Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.719
Filter
1.
Glob Chang Biol ; 30(8): e17446, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39109391

ABSTRACT

Tree-mycorrhizal associations are associated with patterns in nitrogen (N) availability and soil organic matter storage; however, we still lack a mechanistic understanding of what tree and fungal traits drive these patterns and how they will respond to global changes in soil N availability. To address this knowledge gap, we investigated how arbuscular mycorrhizal (AM)- and ectomycorrhizal (EcM)-associated seedlings alter rhizodeposition in response to increased seedling inorganic N acquisition. We grew four species each of EcM and AM seedlings from forests of the eastern United States in a continuously 13C-labeled atmosphere within an environmentally controlled chamber and subjected to three levels of 15N-labeled fertilizer. We traced seedling 15N uptake from, and 13C-labeled inputs (net rhizodeposition) into, root-excluded or -included soil over a 5-month growing season. N uptake by seedlings was positively related to rhizodeposition for EcM- but not AM-associated seedlings in root-included soils. Despite this contrast in rhizodeposition, there was no difference in soil C storage between mycorrhizal types over the course of the experiment. Instead root-inclusive soils lost C, while root-exclusive soils gained C. Our findings suggest that mycorrhizal associations mediate tree belowground C investment in response to inorganic N availability, but these differences do not affect C storage. Continued soil warming and N deposition under global change will increase soil inorganic N availability and our seedling results indicate this could lead to greater belowground C investment by EcM-associated trees. This potential for less efficient N uptake by EcM-trees could contribute to AM-tree success and a shift toward more AM-dominated temperate forests.


Subject(s)
Carbon , Forests , Mycorrhizae , Nitrogen , Seedlings , Soil , Mycorrhizae/physiology , Seedlings/microbiology , Seedlings/growth & development , Seedlings/metabolism , Nitrogen/metabolism , Soil/chemistry , Carbon/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Trees/microbiology , Trees/growth & development , Soil Microbiology
2.
Water Res ; 263: 122129, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39094199

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) colonization has been used in constructed wetlands (CWs) to enhance treatment performance. However, its role in azole (fungicide) degradation and microbial community changes is not well understood. This study aims to explore the impact of AMF on the degradation of tebuconazole and its metabolites in CWs. Total organic carbon levels were consistently higher with the colonization of AMF (AMF+; 9.63- 16.37 mg/L) compared to without the colonization of AMF (AMF-; 8.79-14.48 mg/L) in CWs. Notably, tebuconazole removal was swift, occurring within one day in both treatments (p = 0.885), with removal efficiencies ranging from 94.10 % to 97.83 %. That's primarily due to rapid substrate absorption at the beginning, while degradation follows with a longer time. Four metabolites were reported in CWs first time: tebuconazole hydroxy, tebuconazole lactone, tebuconazole carboxy acid, and tebuconazole dechloro. AMF decreased the abundance of tebuconazole dechloro in the liquid phase, suggesting an inhibitory effect of AMF on dechlorination processes. Furthermore, tebuconazole carboxy acid and hydroxy were predominantly found in plant roots, with a higher abundance observed in AMF+ treatments. Metagenomic analysis highlighted an increasing abundance in bacterial community structure in favor of beneficial microorganisms (xanthomonadales, xanthomonadaceae, and lysobacter), along with a notable presence of functional genes like codA, NAD, and deaD in AMF+ treatments. These findings highlight the positive influence of AMF on tebuconazole stress resilience, microbial community modification, and the enhancement of bioremediation capabilities in CWs.

3.
World J Microbiol Biotechnol ; 40(10): 291, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105959

ABSTRACT

Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.


Subject(s)
Agriculture , Bacteria , Fertilizers , Phosphates , Rhizosphere , Soil Microbiology , Soil , Phosphates/metabolism , Soil/chemistry , Bacteria/metabolism , Solubility , Phosphorus/metabolism , Crops, Agricultural/microbiology , Crops, Agricultural/metabolism , Crops, Agricultural/growth & development , Plants/microbiology , Plants/metabolism
5.
ACS Nano ; 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39072481

ABSTRACT

It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.

6.
Microorganisms ; 12(7)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-39065027

ABSTRACT

Phytoremediation is recognized as an environmentally friendly technique. However, the low biomass production, high time consumption, and exposure to combined toxic stress from contaminated media weaken the potential of phytoremediation. As a class of plant-beneficial microorganisms, arbuscular mycorrhizal fungi (AMF) can promote plant nutrient uptake, improve plant habitats, and regulate abiotic stresses, and the utilization of AMF to enhance phytoremediation is considered to be an effective way to enhance the remediation efficiency. In this paper, we searched 520 papers published during the period 2000-2023 on the topic of AMF-assisted phytoremediation from the Web of Science core collection database. We analyzed the author co-authorship, country, and keyword co-occurrence clustering by VOSviewer. We summarized the advances in research and proposed prospective studies on AMF-assisted phytoremediation. The bibliometric analyses showed that heavy metal, soil, stress tolerance, and growth promotion were the research hotspots. AMF-plant symbiosis has been used in water and soil in different scenarios for the remediation of heavy metal pollution and organic pollution, among others. The potential mechanisms of pollutant removal in which AMF are directly involved through hyphal exudate binding and stabilization, accumulation in their structures, and nutrient exchange with the host plant are highlighted. In addition, the tolerance strategies of AMF through influencing the subcellular distribution of contaminants as well as chemical form shifts, activation of plant defenses, and induction of differential gene expression in plants are presented. We proposed that future research should screen anaerobic-tolerant AMF strains, examine bacterial interactions with AMF, and utilize AMF for combined pollutant removal to accelerate practical applications.

7.
Mycorrhiza ; 34(4): 251-270, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39023766

ABSTRACT

Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.


Subject(s)
Desert Climate , Mycorrhizae , Soil Microbiology , Mycorrhizae/physiology , Saudi Arabia , Spores, Fungal/physiology , Soil/chemistry , Glomeromycota/physiology , Plant Roots/microbiology
8.
Mycorrhiza ; 34(4): 369-373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38951211

ABSTRACT

Recent work established a backbone reference tree and phylogenetic placement pipeline for identification of arbuscular mycorrhizal fungal (AMF) large subunit (LSU) rDNA environmental sequences. Our previously published pipeline allowed any environmental sequence to be identified as putative AMF or within one of the major families. Despite this contribution, difficulties in implementation of the pipeline remain. Here, we present an updated database and pipeline with (1) an expanded backbone tree to include four newly described genera and (2) several changes to improve ease and consistency of implementation. In particular, packages required for the pipeline are now installed as a single folder (conda environment) and the pipeline has been tested across three university computing clusters. This updated backbone tree and pipeline will enable broadened adoption by the community, advancing our understanding of these ubiquitous and ecologically important fungi.


Subject(s)
DNA, Fungal , Mycorrhizae , Phylogeny , Mycorrhizae/genetics , Mycorrhizae/classification , DNA, Fungal/genetics , DNA, Environmental/genetics , DNA, Environmental/analysis , Soil Microbiology , DNA, Ribosomal/genetics
9.
Front Plant Sci ; 15: 1427850, 2024.
Article in English | MEDLINE | ID: mdl-39045593

ABSTRACT

Introduction: Arbuscular mycorrhizal fungi (AMF) are pivotal in plant resource acquisition, mediating plant interactions, and influencing soil carbon dynamics. However, their biogeographical distribution in Tibetan alpine grasslands remains understudied. Methods: In this research, we examined the distribution pattern of AMF communities and their key determinants along a 2000-km transect across the Tibetan plateau, encompassing 7 alpine meadows and 8 alpine steppes. Results: Our findings indicate that AMF community diversity and composition exhibit similarities between alpine meadows and alpine steppes, primarily influenced by latitude and evapotranspiration. At the genus level, Glomus predominated in both alpine meadow (36.49%±2.67%) and alpine steppe (41.87%±2.36%) soils, followed by Paraglomus (27.14%±3.69%, 32.34%±3.28%). Furthermore, a significant decay relationship of AMF community was observed over geographical distance. Null model analyses revealed that random processes predominantly (>50%) drove the assembly of AMF communities. Discussion: In summary, our study elucidates the spatial distribution pattern of AMF in Tibetan plateau grasslands and underscores the significant influence of geographical and climatic factors on AMF community dynamics.

11.
Heliyon ; 10(13): e33141, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39035525

ABSTRACT

Mycorrhizae are found on about 70-80 % of the roots of all plant species; ectomycorrhizae (ECM) are mostly found on woody plants and gymnosperms, whereas arbuscular mycorrhizal fungi (AMF) are found on 80-90 % of all plant species. In abandoned mining sites, woody plants dominate, while non-woody species remain scarce. However, this pattern depends on the specific mine site and its ecological context. This review article explores the potential of using mycorrhizae-plant associations to enhance and facilitate the remediation of mine wastelands and metal-polluted sites. In this review, we employed reputable databases to collect articles and relevant information on mycorrhizae and their role in plant growth and soil fertility spanning from the 1990s up to 2024. Our review found that the abilities of plants selected for minewasteland reclamation can be harnessed effectively if their mycorrhizae utilization is known and considered. Our findings indicate that AMF facilitates plant cohabitation by influencing species richness, feedback effects, shared mycelial networks, and plant-AMF specificity. Several types of mycorrhizae have been isolated from mine wastelands, including Glomus mosseae, which reduces heavy metal accumulation in plants, and Rhizophagus irregularis, which enhances plant growth and survival in revegetated mine sites. Additionally, studies on ECM in surface mine spoil restoration stands highlight their role in enhancing fungal biodiversity and providing habitats for rare and specialized fungal species. Recent research shows that ECM and AMF fungi can interact synergistically to enhance plant growth, with ECM improving plant nitrogen absorption and AMF increasing nitrogen use efficiency. Our review also found that despite their critical role in improving plant growth and resilience, there remains limited knowledge about the specific mechanisms by which mycorrhizae communicate with each other and other microorganisms, such as bacteria, root-associated fungi, soil protozoa, actinomycetes, nematodes, and endophytes, within the soil matrix. This article highlights the connection between mycorrhizae and plants and other microorganisms in mine wastelands, their role in improving soil structure and nutrient cycling, and how mycorrhizae can help restore soil fertility and promote plant growth, thus improving the overall environmental quality of mine wasteland sites.

12.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960411

ABSTRACT

AIM: We investigated whether there was interspecies and intraspecies variation in spore germination of 12 strains of arbuscular mycorrhizal fungi when co-entrapped with the diazotrophic plant growth-promoting bacteria, Azospirillum brasilense Sp7 in alginate hydrogel beads. METHODS AND RESULTS: Twelve Rhizophagus irregularis, Rhizophagus intraradices, and Funneliformis mosseae strains were separately combined with a live culture of Azospirillum brasilense Sp7. Each fungal-bacterial consortia was supplemented with sodium alginate to a 2% concentration (v/v) and cross-linked in calcium chloride (2% w/v) to form biodegradable hydrogel beads. One hundred beads from each combination (total of 1200) were fixed in solidified modified Strullu and Romand media. Beads were observed for successful spore germination and bacterial growth over 14 days. In all cases, successful growth of A. brasilense was observed. For arbuscular mycorrhizal fungi, interspecies variation in spore germination was observed, with R. intraradices having the highest germination rate (64.3%), followed by R. irregularis (45.5%) and F. mosseae (40.3%). However, a difference in intraspecies germination was only observed among strains of R. irregularis and F. mosseae. Despite having varying levels of germination, even the strains with the lowest potential were still able to establish with the plant host Brachypodium distachyon in a model system. CONCLUSIONS: Arbuscular mycorrhizal spore germination varied across strains when co-entrapped with a diazotrophic plant growth-promoting bacteria. This demonstrates that hydrogel beads containing a mixed consortium hold potential as a sustainable biofertilizer and that compatibility tests remain an important building block when aiming to create a hydrogel biofertilizer that encases a diversity of bacteria and fungi. Moving forward, further studies should be conducted to test the efficacy of these hydrogel biofertilizers on different crops across varying climatic conditions in order to optimize their potential.


Subject(s)
Azospirillum brasilense , Fertilizers , Hydrogels , Mycorrhizae , Spores, Fungal , Mycorrhizae/physiology , Spores, Fungal/growth & development , Azospirillum brasilense/metabolism , Fertilizers/analysis , Alginates
13.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964061

ABSTRACT

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.


Subject(s)
Fagopyrum , Lead , Microplastics , Mycorrhizae , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Soil Pollutants/analysis , Mycorrhizae/drug effects , Lead/toxicity , Microplastics/toxicity , Bacteria/drug effects , Bacteria/classification , Bacteria/growth & development , Soil/chemistry
14.
Front Plant Sci ; 15: 1401050, 2024.
Article in English | MEDLINE | ID: mdl-38974980

ABSTRACT

Introduction: Drought stress usually inhibits plant growth, which may increase the difficulty of greening slopes. Methods: In this study, we systematically investigated the effects of arbuscular mycorrhizal (AM) fungi on the growth and drought tolerance of two plant species, Festuca elata and Cassia glauca, in a vegetation concrete environment by exogenously inoculating AM fungi and setting three drought levels: well water, moderate drought and severe drought. The results showed that plant growth was significantly inhibited under drought stress; however, AM fungi inoculation significantly promoted plant height, root length, and above- and belowground biomass in these two plant species. Results: Compared with, those in the CK treatment, the greatest increases in the net photosynthesis rate, stomatal conductance and transpiration rate in the AM treatment group were 36.72%, 210.08%, and 66.41%, respectively. Moreover, inoculation with AM fungi increased plant superoxide dismutase and catalase activities by 4.70-150.73% and 9.10-95.70%, respectively, and reduced leaf malondialdehyde content by 2.79-55.01%, which alleviated the damage caused by oxidative stress. These effects alleviated the damage caused by oxidative stress and increased the content of soluble sugars and soluble proteins in plant leaves by 1.52-65.44% and 4.67-97.54%, respectively, which further increased the drought adaptability of plants. However, inoculation with AM fungi had different effects on different plants. Conclusion: In summary, this study demonstrated that the inoculation of AM fungi in vegetation concrete environments can significantly increase plant growth and drought tolerance. The plants that formed a symbiotic structure with AM fungi had a larger root uptake area, greater water uptake capacity, and greater photosynthesis and gas exchange efficiency. In addition, AM fungi inoculation further increased the drought adaptability of the plants by increasing their antioxidant enzyme activity and regulating their metabolite content. These findings are highly important for promoting plant growth and increasing drought tolerance under drought conditions, especially for potential practical applications in areas such as slope protection, and provide useful references for future ecological engineering and sustainable development.

15.
Molecules ; 29(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38999186

ABSTRACT

Panax notoginseng is a highly valued perennial medicinal herb in China and is widely used in clinical treatments. The main purpose of this study was to elucidate the changes in the composition of P. notoginseng saponins (PNSs), which are the main bioactive substances, triggered by arbuscular mycorrhizal fungi (AMF) via ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS). A total of 202 putative terpenoid metabolites were detected, of which 150 triterpene glycosides were identified, accounting for 74.26% of the total. Correlation analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of the metabolites revealed that the samples treated with AMF (group Ce) could be clearly separated from the CK samples. In total, 49 differential terpene metabolites were identified between the Ce and CK groups, of which 38 and 11 metabolites were upregulated and downregulated, respectively, and most of the upregulated differentially abundant metabolites were mainly triterpene glycosides. The relative abundances of the two major notoginsenosides (MNs), ginsenosides Rd and Re, and 13 rare notoginsenosides (RNs), significantly increased. The differential saponins, especially RNs, were more easily clustered into one branch and had a high positive correlation. It could be concluded that the biosynthesis and accumulation of some RNs share the same pathways as those triggered by AMF. This study provides a new way to obtain more notoginsenoside resources, particularly RNs, and sheds new light on the scientization and rationalization of the use of AMF agents in the ecological planting of medicinal plants.


Subject(s)
Metabolomics , Mycorrhizae , Panax notoginseng , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Triterpenes , Panax notoginseng/microbiology , Panax notoginseng/chemistry , Triterpenes/metabolism , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Mycorrhizae/metabolism , Metabolomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Saponins/metabolism , Saponins/chemistry , Principal Component Analysis , Metabolome
16.
Aquat Toxicol ; 273: 107029, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39047440

ABSTRACT

Microplastic pollution and biological invasion, as two by-products of human civilization, interfere the ecological function of aquatic ecosystem. The restoration of aquatic vegetation has been considered a practical approach to offset the deterioration of aquatic ecosystem. However, a lack of knowledge still lies in the species selection in the revegetation when confronting the interference from microplastic pollution and exotic counterpart. The present study subjected the native submerged species, Hydrilla verticillata and its exotic confamilial, Elodea nuttallii to the current and future scenarios of polyamide microplastic pollution. The plant performance proxies including biomass and ramet number were measured. We found that the native H. verticillata maintained its performance while the exotic E. nuttallii showed decreases in biomass and ramet number under severest pollution conditions. The restoration of native submerged plant such as H. verticillata appeared to be more effective in stabilizing aquatic vegetation in the scenario of accelerating microplastic pollution. In order to explore the underlying driving mechanism of performance differentiation, stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal microbiome were investigated. We found that polyamide microplastic had weak effects on stress tolerance indicators for plants, sediment enzymatic activity and sediment fungal diversity, reflecting the decoupling between these indicators and plant performance. However, the relative abundance of sediment arbuscular mycorrhizal fungi for H. verticillata significantly increased while E. nuttallii gathered "useless" ectomycorrhizal fungi at the presence of severest polyamide microplastic pollution. We speculate that the arbuscular mycorrhizal fungi assisted the stabilization of plant performance for H. verticillata with exposure to the severest polyamide microplastic pollution.

17.
Front Plant Sci ; 15: 1410009, 2024.
Article in English | MEDLINE | ID: mdl-39049854

ABSTRACT

In the process of applying exotic plants to wetland ecological restoration, insufficiently evaluated alien species may exhibit strong competitiveness and fecundity. Once introduced, they can displace native flora, disrupt the original ecological balance, diminish biodiversity, and even induce ecosystem dysfunction. Furthermore, exotic plants have the potential to alter soil microbial community structure, including the composition and activity of beneficial symbiotic microorganisms such as arbuscular mycorrhizal fungi (AMF), thereby impacting soil nutrient cycling and interplant nutrient competition. Here, we conducted three consecutive years of sampling experiments to investigate the succession of AMF communities associated with the invasive plant Spartina alterniflora along an initial introduction chronosequence, and to identify the key environmental factors influencing its response to S. alterniflora invasion. Our findings reveal that early-stage invasion by S. alterniflora alters the composition of soil AMF communities with unclassified_c__Glomeromycetes and Glomus-viscosum-VTX00063 consistently dominating. Additionally, as the duration of introduction increases, the diversity of rhizosphere soil AMF significantly decreases, while its evenness remains relatively stable. It's indicated that soil ω, AN, AK and N/P ratio were the main influencing factors of the integral AMF community. Notably, soil available phosphorus (AP) emerges as a positive influence on the important AMF taxa. The results confirm the mutual feedback effect between the invasion of the perennial herb S. alterniflora and AMF, in which specific AMF assist in nutrient absorption to promote S. alterniflora growth, potentially facilitating its rapid and successful invasion of new habitats. Given the likely differential effects of AMF communities on various plant species, our findings could contribute to anticipating future AMF-mediated effects during the introduction of alien plants.

18.
Sci Total Environ ; 948: 175008, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053526

ABSTRACT

Recent evidence suggests that changes in carbon-degrading extracellular enzyme activities (C-EEAs) can help explain soil organic carbon (SOC) dynamics under nitrogen (N) addition. However, the factors controlling C-EEAs remain unclear, impeding the inclusion of microbial mechanisms in global C cycle models. Using meta-analysis, we show that the responses of C-EEAs to N addition were best explained by mycorrhizal association across a wide range of environmental and experimental factors. In ectomycorrhizal (ECM) dominated ecosystems, N addition suppressed C-EEAs targeting the decomposition of structurally complex macromolecules by 13.1 %, and increased SOC stocks by 5.2 %. In contrast, N addition did not affect C-EEAs and SOC stocks in arbuscular mycorrhizal (AM) dominated ecosystems. Our results indicate that earlier studies may have overestimated SOC changes under N addition in AM-dominated ecosystems and underestimated SOC changes in ECM-dominated ecosystems. Incorporating this mycorrhizal-dependent impact of EEAs on SOC dynamics into Earth system models could improve predictions of SOC dynamics under environmental changes.

19.
Planta ; 260(3): 66, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080142

ABSTRACT

MAIN CONCLUSION: Ants, but not mycorrhizae, significantly affected insect leaf-chewing herbivory on potato plants. However, there was no evidence of mutualistic interactive effects on herbivory. Plants associate with both aboveground and belowground mutualists, two prominent examples being ants and arbuscular mycorrhizal fungi (AMF), respectively. While both of these mutualisms have been extensively studied, joint manipulations testing their independent and interactive (non-additive) effects on plants are rare. To address this gap, we conducted a joint test of ant and AMF effects on herbivory by leaf-chewing insects attacking potato (Solanum tuberosum) plants, and further measured plant traits likely mediating mutualist effects on herbivory. In a field experiment, we factorially manipulated the presence of AMF (two levels: control and mycorrhization) and ants (two levels: exclusion and presence) and quantified the concentration of leaf phenolic compounds acting as direct defenses, as well as plant volatile organic compound (VOC) emissions potentially mediating direct (e.g., herbivore repellents) or indirect (e.g., ant attractants) defense. Moreover, we measured ant abundance and performed a dual-choice greenhouse experiment testing for effects of VOC blends (mimicking those emitted by control vs. AMF-inoculated plants) on ant attraction as a mechanism for indirect defense. Ant presence significantly reduced herbivory whereas mycorrhization had no detectable influence on herbivory and mutualist effects operated independently. Plant trait measurements indicated that mycorrhization had no effect on leaf phenolics but significantly increased VOC emissions. However, mycorrhization did not affect ant abundance and there was no evidence of AMF effects on herbivory operating via ant-mediated defense. Consistently, the dual-choice assay showed no effect of AMF-induced volatile blends on ant attraction. Together, these results suggest that herbivory on potato plants responds mainly to top-down (ant-mediated) rather than bottom-up (AMF-mediated) control, an asymmetry in effects which could have precluded mutualist non-additive effects on herbivory. Further research on this, as well as other plant systems, is needed to examine the ecological contexts under which mutualist interactive effects are more or less likely to emerge and their impacts on plant fitness and associated communities.


Subject(s)
Ants , Herbivory , Mycorrhizae , Plant Leaves , Solanum tuberosum , Symbiosis , Volatile Organic Compounds , Animals , Mycorrhizae/physiology , Solanum tuberosum/physiology , Solanum tuberosum/microbiology , Ants/physiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Plant Leaves/physiology , Insecta/physiology
20.
Trends Microbiol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38987052

ABSTRACT

Melanized root-associated fungi are a group of fungi that produce melanized structures and form root associations, including different mycorrhizal and endophytic symbioses with plants. They are pervasive across terrestrial ecosystems and play an important role in the prevailing soil carbon (C) and nutrient cycling syndromes through direct and indirect mechanisms, where they may strongly modulate plant-microbe interactions and structure root and soil microbiomes. Furthermore, melanized root-associated fungi can confer on plants an enhanced ability to tolerate abiotic and biotic stressors such as drought, extreme temperatures, heavy metals, and pathogen attacks. We propose that melanized root-associated fungi are a cohesive and ecologically relevant grouping that can be an indicator of plant-soil system functioning, and considering them will advance research on plant-soil interactions.

SELECTION OF CITATIONS
SEARCH DETAIL