Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 657
Filter
1.
Am J Obstet Gynecol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825029

ABSTRACT

BACKGROUND: Black women experience a disproportionate impact of uterine fibroids compared to White women, including earlier diagnosis, higher frequency, and more severe symptoms. The etiology underlying this racial disparity remains elusive. OBJECTIVE: The aim of this study was to evaluate the molecular differences in normal myometrium (fibroid-free uteri) and at-risk myometrium (fibroid-containing uteri) tissues in Black and White women. STUDY DESIGN: We conducted whole-genome RNA-seq on normal and at-risk myometrium tissues obtained from both self-identified Black and White women (not Hispanic or Latino) to determine global gene expression profiles and to conduct enriched pathway analyses (n=3 per group). We initially assessed the differences within the same type of tissue (normal or at-risk myometrium) between races. Subsequently, we analyzed the transcriptome of normal myometrium compared to at-risk myometrium in each race and determined the differences between them. We validated our findings through real-time PCR (sample size range=5-12), western blot (sample size range=5-6), and immunohistochemistry techniques (sample size range=9-16). RESULTS: The transcriptomic analysis revealed distinct profiles between Black and White women in normal and at-risk myometrium tissues. Interestingly, genes and pathways related to extracellular matrix and mechanosensing were more enriched in normal myometrium from Black than White women. Transcription factor enrichment analysis detected greater activity of the serum response transcription factor positional motif in normal myometrium from Black compared to White women. Furthermore, we observed increased expression levels of myocardin-related transcription factor-serum response factor and the serum response factor in the same comparison. In addition, we noted increased expression of both mRNA and protein levels of vinculin, a target gene of the serum response factor, in normal myometrium tissues from Black women as compared to White women. Importantly, the transcriptomic profile of normal to at-risk myometrium conversion differs between Black and White women. Specifically, we observed that extracellular matrix-related pathways are involved in the transition from normal to at-risk myometrium and that these processes are exacerbated in Black women. We found increased levels of Tenascin C, type I collagen alpha 1 chain, fibronectin and, phospho-p38 MAPK (Thr180/Tyr182, active) protein levels in at-risk over normal myometrium tissues from Black women, whereas such differences were not observed in samples from White women. CONCLUSIONS: These findings indicate that the racial disparities in uterine fibroids may be attributed to heightened production of extracellular matrix in the myometrium in Black women, even before the tumors appear. Future research is needed to understand early life determinants of the observed racial differences.

2.
Biomark Res ; 12(1): 55, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831319

ABSTRACT

BACKGROUND: Placenta accreta spectrum disorders (PAS) are a severe complication characterized by abnormal trophoblast invasion into the myometrium. The underlying mechanisms of PAS involve a complex interplay of various cell types and molecular pathways. Despite its significance, both the characteristics and intricate mechanisms of this condition remain poorly understood. METHODS: Spatial transcriptomics (ST) and single-cell RNA sequencing (scRNA-seq), were performed on the tissue samples from four PAS patients, including invasive tissues (ST, n = 3; scRNA-seq, n = 4), non-invasive normal placenta samples (ST, n = 1; scRNA-seq, n = 2). Three healthy term pregnant women provided normal myometrium samples (ST, n = 1; scRNA-seq, n = 2). ST analysis characterized the spatial expression landscape, and scRNA-seq was used to identify specific cellular components in PAS. Immunofluorescence staining was conducted to validate the findings. RESULTS: ST slices distinctly showed the myometrium in PAS was invaded by three subpopulations of trophoblast cells, extravillous trophoblast cells, cytotrophoblasts, and syncytiotrophoblasts, especially extravillous trophoblast cells. The pathways enriched by genes in trophoblasts, smooth muscle cells (SMC), and immune cells of PAS were mainly associated with immune and inflammation. We identified elevated expression of the angiogenesis-stimulating gene PTK2, alongside the cell proliferation-enhancing gene EGFR, within the trophoblasts of PAS group. Trophoblasts mainly contributed the enhancement of HLA-G and EBI3 signaling, which is crucial in establishing immune escape. Meanwhile, SMC regions in PAS exhibited upregulation of immunomodulatory markers such as CD274, HAVCR2, and IDO1, with CD274 expression experimentally verified to be increased in the invasive SMC areas of the PAS group. CONCLUSIONS: This study provided information of cellular composition and spatial organization in PAS at single-cell and spatial level. The dysregulated expression of genes in PAS revealed a complex interplay between enhanced immune escape in trophoblasts and immune tolerance in SMCs during invasion in PAS. These findings will enhance our understanding of PAS pathogenesis for developing potential therapeutic strategies.

3.
Curr Med Sci ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789820

ABSTRACT

OBJECTIVE: The latest perspective suggests that elevated levels of inflammation and cytokines are implicated in atonic postpartum hemorrhage. Lipopolysaccharide (LPS) has been widely used to induce inflammation in animal models. Therefore, this study aimed to induce uterine inflammation using LPS to investigate whether local inflammation triggers dysfunction and atrophy in the myometrium, as well as the potential underlying molecular mechanisms involved. METHODS: In vivo, an animal model was established by intraperitoneal injection of 300 µg/ kg LPS in rats on gestational day 21. Hematoxylin-eosin (H&E) staining and Masson staining were employed to determine morphological changes in the rat uterine smooth muscle. Enzyme-linked immunosorbent assay (ELISA) was used to detect inflammatory cytokines. Immunohistochemistry, tissue fluorescence, and Western blotting were conducted to assess the expression levels of the uterine contraction-related proteins Toll-like receptor 4 (TLR4) and the nuclear factor kappa-B (NF-κB) signaling pathway. In vitro, human uterine smooth muscle cells (HUtSMCs) were exposed to 2 µg/mL LPS to further elucidate the involvement of the TLR4/NF-κB signaling pathway in LPS-mediated inflammation. RESULTS: In this study, LPS induced uterine myometrial dysfunction in rats, leading to a disorganized arrangement, a significant increase in collagen fiber deposition, and widespread infiltration of inflammatory cells. In both in vivo animal models and in vitro HUtSMCs, LPS elevated IL-6, IL-1ß, and TNF-α levels while concurrently suppressing the expression of connexin 43 (Cx43) and oxytocin receptor (OXTR). Mechanistically, the LPS-treated group exhibited TLR4 activation, and the phosphorylation levels of p65 and IκBα were notably increased. CONCLUSION: LPS triggered the TLR4/NF-κB signaling pathway, inducing an inflammatory response in the myometrium and leading to uterine myometrial dysfunction and uterine atony.

4.
Mol Hum Reprod ; 30(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38704863

ABSTRACT

Persistent and intense uterine contraction is a risk factor for preterm labor. We previously found that methyl-CpG-binding protein 2 (MeCP2), as a target of infection-related microRNA miR-212-3p, may play an inhibitory role in regulating myometrium contraction. However, the molecular mechanisms by which MeCP2 regulates myometrial contraction are still unknown. In this study, we found that MeCP2 protein expression was lower in myometrial specimens obtained from preterm labor cases, compared to those obtained from term labor cases. Herein, using RNA sequence analysis of global gene expression in human uterine smooth muscle cells (HUSMCs) following siMeCP2, we show that MeCP2 silencing caused dysregulation of the cholesterol metabolism pathway. Notably, MeCP2 silencing resulted in the upregulation of CYP27A1, the key enzyme involved in regulating cholesterol homeostasis, in HUSMCs. Methylation-specific PCR, chromatin immunoprecipitation, and dual luciferase reporter gene technology indicated that MeCP2 could bind to the methylated CYP27A1 promoter region and repress its transcription. Administration of siCYP27A1 in a lipopolysaccharide (LPS)-induced preterm labor mouse model delayed the onset of preterm labor. Human preterm myometrium and the LPS-induced preterm labor mouse model both showed lower expression of MeCP2 and increased expression of CYP27A1. These results demonstrated that aberrant upregulation of CYP27A1 induced by MeCP2 silencing is one of the mechanisms facilitating inappropriate myometrial contraction. CYP27A1 could be exploited as a novel therapeutic target for preterm birth.


Subject(s)
Methyl-CpG-Binding Protein 2 , Myometrium , Obstetric Labor, Premature , Uterine Contraction , Adult , Animals , Female , Humans , Mice , Pregnancy , Cholestanetriol 26-Monooxygenase/genetics , Cholestanetriol 26-Monooxygenase/metabolism , Cholesterol/metabolism , Lipopolysaccharides/pharmacology , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Myocytes, Smooth Muscle/metabolism , Myometrium/metabolism , Obstetric Labor, Premature/metabolism , Obstetric Labor, Premature/genetics , Promoter Regions, Genetic , Uterine Contraction/drug effects
5.
Open Med (Wars) ; 19(1): 20240927, 2024.
Article in English | MEDLINE | ID: mdl-38584842

ABSTRACT

Uterine rupture is a rupture of the body or lower part of the uterus during pregnancy or delivery. Total of 98 cases with incomplete uterine rupture were classified as the incomplete uterine rupture group, 100 cases with a history of cesarean delivery without uterine rupture were classified as the non-ruptured uterus group, and controls were selected using a systematic sampling method. The maternal age ≥35 years were associated with 2.18 times higher odds of having an incomplete uterine rupture. The odd of having an incomplete uterine rupture was 3.744 times higher for a woman with delivery interval ≤36 months. Having pregnancy complication was associated with 3.961 times higher odds of having an incomplete uterine rupture. The neonatal weight was lighter in the incomplete uterine rupture group (P = 0.007). The number of preterm birth and transfer to the NICU were higher in the incomplete uterine rupture group (P < 0.01). The operation time and the length of time in hospital were longer in the group with incomplete uterine rupture (P < 0.01). Age ≥35 years, delivery interval ≤36 month, and pregnancy with complication were independent risk factors of incomplete rupture of the uterus secondary to previous cesarean section.

6.
bioRxiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38659934

ABSTRACT

Estradiol (E2) and relaxin (Rln) are steroid and polypeptide hormones, respectively, with important roles in the female reproductive tract, including myometrium. Some actions of Rln, which are mediated by its membrane receptor RXFP1, require or are augmented by E2 signaling through its cognate nuclear steroid receptor, estrogen receptor alpha (ERα). In contrast, other actions of Rln act in opposition to the effects of E2. Here we explore the molecular and genomic mechanisms that underlie the functional interplay between E2 and Rln in the myometrium. We used both ovariectomized female mice and immortalized human myometrial cells expressing wild type or mutant ERα (hTERT-HM-ERα cells). Our results indicate that Rln attenuates the genomic actions and biological effects of estrogen in the myometrium and myometrial cells by reducing phosphorylation ERα on serine 118 (S118). Interestingly, we observed a potent inhibitory effect of Rln on the E2-dependent binding of ERα across the genome. The reduction in ERα binding was associated with changes in the hormone-regulated transcriptome, including a decrease in the E2-dependent expression of neighboring genes. The inhibitory effects of Rln cotreatment on the E2-dependent phosphorylation of ERα required the nuclear dual-specificity phosphatases DUSP1 and DUSP5. Moreover, the inhibitory effects of Rln were reflected in a concomitant inhibition of the E2-dependent contraction of myometrial cells. Collectively, our results identify a pathway that integrates Rln/RXFP1 and E2/ERα signaling, resulting in a convergence of membrane and nuclear signaling pathways to control genomic and biological outcomes.

7.
Gynecol Endocrinol ; 40(1): 2332411, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38537663

ABSTRACT

OBJECTIVES: The objective of this study was to investigate the glycolytic activity of adenomyosis, which is characterized by malignant biological behaviors including abnormal cell proliferation, migration, invasion, cell regulation, and epithelial-mesenchymal transition. METHODS: From January 2021 to August 2022, a total of 15 patients who underwent total hysterectomy for adenomyosis and 14 patients who had non-endometrial diseases, specifically with cervical squamous intraepithelial neoplasia and uterine myoma, were included in this study. Myometrium with ectopic endometrium from patients with adenomyosis while normal myometrium from patients in the control group were collected. All samples were confirmed by a histopathological examination. The samples were analyzed by liquid chromatography-mass spectrometry (LC-MS), real-time quantitative PCR, NAD+/NADH assay kit as well as the glucose and lactate assay kits. RESULTS: Endometrial stroma and glands could be observed within the myometrium of patients in the adenomyosis group. We found that the mRNA expressions of HK1, PFKFB3, glyceraldehyde-3-phospate dehydrogenase (GAPDH), PKM2, and PDHA as well as the protein expressions of PFKFB3 were elevated in ectopic endometrial tissues of the adenomyosis group as compared to normal myometrium of the control group. The level of fructose 1,6-diphosphate was increased while NAD + and NAD+/NADH ratio were decreased compared with the control group. Besides, increased glucose consumption and lactate production were observed in myometrium with ectopic endometrium. CONCLUSIONS: We concluded that altered glycolytic phenotype of the myometrium with ectopic endometrium in women with adenomyosis may contribute the development of adenomyosis.


Subject(s)
Adenomyosis , Humans , Female , Adenomyosis/pathology , Myometrium/metabolism , NAD/metabolism , Endometrium/metabolism , Glucose/metabolism , Lactates/metabolism
8.
J Ultrason ; 24(96): 20240011, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38496787

ABSTRACT

Aim: Abnormal uterine vascular pattern can be observed during transvaginal ultrasound examination used for investigating post-abortion bleeding and secondary postpartum hemorrhage. The purpose of this series of cases was to evaluate almost all the rare causes of uterine vascular abnormalities linked to pregnancy complications, and determine how to arrive at the diagnosis to optimize patient management, which is crucial for preventing life-threatening massive vaginal bleeding. Material and methods: Retrospective observational case series study including 20 women with postpartum or post-abortion vaginal bleeding who were found to have an abnormal uterine vascular pattern during a transvaginal color duplex assessment. Results: The study yielded the following findings: 10 cases of enhanced myometrial vascularity, two cases of pseudoaneurysm in the uterine artery, one case of myometrial venous varix, one case of large uterine venous pseudoaneurysm, one case of uterine arteriovenous malformation, one case of retained placental polyp, one case of invasive vesicular mole, and three cases of subinvolution of the placental implantation site. Conclusions: Transvaginal color duplex ultrasound plays a crucial role in detecting uterine vascular abnormalities as a cause of post-abortion or secondary postpartum hemorrhage and can help differentiate the pathologies responsible for the abnormal vascular pattern, which is highly recommended to optimize patient management.

9.
Curr Res Physiol ; 7: 100122, 2024.
Article in English | MEDLINE | ID: mdl-38501132

ABSTRACT

Background: Abnormal cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) has been linked to airway smooth muscle abnormalities including bronchial hyperresponsiveness. However, a role for CFTR in other types of smooth muscle, including myometrium, remains largely unexplored. As CF life expectancy and the number of pregnancies increases, there is a need for an understanding of the potential role of CFTR in myometrial function. Methods: We investigated the role of CFTR in human and mouse myometrium. We used immunofluorescence to identify CFTR expression, and carried out contractility studies on spontaneously contracting term pregnant and non-pregnant mouse myometrium and term pregnant human myometrial biopsies from caesarean sections. Results: CFTR was found to be expressed in term pregnant mouse myometrium. Inhibition of CFTR, with the selective inhibitor CFTRinh-172, significantly reduced contractility in pregnant mouse and human myometrium in a concentration-dependent manner (44.89 ± 11.02 term pregnant mouse, 9.23 ± 4.75 term-pregnant human; maximal effect at 60 µM expressed as a percentage of the pre-treatment control period). However, there was no effect of CFTRinh-172 in non-pregnant myometrium. Conclusion: These results demonstrate decreased myometrial function when CFTR is inhibited, which may have implications on pregnancy and labour outcome and therapeutic decisions for labour in CF patients.

10.
Arch Gynecol Obstet ; 309(5): 1825-1831, 2024 May.
Article in English | MEDLINE | ID: mdl-38441600

ABSTRACT

Uterine leiomyomas, also known as fibroids or myomas, occur in an estimated 70-80% of reproductive aged women. Many experience debilitating symptoms including pelvic pain, abnormal uterine bleeding (AUB), dyspareunia, dysmenorrhea, and infertility. Current treatment options are limited in preserving fertility, with many opting for sterilizing hysterectomy as a form of treatment. Currently, surgical interventions include hysterectomy, myomectomy, and uterine artery embolization in addition to endometrial ablation to control AUB. Non-surgical hormonal interventions, including GnRH agonists, are connotated with negative side effects and are unacceptable for women desiring fertility. Periostin, a regulatory extra cellular matrix (ECM) protein, has been found to be expressed in various gynecological diseases including leiomyomas. We previously determined that periostin over-expression in immortalized myometrial cells led to the development of a leiomyoma-like cellular phenotype. Periostin is induced by TGF-ß, signals through the PI3K/AKT pathway, induces collagen production, and mediates wound repair and fibrosis, all of which are implicated in leiomyoma pathology. Periostin has been linked to other gynecological diseases including ovarian cancer and endometriosis and is being investigated as pharmacological target for treating ovarian cancer, post-surgical scarring, and numerous other fibrotic conditions. In this review, we provide discussion linking pathological inflammation and wound repair, with a TGF-ß-periostin-collagen signaling in the pathogenesis of leiomyomas, and ultimately the potential of periostin as a druggable target to treat leiomyomas.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Collagen , Leiomyoma/surgery , Ovarian Neoplasms , Periostin , Phosphatidylinositol 3-Kinases , Transforming Growth Factor beta , Uterine Neoplasms/pathology
11.
Int J Fertil Steril ; 18(2): 123-127, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38368514

ABSTRACT

BACKGROUND: Myometrial thickness has been expected to be a prognosticator for lower uterine segment function. An abnormal function of the uterine muscle layer can cause common and important reproductive problems. This study aimed to evaluate the relationship between baseline myometrial thickness and assisted reproductive technologies (ART) outcomes. MATERIALS AND METHODS: In this prospective cohort study, 453 infertile women undergoing ART cycles without any obvious uterine pathology, participated in this prospective cohort study from February 2013 to May 2015. In order to measure the myometrial thickness in the anterior and posterior of the uterine, trans-vaginal ultrasounds were conducted on days 2-4 of the cycle (menstrual phase) preceding ovarian stimulation and the day of human chorionic gonadotropin (hCG) injection. We defined three groups based on the baseline myometrial thickness in the anterior and posterior, including (A) <25 mm, (B) 25-29.9 mm and (C) ≥30 mm. Ovarian stimulation, oocyte retrieval and luteal phase support were performed in accordance with the standard long protocol. Two weeks after embryo transfer, the patients underwent a pregnancy test by checking their serum ß-hCG levels. The primary outcome measure was clinical pregnancy rate. Secondary outcome measures were, implantation rate, abortion rate and live birth rate. RESULTS: The clinical pregnancy (P=0.013) and implantation (P=0.003) rates were significantly lower in group A than in two other groups. Although the live birth rate was lower in group A than two other groups, this decrease was not statistically significant (P=0.058). CONCLUSION: The findings may be a way for clinicians to draw focus on providing therapeutic strategies and a specific supportive care for women with a baseline myometrial thickness <25 mm in order to improve the reproductive outcome of in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI).

12.
Am J Physiol Cell Physiol ; 326(4): C1106-C1119, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38344766

ABSTRACT

Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.


Subject(s)
Guanidines , Lipopolysaccharides , Myometrium , Potassium Channels, Tandem Pore Domain , Sodium-Hydrogen Exchanger 1 , Sulfones , Animals , Female , Mice , Pregnancy , Escherichia coli , Lipopolysaccharides/toxicity , Myometrium/metabolism , RNA, Small Interfering/metabolism , Uterine Contraction/physiology , Potassium Channels, Tandem Pore Domain/metabolism , Sodium-Hydrogen Exchanger 1/metabolism
13.
Reprod Sci ; 31(6): 1651-1661, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379067

ABSTRACT

Uterine leiomyomas (fibroids) are the most common non-cancerous tumors affecting women. Psychosocial stress is associated with fibroid risk and severity. The relationship between psychosocial stress and fibroid pathogenesis may involve alterations in microRNAs (miRNAs) although this has yet to be examined. We investigated associations between two psychosocial stress measures, a composite measure of recent stressful life events and perceived social status, with expression levels of 401 miRNAs in myometrium (n = 20) and fibroids (n = 44; 20 with paired fibroid and myometrium samples) among pre-menopausal women who underwent surgery for fibroid treatment. We used linear regressions to identify psychosocial stressors associated with miRNAs, adjusting for covariates (age, body mass index, race/ethnicity, and oral contraceptive use). The association between psychosocial stressors and miRNAs was considered statistically significant at an FDR p < 0.10 and showed a monotonic response (nominal p-trend < 0.05). In the myometrium, 21 miRNAs were significantly associated with a composite measure of recent stressful events, and two miRNAs were associated with perceived social status. No fibroid miRNAs were associated with either stress measure. Pathway analyses revealed miRNA-mRNA targets were significantly enriched (FDR p < 0.05) in pathways relevant to cancer/tumor development. Of the 74 differentially expressed miRNAs between myometrium and fibroids, miR-27a-5p and miR-301b were also associated with stress exposure. Our pilot analysis suggests that psychosocial stress is associated with myometrial miRNA expression and, thus, may have a role in the pathogenesis of fibroids from healthy myometrium.


Subject(s)
Leiomyoma , MicroRNAs , Myometrium , Stress, Psychological , Uterine Neoplasms , Humans , Female , Leiomyoma/surgery , Leiomyoma/metabolism , Leiomyoma/genetics , Leiomyoma/psychology , MicroRNAs/metabolism , MicroRNAs/genetics , Myometrium/metabolism , Stress, Psychological/metabolism , Stress, Psychological/genetics , Adult , Uterine Neoplasms/surgery , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterine Neoplasms/psychology , Middle Aged
14.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255950

ABSTRACT

Placenta accreta spectrum (PAS) is a severe complication of pregnancy associated with excessive invasion of cytotrophoblast cells at the sites of the endometrial-myometrial interface and the myometrium itself in cases of adherent (creta) and invasive (increta and percreta) forms, respectively. This leads to a high risk of massive blood loss, maternal hysterectomy, and preterm birth. Despite advancements in ultrasound protocols and found associations of alpha-fetoprotein, PAPP-A, hCG, PLGF, sFlt-1, IL-8, and IL-33 peripheral blood levels with PAS, there is a high need for an additional non-invasive test to improve the diagnostic accuracy and to select the real PAS from the suspected ones in the first-trimester screening. miRNA signatures of placental tissue, myometrium, and blood plasma from women with PAS in the third trimester of pregnancy, as well as miRNA profiles in exosomes from the blood serum of women in the first trimester with physiologically progressing pregnancy, complicated by PAS or pre-eclampsia, were obtained using deep sequencing. Two logistic regression models were constructed, both featuring statistically significant parameters related to the levels of miR-26a-5p, miR-17-5p, and miR-101-3p, quantified by real-time PCR in native blood serum. These models demonstrated 100% sensitivity in detecting PAS during the first pregnancy screening. These miRNAs were identified as specific markers for PAS, showing significant differences in their blood serum levels during the first trimester in the PAS group compared to those in physiological pregnancies, early- or late-onset pre-eclampsia groups. Furthermore, these miRNAs exhibited differential expression in the PAS placenta and/or myometrium in the third trimester and, according to data from the literature, control angiogenesis. Significant correlations were found between extracellular hsa-miR-101-3p and nuchal translucency thickness, hsa-miR-17-5p and uterine artery pulsatility index, and hsa-miR-26a-5p and hsa-miR-17-5p with PLGF. The developed test system for early non-invasive PAS diagnosis based on the blood serum level of extracellular miR-26a-5p, miR-17-5p, and miR-101-3p can serve as an auxiliary method for first-trimester screening of pregnant women, subject to validation with independent test samples.


Subject(s)
MicroRNAs , Placenta Accreta , Pre-Eclampsia , Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Pregnancy Trimester, First , Placenta Accreta/diagnostic imaging , Placenta Accreta/genetics , Pre-Eclampsia/diagnosis , Pre-Eclampsia/genetics , Placenta , MicroRNAs/genetics
15.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38290796

ABSTRACT

Uterine leiomyoma (LM), also known as uterine fibroids, are common gynecological tumors and can reach a prevalence of 70% among women by the age of 50 years. Notably, the LM burden is much higher in Black women with earlier onset, a greater tumor number, size, and severity compared to White women. Published knowledge shows that there are genetic, environmental, and lifestyle-based risk factors associated with racial disparity for LM. Significant strides have been made on genomic, epigenomic, and transcriptomic data levels in Black and White women to elucidate the underlying pathomolecular reasons of racial disparity in LM development. However, racial disparity of LM remains a major area of concern in gynecological research. This review highlights risk factors of LM and their role in different races. Furthermore, we discuss the genetics and uterine myometrial microenvironment in LM development. Comparative findings revealed that a major racial difference in the disease is linked to myometrial oxidative burden and altered ROS pathways which is relevant to the oxidized guanine in genomic DNA and MED12 mutations that drive the LM genesis. Considering the burden and morbidity of LM, we anticipate that this review on genetic risk and myometrial microenvironment will strengthen understanding and propel the growth of research to address the racial disparity of LM burden.


Subject(s)
Leiomyoma , Uterine Neoplasms , Female , Humans , Middle Aged , Black or African American , Gene Expression Profiling , Leiomyoma/genetics , Leiomyoma/metabolism , Myometrium/metabolism , Tumor Microenvironment , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Uterus/metabolism , White
16.
Life Sci ; 340: 122454, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38262574

ABSTRACT

AIMS: Although the functions of progesterone in the myometrium are well-established, the nongenomic effects of progesterone in pregnant myometrial contractions are still unclear. Therefore, this study aimed to investigate changes in the nongenomic effects of progesterone during pregnancy. MAIN METHODS: Myometrial strips were obtained from non-pregnant, pregnant, and postpartum rats, and the nongenomic effects of progesterone in the myometrium during pregnancy were examined. Additionally, the influence of actinomycin D and cycloheximide and the effects of Org OD-02-0 (a specific membrane progesterone receptor (mPR) agonist) in the myometrium were investigated. Moreover, DNA microarray and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to identify genes involved in progesterone-induced effects in the myometrium. KEY FINDINGS: Progesterone did not cause rhythmic contractions in non-pregnant myometrium but induced rhythmic contractions in pregnant myometrium, with the effects peaking at 20 d + 8 h of pregnancy. However, myometrial contractions decreased after delivery and were restored to non-pregnant levels at 7 d postpartum. Additionally, progesterone stably inhibited high KCl-induced myometrial contractions during pregnancy. Moreover, the nongenomic effects of progesterone were unaffected by actinomycin D or cycloheximide, and Org OD-02-0 effectively mimicked these effects. DNA microarray analysis and qRT-PCR revealed a significant increase in mPRß gene expression during pregnancy. However, mPRα, mPRγ, mPRδ, and mPRε expression levels remained unchanged. SIGNIFICANCE: The stimulatory nongenomic effect of progesterone, which was inducible and mPRß-dependent during pregnancy, may be involved in parturition. The inhibitory effect, which was constitutive and depended on other mPRs, may be involved in pregnancy maintenance.


Subject(s)
Myometrium , Progesterone , Pregnancy , Female , Rats , Animals , Progesterone/pharmacology , Progesterone/metabolism , Myometrium/metabolism , Cycloheximide/pharmacology , Cycloheximide/metabolism , Dactinomycin/pharmacology , Dactinomycin/metabolism , Receptors, Progesterone/metabolism , Progestins/pharmacology , Uterine Contraction
17.
Clin Case Rep ; 12(1): e8413, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188844

ABSTRACT

Key Clinical Message: Cavernous hemangiomas are rare and have various non-specific clinical presentations, such as menorrhagia. It can mimic different diseases such as endometrial polyps. Pathologists and gynecologists should be aware of performing histopathological examinations of this neoplasm for accurate diagnosis and to avoid unwarranted therapeutic interventions. Abstract: Internal genital tract hemangiomas are rare and can be divided into capillary and cavernous. We present a rare case of cavernous hemangioma (CH) of the corpus in a young, non-pregnant woman. The patient was a 28-year-old woman who had complained of menorrhagia for 2.5 years. Sonography showed a hypoechoic intramural area measuring 35 × 23 mm. Histomorphology revealed neoplastic proliferation of dilated thin-walled arteries of various sizes within the myometrium. Due to the variable clinical presentations of CH, histopathological examination should be performed for an accurate diagnosis. It is a rare entity and we recommend training pathologists and gynecologists on this neoplasm for accurate diagnosis and to avoid unwarranted therapeutic interventions.

18.
Am J Obstet Gynecol ; 230(5): 553.e1-553.e14, 2024 May.
Article in English | MEDLINE | ID: mdl-38295969

ABSTRACT

BACKGROUND: The mechanisms responsible for menstrual pain are poorly understood. However, dynamic, noninvasive pelvic imaging of menstrual pain sufferers could aid in identifying therapeutic targets and testing novel treatments. OBJECTIVE: To study the mechanisms responsible for menstrual pain, we analyzed ultrasonographic and complementary functional magnetic resonance imaging parameters in dysmenorrhea sufferers and pain-free controls under multiple conditions. STUDY DESIGN: We performed functional magnetic resonance imaging on participants with and those without dysmenorrhea during menses and outside menses. To clarify whether regional changes in oxygen availability and perfusion occur, functional magnetic resonance imaging R2∗ measurements of the endometrium and myometrium were obtained. R2∗ measurements are calculated nuclear magnetic resonance relaxation rates sensitive to the paramagnetic properties of oxygenated and deoxygenated hemoglobin. We also compared parameters before and after an analgesic dose of naproxen sodium. In addition, we performed similar measurements with Doppler ultrasonography to identify if changes in uterine arterial velocity occurred during menstrual cramping in real time. Mixed model statistics were performed to account for within-subject effects across conditions. Corrections for multiple comparisons were made with a false discovery rate adjustment. RESULTS: During menstruation, a notable increase in R2∗ values, indicative of tissue ischemia, was observed in both the myometrium (beta ± standard error of the mean, 15.74±2.29 s-1; P=.001; q=.002) and the endometrium (26.37±9.33 s-1; P=.005; q=.008) of participants who experienced dysmenorrhea. A similar increase was noted in the myometrium (28.89±2.85 s-1; P=.001; q=.002) and endometrium (75.50±2.57 s-1; P=.001; q=.003) of pain-free controls. Post hoc analyses revealed that the R2∗ values during menstruation were significantly higher among the pain-free controls (myometrium, P=.008; endometrium, P=.043). Although naproxen sodium increased the endometrial R2∗ values among participants with dysmenorrhea (48.29±15.78 s-1; P=.005; q=.008), it decreased myometrial R2∗ values among pain-free controls. The Doppler findings were consistent with the functional magnetic resonance imaging (-8.62±3.25 s-1; P=.008; q=.011). The pulsatility index (-0.42±0.14; P=.004; q=.004) and resistance index (-0.042±0.012; P=.001; q=.001) decreased during menses when compared with the measurements outside of menses, and the effects were significantly reversed by naproxen sodium. Naproxen sodium had the opposite effect in pain-free controls. There were no significant real-time changes in the pulsatility index, resistance index, peak systolic velocity, or minimum diastolic velocity during episodes of symptomatic menstrual cramping. CONCLUSION: Functional magnetic resonance imaging and Doppler metrics suggest that participants with dysmenorrhea have better perfusion and oxygen availability than pain-free controls. Naproxen sodium's therapeutic mechanism is associated with relative reductions in uterine perfusion and oxygen availability. An opposite pharmacologic effect was observed in pain-free controls. During menstrual cramping, there is insufficient evidence of episodic impaired uterine perfusion. Thus, prostaglandins may have protective vasoconstrictive effects in pain-free controls and opposite effects in participants with dysmenorrhea.


Subject(s)
Dysmenorrhea , Endometrium , Magnetic Resonance Imaging , Naproxen , Oxygen , Humans , Female , Dysmenorrhea/diagnostic imaging , Dysmenorrhea/drug therapy , Dysmenorrhea/physiopathology , Adult , Naproxen/therapeutic use , Young Adult , Endometrium/diagnostic imaging , Endometrium/metabolism , Endometrium/blood supply , Oxygen/metabolism , Oxygen/blood , Myometrium/diagnostic imaging , Myometrium/blood supply , Myometrium/metabolism , Ultrasonography, Doppler , Case-Control Studies , Menstruation , Uterine Artery/diagnostic imaging , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
19.
Reprod Sci ; 31(1): 150-161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37648943

ABSTRACT

Metabolic inactivation of progesterone within uterine myocytes by 20α-hydroxysteroid dehydrogenase (20α-HSD) has been postulated as a mechanism contributing to functional progesterone withdrawal at term. In humans, 20α-HSD is encoded by the gene AKR1C1. Myometrial AKR1C1 mRNA abundance has been reported to increase significantly during labor at term. In spontaneous preterm labor, however, we previously found no increase in AKR1C1 mRNA level in the myometrium except for preterm labor associated with clinical chorioamnionitis. This suggests that increased 20α-HSD activity is a mechanism through which inflammation drives progesterone withdrawal in preterm labor. In this study, we have determined the effects of various treatments of therapeutic relevance on AKR1C1 expression in pregnant human myometrium in an ex vivo culture system. AKR1C1 expression increased spontaneously during 48 h culture (p < 0.0001), consistent with the myometrium transitioning to a labor-like phenotype ex vivo, as reported previously. Serum supplementation, prostaglandin F2α, phorbol myristate acetate, and mechanical stretch had no effect on the culture-induced increase, whereas progesterone (p = 0.0058) and cAMP (p = 0.0202) further upregulated AKR1C1 expression. In contrast, culture-induced upregulation of AKR1C1 expression was dose-dependently repressed by three histone/protein deacetylase inhibitors: trichostatin A at 5 (p = 0.0172) and 25 µM (p = 0.0115); suberoylanilide hydroxamic acid at 0.5 (p = 0.0070), 1 (p = 0.0045), 2.5 (p = 0.0181), 5 (p = 0.0066) and 25 µM (p = 0.0014); and suberoyl bis-hydroxamic acid at 5 (p = 0.0480) and 25 µM (p = 0.0238). We propose the inhibition of histone/protein deacetylation helps to maintain the anti-inflammatory, pro-quiescence signaling of progesterone in pregnant human myometrium by blocking its metabolic inactivation. Histone deacetylase inhibitors may represent a class of agents that preserve or restore the progesterone sensitivity of the pregnant uterus.


Subject(s)
Obstetric Labor, Premature , Progesterone , Female , Humans , Infant, Newborn , Pregnancy , Histones/metabolism , Hydroxysteroid Dehydrogenases/genetics , Hydroxysteroid Dehydrogenases/metabolism , Myometrium/metabolism , Obstetric Labor, Premature/metabolism , Progesterone/metabolism , RNA, Messenger/metabolism
20.
Physiol Genomics ; 56(1): 32-47, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37955337

ABSTRACT

The microenvironment and cell populations within the myometrium play crucial roles in maintaining uterine structural integrity and protecting the fetus during pregnancy. However, the specific changes occurring at the single-cell level in the human myometrium between nonpregnant (NP) and term pregnant (TP) states remain unexplored. In this study, we used single-cell RNA sequencing (scRNA-Seq) and spatial transcriptomics (ST) to construct a transcriptomic atlas of individual cells in the myometrium of NP and TP women. Integrated analysis of scRNA-Seq and ST data revealed spatially distinct transcriptional characteristics and examined cell-to-cell communication patterns based on ligand-receptor interactions. We identified and categorized 87,845 high-quality individual cells into 12 populations from scRNA-Seq data of 12 human myometrium tissues. Our findings demonstrated alterations in the proportions of five subpopulations of smooth muscle cells in TP. Moreover, an increase in monocytic cells, particularly M2 macrophages, was observed in TP myometrium samples, suggesting their involvement in the anti-inflammatory response. This study provides unprecedented single-cell resolution of the NP and TP myometrium, offering new insights into myometrial remodeling during pregnancy.NEW & NOTEWORTHY Using single-cell RNA sequencing and spatial transcriptomics, the myometrium was examined at the single-cell level during pregnancy. We identified spatially distinct cell populations and observed alterations in smooth muscle cells and increased M2 macrophages in term pregnant women. These findings offer unprecedented insights into myometrial remodeling and the anti-inflammatory response during pregnancy. The study advances our understanding of pregnancy-related myometrial changes.


Subject(s)
Myometrium , Uterus , Pregnancy , Female , Humans , Myometrium/physiology , Myocytes, Smooth Muscle , Anti-Inflammatory Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...