhancing the semantic feature representation in the backbone network. To improve multiscale fusion effects, we also incorporate the MLRCA module into the feature pyramid network (FPN) and propose a new multi-layer residual convolution attention feature pyramid network (ML-FPN). This approach enables more accurate identification of leather defects at a more detailed level by selectively capturing contextual information from different domains. We then implement the Side-Aware Boundary Localization (SABL) detection head, which accurately locates defects and helps the network distinguish between similar defect categories for more precise positioning. To validate the effectiveness of our approach, we conducted ablation experiments on the created leather dataset. Comparative experiments demonstrate the excellent capability of our model to detect minor defects. The model achieved 83.4, 89.7, and 85.6 for the AP, AP50, and AP75 evaluation metrics. In addition, the model achieves 71.3, 89.9, and 88.9 for APS, APM, and APL. Our approach has been confirmed feasible through experimentation and provides new insights for automated leather defect detection methods.

15.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1935-1943, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233423

ABSTRACT

Understanding the responses of ecosystem service trade-offs and synergies in metropolitan areas to the multidimensional expansion of urban space is of great significance for the optimization of regional land spatial pattern and high-quality development. With the Guangfo Metropolitan Area as research region, we used land use data and natural ecological environment data from 2000 to 2020 to measure the expansion characteristics of urban space in the dimensions of scale, distribution, and morphology by using the landscape pattern indices. We further calculated four main ecosystem services: urban cooling, habitat quality, recreation, and water conservation by the InVEST model, quantified the trade-off and synergistic relationship of multiple ecosystem services by the coupling coordination degree model, and explored its response to multidimensional urban spatial expansion by using the multi-scale geographically weighted regression model. The results showed that urban land use scale in the Guangfo Metropolitan Area continued to increase from 2000 to 2020, with an accelerated growth rate from 2010 to 2020. The ave-rage patch area of urban land in the central area and the urban land of small patches in the northeast increased, evolving from a "dual-center" structure to a "single-center" one. The distance between urban land patches in the Guangfo Metropolitan Area was relatively small, indicating a compact distribution of urban land. The distance between newly developed urban land patches was also small, but had gradually increased in recent years. The patch shape of urban land was relatively regular and less complex, but the complexity of the newly added urban land gra-dually increased. The ecosystem service trade-offs and synergies in the Guangfo Metropolitan Area had undergone significant changes, with a decrease in synergies and an increase in trade-off, and extreme trade-offs had gradually become dominant. The response of ecosystem services synergies to changes in urban land use scale was the most intense and had spatial heterogeneity, while the response to the change of distribution and morphological characte-ristics of urban land showed periodic differences.


Subject(s)
Cities , Conservation of Natural Resources , Ecosystem , China , City Planning , Urbanization , Environmental Monitoring/methods , Models, Theoretical
16.
Int J Biol Macromol ; 279(Pt 3): 135504, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39255884

ABSTRACT

The digestion of starch have been of great interest, yet little is known about the structure changes and structure-digestibility relationships of waxy rice starch during digestion. In this study, waxy rice starch from Indica and Japonica cultivars were in vitro pre-digested for different times, and the changes in their structure and properties were investigated, including granule morphology, chain length distribution, short-range ordered structure, crystallinity, thermal properties, and digestibility. Pre-digested Indica and Japonica waxy rice starch had the characteristics of porous starch, showing similar surface erosion and pores. With the prolongation of pre-digestion time, the amylose content decreased by 0.74 %-2.69 %, the proportion of amylopectin short A chain (DP6-12) and B1 chain (DP13-24) decreased, and the proportion of long B2 (DP25-36) and B3 chain (DP ≥ 37) increased, especially in pre-digested Indica waxy rice starch. The short- and long-range ordered structure of pre-digested starch increased, manifested by an increase in the absorbance ratio at 1047/1022 cm-1, a decrease at 1022/995 cm-1, and an increase in relative crystallinity, leading to higher gelatinization temperature and enthalpy. Pre-digested waxy rice starch had a reduced rapidly digestible starch of 18.27 %-33.93 % and an increased resistant starch of 29.51 %-41.32 %, which will be applied in functional starch and healthy starchy foods.

17.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39275487

ABSTRACT

Timely discovery and disposal of road risk sources constitute the cornerstone of road operation safety. Presently, the detection of road risk sources frequently relies on manual inspections via inspection vehicles, a process that is both inefficient and time-consuming. To tackle this challenge, this paper introduces a novel automated approach for detecting road risk sources, termed the multi-scale lightweight network (MSLN). This method primarily focuses on identifying road surfaces, potholes, and scattered objects. To mitigate the influence of real-world factors such as noise and uneven brightness on test results, pavement images were carefully collected. Initially, the collected images underwent grayscale processing. Subsequently, the median filtering algorithm was employed to filter out noise interference. Furthermore, adaptive histogram equalization techniques were utilized to enhance the visibility of cracks and the road background. Following these preprocessing steps, the MSLN model was deployed for the detection of road risk sources. Addressing the challenges associated with two-stage network models, such as prolonged training and testing times, as well as deployment difficulties, this study adopted the lightweight feature extraction network MobileNetV2. Additionally, transfer learning was incorporated to elevate the model's training efficiency. Moreover, this paper established a mapping relationship model that transitions from the world coordinate system to the pixel coordinate system. This model enables the calculation of risk source dimensions based on detection outcomes. Experimental results reveal that the MSLN model exhibits a notably faster convergence rate. This enhanced convergence not only boosts training speed but also elevates the precision of risk source detection. Furthermore, the proposed mapping relationship coordinate transformation model proves highly effective in determining the scale of risk sources.

18.
Sensors (Basel) ; 24(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39275498

ABSTRACT

Road crack detection is of paramount importance for ensuring vehicular traffic safety, and implementing traditional detection methods for cracks inevitably impedes the optimal functioning of traffic. In light of the above, we propose a USSC-YOLO-based target detection algorithm for unmanned aerial vehicle (UAV) road cracks based on machine vision. The algorithm aims to achieve the high-precision detection of road cracks at all scale levels. Compared with the original YOLOv5s, the main improvements to USSC-YOLO are the ShuffleNet V2 block, the coordinate attention (CA) mechanism, and the Swin Transformer. First, to address the problem of large network computational spending, we replace the backbone network of YOLOv5s with ShuffleNet V2 blocks, reducing computational overhead significantly. Next, to reduce the problems caused by the complex background interference, we introduce the CA attention mechanism into the backbone network, which reduces the missed and false detection rate. Finally, we integrate the Swin Transformer block at the end of the neck to enhance the detection accuracy for small target cracks. Experimental results on our self-constructed UAV near-far scene road crack i(UNFSRCI) dataset demonstrate that our model reduces the giga floating-point operations per second (GFLOPs) compared to YOLOv5s while achieving a 6.3% increase in mAP@50 and a 12% improvement in mAP@ [50:95]. This indicates that the model remains lightweight meanwhile providing excellent detection performance. In future work, we will assess road safety conditions based on these detection results to prioritize maintenance sequences for crack targets and facilitate further intelligent management.

19.
Sensors (Basel) ; 24(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275764

ABSTRACT

Unmanned aerial vehicles (UAVs) with cameras offer extensive monitoring capabilities and exceptional maneuverability, making them ideal for real-time ship detection and effective ship management. However, ship detection by camera-equipped UAVs faces challenges when it comes to multi-viewpoints, multi-scales, environmental variability, and dataset scarcity. To overcome these challenges, we proposed a data augmentation method based on stable diffusion to generate new images for expanding the dataset. Additionally, we improve the YOLOv8n OBB model by incorporating the BiFPN structure and EMA module, enhancing its ability to detect multi-viewpoint and multi-scale ship instances. Through multiple comparative experiments, we evaluated the effectiveness of our proposed data augmentation method and the improved model. The results indicated that our proposed data augmentation method is effective for low-volume datasets with complex object features. The YOLOv8n-BiFPN-EMA OBB model we proposed performed well in detecting multi-viewpoint and multi-scale ship instances, achieving the mAP (@0.5) of 92.3%, the mAP (@0.5:0.95) of 77.5%, a reduction of 0.8 million in model parameters, and a detection speed that satisfies real-time ship detection requirements.

20.
Environ Res ; 262(Pt 2): 119958, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39276839

ABSTRACT

Magnetite nanoparticles (Fe3O4-NPs) have been demonstrated to be involved in direct interspecies electron transfer between syntrophic bacteria, yet a comprehensive assessment of the ability of Fe3O4-NPs to cope with process instability and volatile fatty acids (VFAs) accumulation in scaled-up anaerobic reactors is still lacking. Here, we investigated the start-up characteristics of an expanded granular sludge bed (EGSB) with Fe3O4-NPs as an adjuvant at high organic loading rate (OLR). The results showed that the methane production rate of R1 (with Fe3O4-NPs) was approximately 1.65 folds of R0 (control), and effluent COD removal efficiency was maintained at approximately 98.32% upon 20 kg COD/(m3·d) OLR. The components of volatile fatty acids are acetate and propionate, and the rapid scavenging of propionate accumulation was the difference between R1 and the control. The INT-ETS activity of R1 was consistently higher than that of R0 and R2, and the electron transfer efficiencies increased by 68.78% and 131.44%, respectively. Meanwhile, the CV curve analysis showed that the current of R1 was 40% higher than R3 (temporary addition of Fe3O4-NPs), indicating that multiple electron transfer modes might coexist. High-throughput analysis further revealed that it was difficult to reverse the progressive deterioration of system performance with increasing OLR by simply reconfiguring bacterial community structure and abundance, demonstrating that the Fe3O4-NPs-mediated DIET pathway is a prerequisite for establishing multiple electron transfer systems. This study provides a long-term and multi-scale assessment of the gaining effect of Fe3O4-NPs in anaerobic digestion scale-up devices, and provides technical support for their practical engineering applications.

SELECTION OF CITATIONS
SEARCH DETAIL