Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Curr Zool ; 70(3): 320-331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39035766

ABSTRACT

Whether introduced into a completely novel habitat or slowly expanding their current range, the degree to which animals can efficiently explore and navigate new environments can be key to survival, ultimately determining population establishment and colonization success. We tested whether spatial orientation and exploratory behavior are associated with non-native spread in free-living bank voles (Myodes glareolus, N = 43) from a population accidentally introduced to Ireland a century ago. We measured spatial orientation and navigation in a radial arm maze, and behaviors associated to exploratory tendencies and risk-taking in repeated open-field tests, at the expansion edge and in the source population. Bank voles at the expansion edge re-visited unrewarded arms of the maze more, waited longer before leaving it, took longer to start exploring both the radial arm maze and the open field, and were more risk-averse compared to conspecifics in the source population. Taken together, results suggest that for this small mammal under heavy predation pressure, a careful and thorough exploration strategy might be favored when expanding into novel environments.

2.
J Wildl Dis ; 60(2): 526-530, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38264856

ABSTRACT

Adiaspiromycosis is a nontransmissible infectious pulmonary disease caused by the inhalation of propagules from fungal species belonging to the family Ajellomicetaceae, especially Emergomyces crescens. Adiaspiromycosis caused by E. crescens has been recorded in a broad number of species worldwide, with small burrowing mammals being considered the main hosts for this environmental pathogen. Only a handful of studies on adiaspiromycosis in European wildlife has been published to date. We assessed the occurrence of adiaspiromycosis in wild rodents (Murinae and Arvicolinae) from the central Spanish Pyrenees (NE Spain). The lungs of 302 mice and 46 voles were screened for the presence of adiaspores through histopathologic examination. Pulmonary adiaspiromycosis was recorded in 21.6% of all individuals (75/348), corresponding to 63/299 wood mice (Apodemus sylvaticus) and 12/40 bank voles (Myodes glareolus). Adiaspore burden varied highly between animals, with a mean of 0.19 spores/mm2 and a percentage of affected lung tissue ranging from <0.01% to >8%. These results show that the infection is present in wild rodents from the central Spanish Pyrenees. Although the impact of this infection on nonendangered species is potentially mild, it might contribute to genetic diversity loss in endangered species.


Subject(s)
Lung Diseases, Fungal , Rodent Diseases , Animals , Spain/epidemiology , Lung Diseases, Fungal/veterinary , Mammals , Murinae , Arvicolinae , Rodent Diseases/epidemiology
3.
Parasitology ; 150(11): 1022-1030, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37705292

ABSTRACT

Nematode spicules play a vital role in the reproductive activity of species that possess them. Our primary objective was to compare the lengths of spicules of the laboratory mouse (Mus musculus) ­ maintained isolate H. bakeri ­ with those of H. polygyrus from naturally infected wood mice (Apodemus sylvaticus). On a more limited scale, we also included H. glareoli from bank voles (Myodes glareolus), a species reputed to possess longer spicules than either of the 2 former species. In total, we measured 1264 spicules (H. bakeri, n = 614; H. polygyrus n = 582; and H. glareoli, n = 68). There was a highly significant difference between the spicule lengths of the Nottingham-maintained H. bakeri (mean = 0.518 mm) and H. polygyrus (0.598 mm) from 11 different localities across the British Isles. A comparison of the spicules of H. bakeri maintained in 4 different laboratories in 3 continents revealed a range in the mean values from 0.518 to 0.540 mm, while those of worms from Australian wild house mice were shorter (0.480 mm). Mean values for H. polygyrus from wood mice from the British Isles ranged from 0.564 to 0.635 mm, although isolates of this species from Norway had longer spicules (0.670 mm). In agreement with the literature, the spicules of H. glareoli were considerably longer (1.098 mm). Since spicules play a vital role in the reproduction of nematode species that possess them, the difference in spicule lengths between H. bakeri and H. polygyrus adds to the growing evidence that these 2 are quite distinct species and likely reproductively isolated.


Subject(s)
Nematospiroides dubius , Animals , Mice , Australia , Murinae , Norway
4.
J Immunol Methods ; 520: 113524, 2023 09.
Article in English | MEDLINE | ID: mdl-37463649

ABSTRACT

The bank vole is a common Cricetidae rodent that is a reservoir of several zoonotic pathogens and an emerging model in eco-immunology. Here, we add to a developing immunological toolkit for this species by testing the cross-reactivity of commercially available monoclonal antibodies (mAbs) to the bank vole lymphocyte differentiation molecules and a transcription factor. We show that a combination of mAbs against CD4, CD3, and Foxp3 allows flow cytometric distinction of the main subsets of T cells: putative helper CD4+, cytotoxic CD8+ (as CD3+CD4-) and regulatory CD4+Foxp3+. We also provide a comparative analysis of amino acid sequences of CD4, CD8αß, CD3εγδ and Foxp3 molecules for a number of commonly studied Cricetidae rodents and discuss mAb cross-reactivity patterns reported so far in this rodent family. We found that in case of mAbs targeting the extracellular portions of commonly used T cell markers, sequence similarity is a poor prognostic of cross-reactivity. Use of more conserved, intracellular molecules or molecule fragments is a more reliable approach in non-model species, but the necessity of cell fixation limit its application in, e.g. functional studies.


Subject(s)
Arvicolinae , T-Lymphocytes , Animals , CD3 Complex , Flow Cytometry , Forkhead Transcription Factors
5.
Ecol Evol ; 13(7): e10330, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37520778

ABSTRACT

Spatial and temporal variation in perceived predation risk is an important determinant of movement and foraging activity of animals. Foraging in this landscape of fear, individuals need to decide where and when to move, and what resources to choose. Foraging theory predicts the outcome of these decisions based on energetic trade-offs, but complex interactions between perceived predation risk and preferences of foragers for certain functional traits of their resources are rarely considered. Here, we studied the interactive effects of perceived predation risk on food trait preferences and foraging behavior in bank voles (Myodes glareolus) in experimental landscapes. Individuals (n = 19) were subjected for periods of 24 h to two extreme, risk-uniform landscapes (either risky or safe), containing 25 discrete food patches, filled with seeds of four plant species in even amounts. Seeds varied in functional traits: size, nutrients, and shape. We evaluated whether and how risk modifies forager preference for functional traits. We also investigated whether perceived risk and distance from shelter affected giving-up density (GUD), time in patches, and number of patch visits. In safe landscapes, individuals increased time spent in patches, lowered GUD and visited distant patches more often compared to risky landscapes. Individuals preferred bigger seeds independent of risk, but in the safe treatment they preferred fat-rich over carb-rich seeds. Thus, higher densities of resource levels remained in risky landscapes, while in safe landscapes resource density was lower and less diverse due to selective foraging. Our results suggest that the interaction of perceived risk and dietary preference adds an additional layer to the cascading effects of a landscape of fear which affects biodiversity at resource level.

6.
Proc Biol Sci ; 290(2003): 20230823, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37491968

ABSTRACT

Animal behaviour can moderate biological invasion processes, and the native fauna's ability to adapt. The importance and nature of behavioural traits favouring colonization success remain debated. We investigated behavioural responses associated with risk-taking and exploration, both in non-native bank voles (Myodes glareolus, N = 225) accidentally introduced to Ireland a century ago, and in native wood mice (Apodemus sylvaticus, N = 189), that decline in numbers with vole expansion. We repeatedly sampled behavioural responses in three colonization zones: established bank vole populations for greater than 80 years (2 sites), expansion edge vole populations present for 1-4 years (4) and pre-arrival (2). All zones were occupied by wood mice. Individuals of both species varied consistently in risk-taking and exploration. Mice had not adjusted their behaviour to the presence of non-native voles, as it did not differ between the zones. Male voles at the expansion edge were initially more risk-averse but habituated faster to repeated testing, compared to voles in the established population. Results thus indicate spatial sorting for risk-taking propensity along the expansion edge in the dispersing sex. In non-native prey species the ability to develop risk-averse phenotypes may thus represent a fundamental component for range expansions.


Subject(s)
Animal Migration , Arvicolinae , Male , Female , Animals , Ireland
7.
BMC Ecol Evol ; 23(1): 21, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231383

ABSTRACT

BACKGROUND: Selection pressure exerted by pathogens can influence patterns of genetic diversity in the host. In the immune system especially, numerous genes encode proteins involved in antagonistic interactions with pathogens, paving the way for coevolution that results in increased genetic diversity as a consequence of balancing selection. The complement system is a key component of innate immunity. Many complement proteins interact directly with pathogens, either by recognising pathogen molecules for complement activation, or by serving as targets of pathogen immune evasion mechanisms. Complement genes can therefore be expected to be important targets of pathogen-mediated balancing selection, but analyses of such selection on this part of the immune system have been limited. RESULTS: Using a population sample of whole-genome resequencing data from wild bank voles (n = 31), we estimated the extent of genetic diversity and tested for signatures of balancing selection in multiple complement genes (n = 44). Complement genes showed higher values of standardised ß (a statistic expected to be high under balancing selection) than the genome-wide average of protein coding genes. One complement gene, FCNA, a pattern recognition molecule that interacts directly with pathogens, was found to have a signature of balancing selection, as indicated by the Hudson-Kreitman-Aguadé test (HKA) test. Scans for localised signatures of balancing selection in this gene indicated that the target of balancing selection was found in exonic regions involved in ligand binding. CONCLUSION: The present study adds to the growing evidence that balancing selection may be an important evolutionary force on components of the innate immune system. The identified target in the complement system typifies the expectation that balancing selection acts on genes encoding proteins involved in direct interactions with pathogens.


Subject(s)
Complement System Proteins , Selection, Genetic , Sequence Analysis, DNA , Complement System Proteins/genetics
8.
Front Immunol ; 14: 1240723, 2023.
Article in English | MEDLINE | ID: mdl-38259496

ABSTRACT

The immune system is as much shaped by the pressure of pathogens as it is by evolutionary trade-offs that constrain its structure and function. A perfect example comes from the major histocompatibility complex (MHC), molecules that initiate adaptive immune response by presentation of foreign antigens to T cells. The remarkable, population-level polymorphism of MHC genes is assumed to result mainly from a co-evolutionary arms race between hosts and pathogens, while the limited, within-individual number of functional MHC loci is thought to be the consequence of an evolutionary trade-off between enhanced pathogen recognition and excessive T cell depletion during negative selection in the thymus. Certain mathematical models and infection studies suggest that an intermediate individual MHC diversity would thus be optimal. A recent, more direct test of this hypothesis has shown that the effects of MHC diversity on T-cell receptor (TCR) repertoires may differ between MHC classes, supporting the depletion model only for MHC class I. Here, we used the bank vole (Myodes=Cletronomys glareolus), a rodent species with variable numbers of expressed MHC genes, to test how an individual MHC diversity influences the proportions and TCR repertoires of responding T cell subsets. We found a non-linear relationship between MHC diversity and T cell proportions (with intermediate MHC numbers coinciding with the largest T cell proportions), perhaps reflecting an optimality effect of balanced positive and negative thymic selection. The association was strongest for the relationship between MHC class I and splenic CD8+ T cells. The CD8+ TCR richness alone was unaffected by MHC class I diversity, suggesting that MHC class I expansion may be limited by decreasing T cell counts, rather than by direct depletion of TCR richness. In contrast, CD4+ TCR richness was positively correlated with MHC class II diversity, arguing against a universal TCR depletion. It also suggests that different evolutionary forces or trade-offs may limit the within-individual expansion of the MHC class II loci.


Subject(s)
Histocompatibility Antigens Class II , Major Histocompatibility Complex , Animals , Major Histocompatibility Complex/genetics , CD8-Positive T-Lymphocytes , Arvicolinae , Receptors, Antigen, T-Cell/genetics
9.
Oecologia ; 200(3-4): 471-478, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36242620

ABSTRACT

In seasonal environments, appropriate adaptations are crucial for organisms to maximize their fitness. For instance, in many species, the immune function has been noticed to decrease during winter, which is assumed to be an adaptation to the season's limited food availability. Consequences of an infection on the health and survival of the host organism could thus be more severe in winter than in summer. Here, we experimentally investigated the effect of a zoonotic, endemic pathogen, Borrelia afzelii infection on the survival and body condition in its host, the bank vole (Myodes glareolus), during late autumn-early winter under semi-natural field conditions in 11 large outdoor enclosures. To test the interaction of Borrelia infection and energetic condition, four populations received supplementary nutrition, while remaining seven populations exploited only natural food sources. Supplementary food during winter increased the body mass independent of the infection status, however, Borrelia afzelii infection did not cause severe increase in the host mortality or affect the host body condition in the late autumn-early winter. While our study suggests that no severe effects are caused by B. afzelii infection on bank vole, further studies are warranted to identify any potentially smaller effects the pathogen may cause on the host fitness over the period of whole winter.


Subject(s)
Borrelia Infections , Borrelia burgdorferi Group , Ixodes , Lyme Disease , Animals , Lyme Disease/veterinary , Lyme Disease/epidemiology , Seasons , Rodentia , Arvicolinae
10.
Evolution ; 76(9): 2067-2075, 2022 09.
Article in English | MEDLINE | ID: mdl-35909235

ABSTRACT

MHC genes are extraordinarily polymorphic in most taxa. Host-pathogen coevolution driven by negative frequency-dependent selection (NFDS) is one of the main hypotheses for the maintenance of such immunogenetic variation. Here, we test a critical but rarely tested assumption of this hypothesis-that MHC alleles affect resistance/susceptibility to a pathogen in a strain-specific way, that is, there is a host genotype-by-pathogen genotype interaction. In a field study of bank voles naturally infected with the tick-transmitted bacterium Borrelia afzelii, we tested for MHC class II (DQB) genotype-by-B. afzelii strain interactions for infection prevalence between 10 DQB alleles and seven strains. One allele (DQB*37) showed an interaction, such that voles carrying DQB*37 had higher prevalence of two strains and lower prevalence of one strain than individuals without the allele. These findings were corroborated by analyses of strain composition of infections, which revealed an effect of DQB*37 in the form of lower ß diversity among infections in voles carrying the allele. Taken together, these results provide rare support at the molecular genetic level for a key assumption of models of antagonistic coevolution through NFDS.


Subject(s)
Borrelia , Animals , Arvicolinae/genetics , Genotype , Prevalence , Rodentia
11.
Exp Appl Acarol ; 87(2-3): 235-251, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35840866

ABSTRACT

Ixodes ricinus ticks transmit Borrelia burgdorferi sensu lato (s.l.) as well as Borrelia miyamotoi. Larvae become infected when feeding on infected rodents, with horizontal transmission of B. burgdorferi and horizontal and vertical transmission of B. miyamotoi. We studied seasonal dynamics of infection rates of I. ricinus and their rodent hosts, and hence transmission risk of these two distinctly different Borrelia species. Rodents were live-trapped and inspected for ticks from May to November in 2013 and 2014 in a forest in The Netherlands. Trapped rodents were temporarily housed in the laboratory and detached ticks were collected. Borrelia infections were determined from the trapped rodents and collected ticks. Borrelia burgdorferi s.l. and B. miyamotoi were found in ticks as well as in rodents. Rodent density was higher in 2014, whereas tick burden as well as the Borrelia infection rates in rodents were higher in 2013. The density of B. miyamotoi-infected nymphs did not differ between the years. Tick burdens were higher on Apodemus sylvaticus than on Myodes glareolus, and higher on males than on females. Borrelia-infection rate of rodents varied strongly seasonally, peaking in summer. As the larval tick burden also peaked in summer, the generation of infected nymphs was highest in summer. We conclude that the heterogeneity of environmental and host-specific factors affects the seasonal transmission of Borrelia spp., and that these effects act more strongly on horizontally transmitted B. burgdorferi spp. than on the vertically transmitted B. miyamotoi.


Subject(s)
Borrelia Infections , Borrelia burgdorferi , Borrelia , Ixodes , Lyme Disease , Rodent Diseases , Animals , Ecosystem , Female , Forests , Male , Murinae , Nymph , Seasons
12.
Mol Ecol ; 31(12): 3400-3415, 2022 06.
Article in English | MEDLINE | ID: mdl-35510766

ABSTRACT

Major histocompatibility complex (MHC) genes encode proteins crucial for adaptive immunity of vertebrates. Negative frequency-dependent selection (NFDS), resulting from adaptation of parasites to common MHC types, has been hypothesized to maintain high, functionally relevant polymorphism of MHC, but demonstration of this relationship has remained elusive. In particular, differentiation of NFDS from fluctuating selection, resulting from changes in parasite communities in time and space (FS), has proved difficult in short-term studies. Here, we used temporal data, accumulated through long-term monitoring of helminths infecting bank voles (Myodes glareolus), to test specific predictions of NFDS on MHC class II. Data were collected in three, moderately genetically differentiated subpopulations in Poland, which were characterized by some stable spatiotemporal helminth communities but also events indicating introduction of new species and loss of others. We found a complex association between individual MHC diversity and species richness, where intermediate numbers of DRB supertypes correlated with lowest species richness, but the opposite was true for DQB supertypes-arguing against universal selection for immunogenetic optimality. We also showed that particular MHC supertypes explain a portion of the variance in prevalence and abundance of helminths, but this effect was subpopulation-specific, which is consistent with both NFDS and FS. Finally, in line with NFDS, we found that certain helminths that have recently colonized or spread in a given subpopulation, more frequently or intensely infected voles with MHC supertypes that have been common in the recent past. Overall, our results highlight complex spatial and temporal patterns of MHC-parasite associations, the latter being consistent with Red Queen coevolutionary dynamics.


Subject(s)
Arvicolinae , Helminths , Animals , Arvicolinae/genetics , Helminths/genetics , Histocompatibility Antigens Class II/genetics , Poland , Polymorphism, Genetic , Selection, Genetic
13.
Ecol Evol ; 12(4): e8776, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35432925

ABSTRACT

Rodents often act as important hosts for ticks and as pathogen reservoirs. At northern latitudes, rodents often undergo multi-annual population cycles, and the periodic absence of certain hosts may inhibit the survival and recruitment of ticks. We investigated the potential role of common shrews (Sorex araneus) to serve as a supplementary host source to immature life stages (larvae and nymphs) of a generalist tick Ixodes ricinus and a small mammal specialist tick I. trianguliceps, during decreasing abundances of bank voles (Myodes glareolus). We used generalized mixed models to test whether ticks would have a propensity to parasitize a certain host species dependent on host population size and host population composition across two high-latitude gradients in southern Norway, by comparing tick burdens on trapped animals. Host population size was defined as the total number of captured animals and host population composition as the proportion of voles to shrews. We found that a larger proportion of voles in the host population favored the parasitism of voles by I. ricinus larvae (estimate = -1.923, p = .039) but not by nymphs (estimate = -0.307, p = .772). I. trianguliceps larvae did not show a lower propensity to parasitize voles, regardless of host population composition (estimate = 0.875, p = .180), while nymphs parasitized shrews significantly more as vole abundance increased (estimate = 2.106, p = .002). These results indicate that common shrews may have the potential to act as a replacement host during periods of low rodent availability, but long-term observations encompassing complete rodent cycles may determine whether shrews are able to maintain tick range expansion despite low rodent availability.

14.
Microorganisms ; 10(4)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35456763

ABSTRACT

Among the Apicomplexa parasites, Hepatozoon spp. have been mainly studied in domestic animals and peri-urban areas. The epidemiology of Hepatozoon spp. is poorly investigated in natural systems and wild hosts because of their scarce veterinary and economic relevance. For most habitats, the occurrence of these parasites is unknown, despite their high ecosystemic role. To fill this gap for alpine small mammals, we applied molecular PCR-based methods and sequencing to determine the Hepatozoon spp. in 830 ear samples from 11 small mammal species (i.e., Apodemus, Myodes, Chionomys, Microtus, Crocidura and Sorex genera) live-trapped during a cross-sectional study along an altitudinal gradient in the North-Eastern Italian Alps. We detected Hepatozoon spp. with an overall prevalence of 35.9%. Two species ranging from 500 m a.s.l. to 2500 m a.s.l. were the most infected: My. glareolus, followed by Apodemus spp. Additionally, we detected the parasite for the first time in another alpine species: C. nivalis at 2000-2500 m a.s.l. Our findings suggest that several rodent species maintain Hepatozoon spp. along the alpine altitudinal gradient of habitats. The transmission pathway of this group of parasites and their role within the alpine mammal community need further investigation, especially in consideration of the rapidly occurring environmental and climatic changes.

15.
Environ Sci Pollut Res Int ; 29(35): 52796-52805, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35267167

ABSTRACT

Differences in PCDD/Fs concentrations were registered among adult bank voles (Myodes glareolus) inhabiting forest in the vicinity of the Landfill Salariyevo (Moscow, Russia) and caught in early spring (over-winter survivors) and late summer. The levels of highly toxic congeners and WHO-TEQ05 in samples of wintering voles were much lower than those in samples got in summer. This difference was investigated analyzing PCDD/Fs in sexually matured animals and offspring obtained in vivarium. Practically, no significant differences of PCDD/Fs concentrations and general toxicity were revealed among sexes. The main impact to these seasonal differences in PCDD/Fs accumulation was assigned to the types of functional development and activity, diet variation as natural growth of all voles occurs on the same territory but in seasonally diverse conditions. So, the species functional ecology (lifestyle and seasonal features) should be considered in practical application of animal models from natural populations for local monitoring of PCDD/Fs body burden, and individual functional type of ontogenesis among cyclomorphic mammalian species, especially. Thus, the results obtained during monitoring should be carefully interpreted for a proper environmental management.


Subject(s)
Air Pollutants , Polychlorinated Dibenzodioxins , Air Pollutants/analysis , Animals , Arvicolinae , Dibenzofurans , Dibenzofurans, Polychlorinated/analysis , Environmental Monitoring , Moscow , Polychlorinated Dibenzodioxins/analysis , Russia , Seasons , Waste Disposal Facilities
16.
Parasitology ; 149(1): 76-94, 2022 01.
Article in English | MEDLINE | ID: mdl-34608855

ABSTRACT

Oxyurid nematodes (Syphacia spp.) from bank (Myodes glareolus) and field/common (Microtus spp.) voles, from disparate geographical sites in the British Isles, were examined morphologically and genetically. The genetic signatures of 118 new isolates are provided, based primarily on the rDNA internal transcribed spacers (ITS1-5.8S-ITS2) region and for representative isolates also on the small subunit 18S rDNA region and cytochrome c oxidase subunit 1 (cox-1) gene locus. Genetic data on worms recovered from Microtus spp. from the European mainland and from other rodent genera from the Palaearctic, North America and West Africa are also included. We test historical hypotheses indicating that S. nigeriana is a generalist species, infecting a range of different rodent genera. Our results establish that S. nigeriana is a parasite of both bank and field voles in the British Isles. An identical genotype was also recorded from Hubert's multimammate mouse (Mastomys huberti) from Senegal, but Mastomys spp. from West Africa were additionally parasitized by a related, although genetically distinct Syphacia species. We found no evidence for S. petrusewiczi in voles from the British Isles but isolates from Russia and North America were genetically distinct and formed their own separate deep branch in maximum likelihood molecular phylogenetic trees.


Subject(s)
Nematoda , Oxyuroidea , Rodent Diseases , Animals , Arvicolinae/parasitology , Mice , Oxyuroidea/genetics , Phylogeny , Rodent Diseases/epidemiology , Rodent Diseases/parasitology
17.
Ambio ; 51(3): 508-517, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34228253

ABSTRACT

Many zoonotic diseases are weather sensitive, raising concern how their distribution and outbreaks will be affected by climate change. At northern high latitudes, the effect of global warming on especially winter conditions is strong. By using long term monitoring data (1980-1986 and 2003-2013) from Northern Europe on temperature, precipitation, an endemic zoonotic pathogen (Puumala orthohantavirus, PUUV) and its reservoir host (the bank vole, Myodes glareolus), we show that early winters have become increasingly wet, with a knock-on effect on pathogen transmission in its reservoir host population. Further, our study is the first to show a climate change effect on an endemic northern zoonosis, that is not induced by increased host abundance or distribution, demonstrating that climate change can also alter transmission intensity within host populations. Our results suggest that rainy early winters accelerate PUUV transmission in bank voles in winter, likely increasing the human zoonotic risk in the North.


Subject(s)
Hemorrhagic Fever with Renal Syndrome , Puumala virus , Animals , Arvicolinae , Climate Change , Humans , Seasons
18.
Ecol Evol ; 11(17): 11890-11902, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34522348

ABSTRACT

Mast seeding, the synchronized interannual variation in seed production of trees, is a well-known bottom-up driver for population densities of granivorous forest rodents. Such demographic effects also affect habitat preferences of the animals: After large seed production events, reduced habitat selectivity can lead to spillover from forest patches into adjacent alpine meadows or clear-cuts, as has been reported for human-impacted forests. In unmanaged, primeval forests, however, gaps created by natural disturbances are typical elements, yet it is unclear whether the same spillover dynamics occur under natural conditions. To determine whether annual variation in seed production drives spillover effects in naturally formed gaps, we used 14 years of small mammal trapping data combined with seed trap data to estimate population densities of Apodemus spp. mice and bank voles (Myodes glareolus) on 5 forest sites with differing disturbance history. The study sites, located in a forest dominated by European beech (Fagus sylvatica), Norway spruce (Picea abies), and silver fir (Abies alba), consisted of two primeval forest sites with small canopy gaps, two sites with larger gaps (after an avalanche event and a windthrow event), and a managed forest stand with closed canopy as a control. Hierarchical Bayesian N-mixture models revealed a strong influence of seed rain on small rodent abundance, which were site-specific for M. glareolus but not for Apodemus spp. Following years of moderate or low seed crop, M. glareolus avoided open habitat patches but colonized those habitats in large numbers after full mast events, suggesting that spillover events also occur in unmanaged forests, but not in all small rodents. The species- and site-specific characteristics of local density responding to food availability have potentially long-lasting effects on forest gap regeneration dynamics and should be addressed in future studies.

19.
Pathogens ; 10(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34578197

ABSTRACT

In Europe, Puumala virus (PUUV) transmitted by the bank vole (Myodes glareolus) is the causative agent of nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome. In France, very little is known about the spatial and temporal variability of the virus circulating within bank vole populations. The present study involved monitoring of bank vole population dynamics and PUUV microdiversity over a ten-year period (2000-2009) in two forests of the Ardennes region: Elan and Croix-Scaille. Ardennes region is characterised by different environmental conditions associated with different NE epidemiology. Bank vole density and population parameters were estimated using the capture/marking/recapture method, and blood samples were collected to monitor the overall seroprevalence of PUUV in rodent populations. Phylogenetic analyses of fifty-five sequences were performed to illustrate the genetic diversity of PUUV variants between forests. The pattern of the two forests differed clearly. In the Elan forest, the rodent survival was higher, and this limited turn-over resulted in a lower seroprevalence and diversity of PUUV sequences than in the Croix-Scaille forest. Uncovering the links between host dynamics and virus microevolution is improving our understanding of PUUV distribution in rodents and the NE risk.

20.
Pathogens ; 10(9)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34578200

ABSTRACT

In the European part of Russia, the highest number of hemorrhagic fever with renal syndrome (HFRS) cases are registered in the Volga Federal District (VFD), which includes the Republic of Tatarstan (RT). Puumala orthohantavirus (PUUV) is the main causative agent of HFRS identified in the RT. The goal of the current study is to analyze the genetic variations of the PUUV strains and possible presence of chimeric and reassortant variants among the PUUV strains circulating in bank vole populations in the Trans-Kama area of the RT. Complete S segment CDS as well as partial M and L segment coding nucleotide sequences were obtained from 40 PUUV-positive bank voles and used for the analysis. We found that all PUUV strains belonged to RUS genetic lineage and clustered in two subclades corresponding to the Western and Eastern Trans-Kama geographic areas. PUUV strains from Western Trans-Kama were related to the previously identified strain from Teteevo in the Pre-Kama area. It can be suggested that the PUUV strains were introduced to the Teteevo area as a result of the bank voles' migration from Western Trans-Kama. It also appears that physical obstacles, including rivers, could be overcome by migrating rodents under favorable circumstances. Based on results of the comparative and phylogenetic analyses, we propose that bank vole distribution in the Trans-Kama area occurred upstream along the river valleys, and that watersheds could act as barriers for migrations. As a result, the diverged PUUV strains could be formed in closely located populations. In times of extensive bank vole population growth, happening every 3-4 years, some regions of watersheds may become open for contact between individual rodents from neighboring populations, leading to an exchange of the genetic material between divergent PUUV strains.

SELECTION OF CITATIONS
SEARCH DETAIL