Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.990
Filter
1.
Neuromuscul Disord ; 43: 14-19, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39173541

ABSTRACT

Myopathy is a common manifestation in mitochondrial disorders, but the pathomechanisms are still insufficiently studied in children. Here, we report a severe, progressive mitochondrial myopathy in a four-year-old child, who died at eight years. He developed progressive loss of muscle strength with nocturnal hypoventilation and dilated cardiomyopathy. Skeletal muscle showed ragged red fibers and severe combined respiratory chain deficiency. Mitochondrial DNA sequencing revealed a novel m.5670A>G mutation in mitochondrial tRNAAsn (MTTN) with 88 % heteroplasmy in muscle. The proband also had systemic NAD+ deficiency but rescuing this with the NAD+ precursor niacin did not stop disease progression. Targeted metabolomics revealed an overall shift of metabolism towards controls after niacin supplementation, with normalized tryptophan metabolites and lipid-metabolic markers, but most amino acids did not respond to niacin therapy. To conclude, we report a new MTTN mutation, secondary NAD+ deficiency in childhood-onset mitochondrial myopathy with metabolic but meager clinical response to niacin supplementation.

2.
J Alzheimers Dis Rep ; 8(1): 1111-1114, 2024.
Article in English | MEDLINE | ID: mdl-39114556

ABSTRACT

We conducted a small, open-label, pilot study of daratumumab to explore target engagement, safety, and potential efficacy in patients with mild to moderate Alzheimer's disease. Daratumumab SC 1800 mg was given subcutaneously weekly for 8 weeks, then every 2 weeks for 16 weeks. Flow cytometry to measure the CD38+ proportion of CD8 + CD4- T cells and cognitive assessments were performed at baseline, day 176, and day 246. Daratumumab significantly reduced CD38 + CD8 + CD4- T cells after 24 weeks and this effect persisted 11 weeks thereafter. There was no hematological toxicity or unexpected adverse events. Responder analysis showed no improvement on cognitive outcome measures.

3.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39116016

ABSTRACT

A surge of public interest in NMN supplementation has been observed in recent years. However, whether NMN supplements are effective in improving metabolic health remains unclear. The objective of the review was to assess the effects of NMN supplementation on fasting glucose, triglycerides, total cholesterol, LDL-C, and HDL-C in adults. Studies were located by searching four databases (PubMed, Embase, Cochrane, and Web of Science). Two reviewers independently conducted title/abstract and full-text screening, data extraction, and risk-of-bias assessment. Of the 4049 records reviewed, 12 studies with a total of 513 participants met the criteria for analysis. Random-effects meta-analyses found an overall significant effect of NMN supplementation in elevating blood NAD levels. However, most of the clinically relevant outcomes were not significantly different between NMN supplementation and control group. Risk-of-bias assessment using RoB2 showed some concerns in seven studies and high risk of bias in the other five studies. Together, our findings suggest that an exaggeration of the benefits of NMN supplementation may exist in the field. Although the limited number of eligible studies was sufficiently powered to detect changes in the abovementioned primary outcomes, more studies are needed to conclude about the exact effects of NMN supplementation.

4.
FEBS Open Bio ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118291

ABSTRACT

Bordetella's genome contains a large family of periplasmic binding proteins (PBPs) known as Bugs, whose functions are mainly unassigned. Two members, Bug27 and Bug69, have previously been considered potential candidates for the uptake of small pyridine precursors, possibly linked to NAD biosynthesis. Here, we show an in vitro affinity of Bug27 and Bug69 for quinolinate in the submicromolar range, with a marked preference over other NAD precursors. A combined sequence similarity network and genome context analysis identifies a cluster of Bug69/27 homologs that are genomically associated with the NAD transcriptional regulator NadQ and the enzyme quinolinate phosphoribosyltransferase (QaPRT, gene nadC), suggesting a functional linkage to NAD metabolism. Integrating molecular docking and structure-based multiple alignments confirms that quinolinate is the preferred ligand for Bug27 and Bug69.

5.
Adv Sci (Weinh) ; : e2404274, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119946

ABSTRACT

The correlation between liver disease and the progression of ulcerative colitis (UC) has remained elusive. In this study, it demonstrates that liver injury is intricately linked to the heightened severity of UC in patients, and causes more profound intestinal damage during DSS-induced colitis in mice. Metabolomics analysis of plasma from liver cirrhosis patients shows liver injury compromising nicotinamide supply for NAD+ biosynthesis in the intestine. Subsequent investigation identifies intestinal group 2 innate lymphoid cells (ILC2s) are responsible for liver injury-exacerbated colitis. Reconstitution of ILC2s or the restoration of NAD+ metabolism proves effective in relieving liver injury-aggravated experimental colitis. Mechanistically, the NAD+ salvage pathway regulates gut ILC2s in a cell-intrinsic manner by supporting the generation of succinate, which fuels the electron transport chain to sustaining ILC2s function. This research deepens the understanding of cellular and molecular mechanisms in liver disease-UC interplay, identifying a metabolic target for innovative treatments in liver injury-complicated colitis.

6.
PeerJ ; 12: e17833, 2024.
Article in English | MEDLINE | ID: mdl-39099656

ABSTRACT

Background: This study endeavored to develop a nicotinamide adenine dinucleotide (NAD+) metabolism-related biomarkers in gastric cancer (GC), which could provide a theoretical foundation for prognosis and therapy of GC patients. Methods: In this study, differentially expressed genes (DEGs1) between GC and paraneoplastic tissues were overlapped with NAD+ metabolism-related genes (NMRGs) to identify differentially expressed NMRGs (DE-NMRGs). Then, GC patients were divided into high and low score groups by gene set variation analysis (GSVA) algorithm for differential expression analysis to obtain DEGs2, which was overlapped with DEGs1 for identification of intersection genes. These genes were further analyzed using univariate Cox and least absolute shrinkage and selection operator (LASSO) regression analyses to obtain prognostic genes for constructing a risk model. Enrichment and immune infiltration analyses further investigated investigate the different risk groups, and qRT-PCR validated the prognostic genes. Results: Initially, we identified DE-NMRGs involved in NAD biosynthesis, with seven (DNAJB13, CST2, THPO, CIDEA, ONECUT1, UPK1B and SNCG) showing prognostic significance in GC. Subsequent, a prognostic model was constructed in which the risk score, derived from the expression profiles of these genes, along with gender, emerged as robust independent predictors of patient outcomes in GC. Enrichment analysis linked high-risk patients to synaptic membrane pathways and low-risk to the CMG complex pathway. Tumor immune infiltration analysis revealed correlations between risk scores and immune cell abundance, suggesting a relationship between NAD+ metabolism and immune response in GC. The prognostic significance of our identified genes was validated by qRT-PCR, which confirmed their upregulated expression in GC tissue samples. Conclusion: In this study, seven NAD+ metabolism-related markers were established, which is of great significance for the development of prognostic molecular biomarkers and clinical prognosis prediction for gastric cancer patients.


Subject(s)
Biomarkers, Tumor , NAD , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Humans , NAD/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Male , Female , Gene Expression Regulation, Neoplastic , Gene Expression Profiling
7.
Oncol Rep ; 52(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39092574

ABSTRACT

Non­small cell lung cancer (NSCLC) is a highly prevalent lung malignancy characterized by insidious onset, rapid progression and advanced stage at the time of diagnosis, making radical surgery impossible. Sirtuin (SIRT) is a histone deacetylase that relies on NAD+ for its function, regulating the aging process through modifications in protein activity and stability. It is intricately linked to various processes, including glycolipid metabolism, inflammation, lifespan regulation, tumor formation and stress response. An increasing number of studies indicate that SIRTs significantly contribute to the progression of NSCLC by regulating pathophysiological processes such as energy metabolism, autophagy and apoptosis in tumor cells through the deacetylation of histones or non­histone proteins. The present review elaborates on the roles of different SIRTs and their mechanisms in NSCLC, while also summarizing novel therapeutic agents based on SIRTs. It aims to present new ideas and a theoretical basis for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Sirtuins , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Sirtuins/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Autophagy , Apoptosis , Energy Metabolism
8.
Cell Commun Signal ; 22(1): 387, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090604

ABSTRACT

CD73, a cell surface-bound nucleotidase, serves as a crucial metabolic and immune checkpoint. Several studies have shown that CD73 is widely expressed on immune cells and plays a critical role in immune escape, cell adhesion and migration as a costimulatory molecule for T cells and a factor in adenosine production. However, recent studies have revealed that the protumour effects of CD73 are not limited to merely inhibiting the antitumour immune response. Nicotinamide adenine dinucleotide (NAD+) is a vital bioactive molecule in organisms that plays essential regulatory roles in diverse biological processes within tumours. Accumulating evidence has demonstrated that CD73 is involved in the transport and metabolism of NAD, thereby regulating tumour biological processes to promote growth and proliferation. This review provides a holistic view of CD73-regulated NAD + metabolism as a complex network and further highlights the emerging roles of CD73 as a novel target for cancer therapies.


Subject(s)
5'-Nucleotidase , NAD , Neoplasms , 5'-Nucleotidase/metabolism , Humans , Neoplasms/metabolism , Neoplasms/immunology , Neoplasms/pathology , NAD/metabolism , Animals , GPI-Linked Proteins
9.
Plant Cell Physiol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092566

ABSTRACT

Group II introns are large catalytic RNAs, which reside mainly within genes encoding respiratory complex I (CI) subunits in angiosperms' mitochondria. Genetic and biochemical analyses led to the identification of many nuclear-encoded factors that facilitate the splicing of the degenerated organellar introns in plants. Here, we describe the analysis of the PPR Co-expressed Intron Splicing1 (PCIS1) factor, which was identified in-silico by its co-expression pattern with many PPR proteins. PCIS1 is well conserved in land plants but has no sequence similarity with any known protein motifs. PCIS1 mutant lines are arrested in embryogenesis and can be maintained by the temporal expression of the gene under the embryo-specific ABI3 promoter. The pABI3::PCIS1 mutant plants display low germination and stunted growth phenotypes. RNA-seq and RT-qPCR analyses of wild type and mutant plants indicated that PCIS1 is a novel splicing cofactor that is pivotal for the maturation of several nad transcripts in Arabidopsis mitochondria. These phenotypes are tightly associated with respiratory complex I defects and altered plant growth. Our data further emphasizes the key roles of nuclear-encoded cofactors that regulate the maturation and expression of mitochondrial transcripts for the biogenesis of the oxidative phosphorylation (OXPHOS) system, and hence for plant physiology. The discovery of novel splicing factors other than typical RNA-binding proteins suggests further complexity of splicing mechanisms in plant mitochondria.

10.
J Pathol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092712

ABSTRACT

Xp11.2 translocation renal cell carcinomas (tRCC) are a rare and highly malignant type of renal cancer, lacking efficient diagnostic indicators and therapeutic targets. Through the analysis of public databases and our cohort, we identified NMRK2 as a potential diagnostic marker for distinguishing Xp11.2 tRCC from kidney renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP) due to its specific upregulation in Xp11.2 tRCC tissues. Mechanistically, we discovered that TFE3 fusion protein binds to the promoter of the NMRK2 gene, leading to its upregulation. Importantly, we established RNA- and protein-based diagnostic methods for identifying Xp11.2 tRCC based on NMRK2 expression levels, and the diagnostic performance of our methods was comparable to a dual-color break-apart fluorescence in situ hybridization assay. Moreover, we successfully identified fresh Xp11.2 tRCC tissues after surgical excision using our diagnostic methods and established an immortalized Xp11.2 tRCC cell line for further research purposes. Functional studies revealed that NMRK2 promotes the progression of Xp11.2 tRCC by upregulating the NAD+/NADH ratio, and supplementation with ß-nicotinamide mononucleotide (NMN) or nicotinamide riboside chloride (NR), effectively rescued the phenotypes induced by the knockdown of NMRK2 in Xp11.2 tRCC. Taken together, these data introduce a new diagnostic indicator capable of accurately distinguishing Xp11.2 tRCC and highlight the possibility of developing novel targeted therapeutics. © 2024 The Pathological Society of Great Britain and Ireland.

11.
Cell Rep ; 43(9): 114648, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39167491

ABSTRACT

Metabolic reprogramming is crucial for activating innate immunity in macrophages, and the accumulation of immunometabolites is essential for effective defense against infection. The NAD+/NADH (ratio of nicotinamide adenine dinucleotide and its reduced counterpart) redox couple serves as a critical node that integrates metabolic pathways and signaling events, but how this metabolite couple engages macrophage activation remains unclear. Here, we show that the NAD+/NADH ratio serves as a molecular signal that regulates proinflammatory responses and type I interferon (IFN) responses divergently. Salmonella Typhimurium infection leads to a decreased NAD+/NADH ratio by inducing the accumulation of NADH. Further investigation shows that an increased NAD+/NADH ratio correlates with attenuated proinflammatory responses and enhanced type I IFN responses. Conversely, a decreased NAD+/NADH ratio is linked to intensified proinflammatory responses and restrained type I IFN responses. These results show that the NAD+/NADH ratio is an essential cell-intrinsic factor that orchestrates innate immunity, which enhances our understanding of how metabolites fine-tune innate immunity.

12.
Biotechnol J ; 19(8): e2400311, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39167557

ABSTRACT

In the previous study, the culture medium was treated with nicotinamide adenine dinucleotide (NAD+) under the hypothesis that NAD+ regeneration is a major factor causing excessive lactate accumulation in Chinese hamster ovary (CHO) cells. The NAD+ treatment improved metabolism by not only reducing the Warburg effect but also enhancing oxidative phosphorylation, leading to enhanced antibody production. Building on this, four NAD+ precursors - nicotinamide mononucleotide (NMN), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide (NAM) - were tested to elevate intracellular NAD+ levels more economically. First, the ability of CHO cells to utilize both the salvage and Preiss-Handler pathways for NAD+ biosynthesis was verified, and then the effect of NAD+ precursors on CHO cell cultures was evaluated. These precursors increased intracellular NAD+ levels by up to 70.6% compared to the non-treated group. Culture analysis confirmed that all the precursors induced metabolic changes and that NMN, NA, and NR improved productivity akin to NAD+ treatment, with comparable integral viable cell density. Despite the positive effects such as the increase in the specific productivity and changes in cellular glucose metabolism, none of the precursors surpassed direct NAD+ treatment in antibody titer, presumably due to the reduction in nucleoside availability, as evidenced by the decrease in ATP levels in the NAD+ precursor-treated groups. These results underscore the complexity of cellular metabolism as well as the necessity for further investigation to optimize NAD+ precursor treatment strategies, potentially with the supplementation of nucleoside precursors. Our findings suggest a feasible approach for improving CHO cell culture performances by using NAD+ precursors as medium and feed components for the biopharmaceutical production.


Subject(s)
Cricetulus , NAD , Niacinamide , CHO Cells , Animals , NAD/metabolism , Niacinamide/metabolism , Niacinamide/analogs & derivatives , Culture Media/chemistry , Culture Media/metabolism , Nicotinamide Mononucleotide/metabolism , Niacin/metabolism , Pyridinium Compounds/metabolism , Cricetinae , Cell Culture Techniques/methods , Antibodies, Monoclonal/metabolism , Glucose/metabolism
13.
EMBO Mol Med ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169162

ABSTRACT

Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)+ metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD+ metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD+ precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD+ precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.

14.
Redox Biol ; 75: 103300, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39142179

ABSTRACT

Glyoxalase I (GLO1) is the primary enzyme for detoxification of the reactive dicarbonyl methylglyoxal (MG). Loss of GLO1 promotes accumulation of MG resulting in a recapitulation of diabetic phenotypes. We previously demonstrated attenuated GLO1 protein in skeletal muscle from individuals with type 2 diabetes (T2D). However, whether GLO1 attenuation occurs prior to T2D and the mechanisms regulating GLO1 abundance in skeletal muscle are unknown. GLO1 expression and activity were determined in skeletal muscle tissue biopsies from 15 lean healthy individuals (LH, BMI: 22.4 ± 0.7) and 5 individuals with obesity (OB, BMI: 32.4 ± 1.3). GLO1 protein was attenuated by 26 ± 0.3 % in OB compared to LH skeletal muscle (p = 0.019). Similar reductions for GLO1 activity were observed (p = 0.102). NRF2 and Keap1 expression were equivocal between groups despite a 2-fold elevation in GLO1 transcripts in OB skeletal muscle (p = 0.008). GLO1 knock-down (KD) in human immortalized myotubes promoted downregulation of muscle contraction and organization proteins indicating the importance of GLO1 expression for skeletal muscle function. SIRT1 KD had no effect on GLO1 protein or activity whereas, SIRT2 KD attenuated GLO1 protein by 28 ± 0.29 % (p < 0.0001) and GLO1 activity by 42 ± 0.12 % (p = 0.0150). KD of NAMPT also resulted in attenuation of GLO1 protein (28 ± 0.069 %, p = 0.003), activity (67 ± 0.09 %, p = 0.011) and transcripts (50 ± 0.13 %, p = 0.049). Neither the provision of the NAD+ precursors NR nor NMN were able to prevent this attenuation in GLO1 protein. However, NR did augment GLO1 specific activity (p = 0.022 vs NAMPT KD). These perturbations did not alter GLO1 acetylation status. SIRT1, SIRT2 and NAMPT protein levels were all equivocal in skeletal muscle tissue biopsies from individuals with obesity and lean individuals. These data implicate NAD+-dependent regulation of GLO1 in skeletal muscle independent of altered GLO1 acetylation and provide rationale for exploring NR supplementation to rescue attenuated GLO1 abundance and activity in conditions such as obesity.


Subject(s)
Cytokines , Lactoylglutathione Lyase , Muscle, Skeletal , Nicotinamide Phosphoribosyltransferase , Obesity , Sirtuin 2 , Humans , Muscle, Skeletal/metabolism , Lactoylglutathione Lyase/metabolism , Lactoylglutathione Lyase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Sirtuin 2/metabolism , Sirtuin 2/genetics , Cytokines/metabolism , Male , Obesity/metabolism , Obesity/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Female , Adult , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Gene Expression Regulation , Middle Aged , Sirtuin 1/metabolism , Sirtuin 1/genetics
15.
J Mol Cell Cardiol ; 195: 45-54, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096536

ABSTRACT

Nicotinamide adenine dinucleotide provides the critical redox pair, NAD+ and NADH, for cellular energy metabolism. In addition, NAD+ is the precursor for de novo NADP+ synthesis as well as the co-substrates for CD38, poly(ADP-ribose) polymerase and sirtuins, thus, playing a central role in the regulation of oxidative stress and cell signaling. Declines of the NAD+ level and altered NAD+/NADH redox states have been observed in cardiometabolic diseases of various etiologies. NAD based therapies have emerged as a promising strategy to treat cardiovascular disease. Strategies that reduce NAD+ consumption or promote NAD+ production have repleted intracellular NAD+ or normalized NAD+/NADH redox in preclinical studies. These interventions have shown cardioprotective effects in multiple models suggesting a great promise of the NAD+ elevating therapy. Mechanisms for the benefit of boosting NAD+ level, however, remain incompletely understood. Moreover, despite the robust pre-clinical studies there are still challenges to translate the therapy to clinic. Here, we review the most up to date literature on mechanisms underlying the NAD+ elevating interventions and discuss the progress of human studies. We also aim to provide a better understanding of how NAD metabolism is changed in failing hearts with a particular emphasis on types of strategies employed and methods to target these pathways. Finally, we conclude with a comprehensive assessment of the challenges in developing NAD-based therapies for heart diseases, and to provide a perspective on the future of the targeting strategies.

16.
Elife ; 132024 Aug 28.
Article in English | MEDLINE | ID: mdl-39197048

ABSTRACT

Heterogeneity of tumor metabolism is an important, but still poorly understood aspect of tumor biology. Present work is focused on the visualization and quantification of cellular metabolic heterogeneity of colorectal cancer using fluorescence lifetime imaging (FLIM) of redox cofactor NAD(P)H. FLIM-microscopy of NAD(P)H was performed in vitro in four cancer cell lines (HT29, HCT116, CaCo2 and CT26), in vivo in the four types of colorectal tumors in mice and ex vivo in patients' tumor samples. The dispersion and bimodality of the decay parameters were evaluated to quantify the intercellular metabolic heterogeneity. Our results demonstrate that patients' colorectal tumors have significantly higher heterogeneity of energy metabolism compared with cultured cells and tumor xenografts, which was displayed as a wider and frequently bimodal distribution of a contribution of a free (glycolytic) fraction of NAD(P)H within a sample. Among patients' tumors, the dispersion was larger in the high-grade and early stage ones, without, however, any association with bimodality. These results indicate that cell-level metabolic heterogeneity assessed from NAD(P)H FLIM has a potential to become a clinical prognostic factor.


Subject(s)
Colorectal Neoplasms , NADP , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Animals , Mice , NADP/metabolism , Cell Line, Tumor , Optical Imaging/methods , Energy Metabolism
17.
Acta Neuropathol Commun ; 12(1): 137, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39180087

ABSTRACT

A compromised capacity to maintain NAD pools is recognized as a key underlying pathophysiological feature of neurodegenerative diseases. NAD acts as a substrate in major cell functions including mitochondrial homeostasis, cell signalling, axonal transport, axon/Wallerian degeneration, and neuronal energy supply. Dendritic degeneration is an early marker of neuronal stress and precedes cell loss. However, little is known about dendritic structural preservation in pathologic environments and remodelling in mature neurons. Retinal ganglion cell dendritic atrophy is an early pathological feature in animal models of the disease and has been demonstrated in port-mortem human glaucoma samples. Here we report that a nicotinamide (a precursor to NAD through the NAD salvage pathway) enriched diet provides robust retinal ganglion cell dendritic protection and preserves dendritic structure in a rat model of experimental glaucoma. Metabolomic analysis of optic nerve samples from the same animals demonstrates that nicotinamide provides robust metabolic neuroprotection in glaucoma. Advances in our understanding of retinal ganglion cell metabolic profiles shed light on the energetic shift that triggers early neuronal changes in neurodegenerative diseases. As nicotinamide can improve visual function short term in existing glaucoma patients, we hypothesize that a portion of this visual recovery may be due to dendritic preservation in stressed, but not yet fully degenerated, retinal ganglion cells.


Subject(s)
Disease Models, Animal , Glaucoma , Neuroprotective Agents , Niacinamide , Retinal Ganglion Cells , Animals , Niacinamide/pharmacology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Neuroprotective Agents/pharmacology , Rats , Dose-Response Relationship, Drug , Male , Administration, Oral , Optic Nerve/drug effects , Optic Nerve/pathology , Optic Nerve/metabolism , Neuroprotection/drug effects , Neuroprotection/physiology , Dendrites/drug effects , Dendrites/pathology , Dendrites/metabolism , Vitamin B Complex/pharmacology , Vitamin B Complex/administration & dosage
18.
Water Res ; 265: 122307, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39180955

ABSTRACT

Ethanol feeding has been widely documented as an economical and effective strategy for establishing direct interspecies electron transfer (DIET) during anaerobic digestion. However, the mechanisms involved are still unclear, especially on correlation between intracellular electron transfer in electroactive bacteria and their gene expression for electrically conductive pili (e-pili), the most essential electrical connection component for DIET. Upon cooling from room temperature, the conductivity of digester aggregates with ethanol exponentially increased by an order of magnitude (from 45.5 to 125.4 µS/cm), whereas which with its metabolites (acetaldehyde [from 40.5 to 54.4 µS/cm] or acetate [from 32.1 to 50.4 µS/cm]) did not increase significantly. In addition, the digester aggregates only with ethanol were observed with a strong dependence of conductivity on pH. Metagenomic and metatranscriptomic analysis showed that Desulfovibrio desulfuricans was the most dominant and metabolically active bacterium that contained and highly expressed the genes for e-pili. Abundance of genes encoding the total type IV pilus assembly proteins (6.72E-04 vs 1.24E-03, P < 0.05), PilA that determined the conductive properties (2.22E-04 vs 2.44E-04, P > 0.05), and PilB that proceeded the polymerization of pilin (1.56E-04 vs 3.52E-03, P < 0.05) with ethanol was lower than that with acetaldehyde. However, transcript abundance of these genes with ethanol was generally higher than that with acetaldehyde. In comparison to acetaldehyde, ethanol increased the transcript abundance of genes encoding the key enzymes involved in NADH/NAD+ transformation on complex I and ATP synthesis on complex V in intracellular electron transport chain. The improvement of intracellular electron transfer in D. desulfuricans suggested that electrons were intracellularly energized with high energy to activate e-pili during DIET.

19.
J Hepatol ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181211

ABSTRACT

BACKGROUND & AIMS: Recent findings reveal the importance of tryptophan-initiated de novo nicotinamide adenine dinucleotide (NAD+) synthesis in the liver, a process previously considered secondary to biosynthesis from nicotinamide. The enzyme α-amino-ß-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), primarily expressed in liver and kidney, acts as a modulator of de novo NAD+ synthesis. Boosting NAD+ levels has previously demonstrated remarkable metabolic benefits in mouse models. In this study, we aimed to investigate the therapeutic implications of ACMSD inhibition in the treatment of metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH). METHODS: In vitro experiments were conducted in primary rodent hepatocytes, Huh7 human liver carcinoma cells and iPSC-derived human liver organoids (HLOs). C57BL/6J male mice were fed a western-style diet and housed at thermoneutrality to recapitulate key aspects of MASLD/MASH. Pharmacological ACMSD inhibition was given therapeutically, following disease onset. Steatohepatitis HLO models were used to assess the DNA damage responses by ACMSD inhibition in human contexts. RESULTS: Inhibiting ACMSD with a novel specific pharmacological inhibitor promotes de novo NAD+ synthesis and reduces DNA damage ex vivo, in vivo, and in HLO models. In mouse models of MASLD/MASH, de novo NAD+ biosynthesis is suppressed, and transcriptomic DNA damage signatures correlate with disease severity; in humans, Mendelian randomization-based genetic analysis suggests a notable impact of genomic stress on liver disease susceptibility. Therapeutic inhibition of ACMSD in mice increases liver NAD+ and reverses MASLD/MASH, mitigating fibrosis, inflammation, and DNA damage, as were observed in HLO models of steatohepatitis. CONCLUSIONS: Our findings highlight the benefits of ACMSD inhibition to enhance hepatic NAD+ levels and enable genomic protection, underscoring its therapeutic potential in MASLD/MASH. IMPACT AND IMPLICATIONS: Enhancing NAD+ levels has shown remarkable health benefits in mouse models of MASLD/MASH, yet liver-specific NAD+ boosting strategies remain underexplored. Here, we present a novel pharmacological approach to enhance liver NAD+de novo synthesis by inhibiting ACMSD, an enzyme highly expressed in the liver. Inhibiting ACMSD increases NAD+ levels, enhances mitochondrial respiration, and maintains genomic stability in hepatocytes ex vivo and in vivo. These molecular benefits prevent disease progression in both mouse and human liver organoid models of steatohepatitis. Our preclinical study identifies ACMSD as a promising target for MASLD/MASH management and lays the groundwork for developing ACMSD inhibitors as a clinical treatment.

20.
Transl Oncol ; 49: 102084, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39163758

ABSTRACT

The steady accumulation of senescent cells with aging creates tissue environments that aid cancer evolution. Aging cell states are highly heterogeneous. 'Deep senescent' cells rely on healthy mitochondria to fuel a strong proinflammatory secretome, including cytokines, growth and transforming signals. Yet, the physiological triggers of senescence such as reactive oxygen species (ROS) can also trigger mitochondrial dysfunction, and sufficient energy deficit to alter their secretome and cause chronic oxidative stress - a state termed Mitochondrial Dysfunction-Associated Senescence (MiDAS). Here, we offer a mechanistic hypothesis for the molecular processes leading to MiDAS, along with testable predictions. To do this we have built a Boolean regulatory network model that qualitatively captures key aspects of mitochondrial dynamics during cell cycle progression (hyper-fusion at the G1/S boundary, fission in mitosis), apoptosis (fission and dysfunction) and glucose starvation (reversible hyper-fusion), as well as MiDAS in response to SIRT3 knockdown or oxidative stress. Our model reaffirms the protective role of NAD+ and external pyruvate. We offer testable predictions about the growth factor- and glucose-dependence of MiDAS and its reversibility at different stages of reactive oxygen species (ROS)-induced senescence. Our model provides mechanistic insights into the distinct stages of DNA-damage induced senescence, the relationship between senescence and epithelial-to-mesenchymal transition in cancer and offers a foundation for building multiscale models of tissue aging.

SELECTION OF CITATIONS
SEARCH DETAIL