Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Hum Immunol ; 85(5): 111085, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39116667

ABSTRACT

The major histocompatibility complex (MHC) class I chain-related A (MICA) plays an important role in stress cell recognition. High polymorphisms of MICA are relevant to NKG2D binding capacity, responses of NK cells and tumor progression. In this study, MICA genotyping of 97 cholangiocarcinoma patients was performed using PCR-SSP. MICA*010 was positively associated with a corrected p-value of < 0.001 (RR=2.16 (95 % CI, 1.48-3.14)). MICA*010 was previously reported as a non-expressed allele. Thus, the expression of MICA*010 on the cell surface was studied on both MICA*010 transfected cells (HEK 293 T and L929 cells) and stimulated primary monocytes obtained from homozygous MICA*010 individuals using different clones of antibodies (1H10, 1D10, 1C3.1, 1C3.2, 6D4 and 3H5) for detection. Surprisingly, the expression of MICA*010 could be observed on both transfected cells and stimulated monocytes and effectively bound to the NKG2D-Fc fusion protein. The functional study of various MICA alleles revealed the high relative killing activity of NK cells induced by the MICA*010 transfected C1R cells, not following the previously reported rule of the M129V substitution. The structural analysis highlighted the amino acid at position 36 as another important amino acid relevant to preserving the structural integrity of the MICA protein and NKG2D binding. Our data propose a new aspect of functional MICA contributing motifs and that MICA*010 has a potential effect on NK cell functions and might be applicable to other fields of immune responses.

2.
Pharmaceutics ; 16(7)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39065636

ABSTRACT

Immunotherapy has been a research hotspot due to its low side effects, long-lasting efficacy, and wide anti-tumor spectrum. Recently, NK cell-based immunotherapy has gained broad attention for its unique immunological character of tumor identification and eradication and low risk of graft-versus-host disease and cytokine storm. With the cooperation of a drug delivery system (DDS), NK cells activate tumoricidal activity by adjusting the balance of the activating and inhibitory signals on their surface after drug-loaded DDS administration. Moreover, NK cells or NK-derived exosomes can also be applied as drug carriers for distinct modification to promote NK activation and exert anti-tumor effects. In this review, we first introduce the source and classification of NK cells and describe the common activating and inhibitory receptors on their surface. Then, we summarize the strategies for activating NK cells in vivo through various DDSs. Finally, the application prospects of NK cells in tumor immunotherapy are also discussed.

3.
J Infect Dis ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478732

ABSTRACT

BACKGROUND: Dengue virus (DENV) non-structural protein 1 (NS1) has multiple functions within infected cells, on the cell surface, and in secreted form, and is highly immunogenic. Immunity from previous DENV infections is known to exert both positive and negative effects on subsequent DENV infections, but the contribution of NS1-specific antibodies to these effects is incompletely understood. METHODS: We investigated the functions of NS1-specific antibodies and their significance in DENV infection. We analyzed plasma samples collected in a prospective cohort study prior to symptomatic or subclinical secondary DENV infection. We measured binding to purified recombinant NS1 protein and to NS1-expressing CEM cells, antibody-mediated NK cell activation by plate-bound NS1 protein, and antibody-dependent cellular cytotoxicity (ADCC) of NS1-expressing target cells. RESULTS: We found that antibody responses to NS1 were highly serotype-cross-reactive and that subjects who experienced subclinical DENV infection had significantly higher antibody responses to NS1 in pre-infection plasma than subjects who experienced symptomatic infection. We observed strong positive correlations between antibody binding and NK activation. CONCLUSIONS: These findings demonstrate the involvement of NS1-specific antibodies in ADCC and provide evidence for a protective effect of NS1-specific antibodies in secondary DENV infection.

4.
Int Immunol ; 36(6): 317-325, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38289706

ABSTRACT

The cluster of differentiation 155 (CD155) is highly expressed on tumor cells and augments or inhibits the cytotoxic activities of natural killer (NK) cells and T cells through its receptor ligands DNAX accessory molecule 1 (DNAM-1) and T-cell immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), respectively. Although CD155 is heavily glycosylated, the role of glycosylation of CD155 in the cytotoxic activity of effector lymphocytes remains unknown. Here, we show that the N-linked glycosylation at residue 105 (N105 glycosylation) in the first Ig-like domain of CD155 is involved in the binding of CD155 to both DNAM-1 and TIGIT. The N105 glycosylation also plays an essential role to induce signaling in both DNAM-1 and TIGIT reporter cells. Moreover, we show that the N105 glycosylation of CD155 contributes preferentially to the DNAM-1-mediated activating signal over the TIGIT-mediated inhibitory signal in NK cells. Our results demonstrated the important role of the N105 glycosylation of CD155 in DNAM-1 and TIGIT functions and shed new light on the understanding of tumor immune responses.


Subject(s)
Antigens, Differentiation, T-Lymphocyte , Killer Cells, Natural , Receptors, Immunologic , Receptors, Virus , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Glycosylation , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Humans , Receptors, Virus/metabolism , Receptors, Virus/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Protein Binding
5.
ACS Nano ; 17(16): 15918-15930, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37565806

ABSTRACT

Natural killer (NK) cell therapies have emerged as a potential therapeutic approach to various cancers. Their efficacy, however, is limited by their low persistence and anergy. Current approaches to sustain NK cell persistence in vivo include genetic modification, activation via pretreatment, or coadministration of supporting cytokines or antibodies. Such supporting therapies exhibit limited efficacy in vivo, in part due to the reversal of their effect within the immunosuppressive tumor microenvironment and off-target toxicity. Here, we report a material-based approach to address this challenge. Specifically, we describe the use of polymeric micropatches as a platform for sustained, targeted activation of NK cells, an approach referred to as microparticles as cell engagers (MACE). Poly(lactide-co-glycolic) acid (PLGA) micropatches, 4-8 µm in diameter and surface-modified with NK cell receptor targeting antibodies, exhibited strong adhesion to NK cells and induced their activation without the need of coadministered cytokines. The activation induced by MACE was greater than that induced by nanoparticles, attesting to the crucial role of MACE geometry in the activation of NK cells. MACE-bound NK cells remained viable and exhibited trans-endothelial migration and antitumor activity in vitro. MACE-bound NK cells activated T cells, macrophages, and dendritic cells in vitro. Adoptive transfer of NK-MACE also demonstrated superior antitumor efficacy in a mouse melanoma lung metastasis model compared to unmodified NK cells. Overall, MACE offers a simple, scalable, and effective way of activating NK cells and represents an attractive platform to improve the efficacy of NK cell therapy.


Subject(s)
Melanoma , Neoplasms , Animals , Mice , Polymers/metabolism , Killer Cells, Natural , Neoplasms/metabolism , Immunotherapy, Adoptive , Melanoma/metabolism , Cytokines/metabolism , Tumor Microenvironment
6.
Front Immunol ; 14: 1191884, 2023.
Article in English | MEDLINE | ID: mdl-37520575

ABSTRACT

Natural killer (NK) cells play an important role in the early defense against tumors and virally infected cells. Their function is thought to be controlled by the balance between activating and inhibitory receptors, which often compete for the same ligands. Several activating receptors expressed on virtually all NK cells lack an inhibitory partner, most notably CD16, NCR1 and NKG2D. We therefore hypothesized that a signal through at least one of these receptors is always required for full NK cell activation. We generated animals lacking all three receptors (TKO) and analyzed their NK cells. In vitro, TKO NK cells did not show reduced ability to kill tumor targets but displayed hyperresponsiveness to NK1.1 stimulation. In vivo, TKO animals had a minor reduction in their ability to control non-hematopoietic tumors and cytomegalovirus infection, which was the result of reduced NK cell activity. Together, our findings show that activating NK cell receptors without an inhibitory partner do not provide a 'master' signal but are integrated in the cumulative balance of activating and inhibitory signals. Their activity is controlled through regulation of the responsiveness and expression of other activating receptors. Our findings may be important for future development of NK cell-based cancer immunotherapy.


Subject(s)
NK Cell Lectin-Like Receptor Subfamily K , Neoplasms , Animals , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Killer Cells, Natural/metabolism , Receptors, Natural Killer Cell/metabolism , Neoplasms/metabolism
7.
Cancers (Basel) ; 15(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37190251

ABSTRACT

Metastatic tumors cause the most deaths in cancer patients. Treating metastasis remains the primary goal of current cancer research. Although the immune system prevents and kills the tumor cells, the function of the immune system in metastatic cancer has been unappreciated for decades because tumors are able to develop complex signaling pathways to suppress immune responses, leading them to escape detection and elimination. Studies showed NK cell-based therapies have many advantages and promise for fighting metastatic cancers. We here review the function of the immune system in tumor progression, specifically focusing on the ability of NK cells in antimetastasis, how metastatic tumors escape the NK cell attack, as well as the recent development of effective antimetastatic immunotherapies.

8.
Eur J Immunol ; 53(4): e2250036, 2023 04.
Article in English | MEDLINE | ID: mdl-36608264

ABSTRACT

Recurrent respiratory papillomatosis (RRP), a rare chronic disease caused primarily by human papillomavirus types 6 and 11, consists of repeated growth of premalignant papillomas in the airway. RRP is characterized by multiple abnormalities in innate and adaptive immunity. Natural killer (NK) cells play important roles in immune surveillance and are part of the innate immune responses that help prevent tumor growth. We identified that papillomas lack classical class I MHC and retain nonclassical class I MHC expression. Moreover, in this study, we have identified and characterized the mechanism that blocks NK cell targeting of papilloma cells. Here, we show for the first time that the PGE2 secreted by papilloma cells directly inhibits NK cells activation/degranulation principally through the PGE2 receptor EP2, and to a lesser extent through EP4 signaling. Thus, papilloma cells have a potent mechanism to block NK cell function that likely supports papilloma cell growth.


Subject(s)
Papilloma , Papillomavirus Infections , Respiratory Tract Infections , Humans , Dinoprostone/metabolism , Killer Cells, Natural
9.
Front Immunol ; 14: 1277967, 2023.
Article in English | MEDLINE | ID: mdl-38162640

ABSTRACT

Natural killer (NK) cells are important antiviral effector cells and also involved in tumor clearance. NK cells express IFNAR, rendering them responsive to Type I IFNs. To evaluate Type I IFN-mediated modulation of NK cell functions, individual Type I IFNs subtypes were assessed for their ability to activate NK cells. Different Type I IFN subtypes displayed a broad range in the capacity to induce and modulate NK cell activation and degranulation, measured by CD69 and CD107a expression in response to leukemia cell line K562. When including biological sex as a variable in the analysis, transwell co-cultures of NK cells with either male- or female-derived PBMCs or pDCs stimulated with the TLR7/8 agonist CL097 showed that NK cells were more activated by CL097-stimulated cells derived from females. These sex-specific differences were linked to higher CL097-induced IFNα production by pDCs derived from females, indicating an extrinsic sex-specific effect of Type I IFNs on NK cell function. Interestingly, in addition to the extrinsic effect, we also observed NK cell-intrinsic sex differences, as female NK cells displayed higher activation levels after IFNα-stimulation and after co-culture with CL097-stimulated pDCs, suggesting higher activation of IFNα-signaling transduction in female NK cells. Taken together, the results from these studies identify both extrinsic and intrinsic sex-specific differences in Type I IFN-dependent NK cell functions, contributing to a better understanding of sex-specific differences in innate immunity.


Subject(s)
Dendritic Cells , Interferon Type I , Male , Female , Humans , Sex Characteristics , Killer Cells, Natural , Interferon Type I/metabolism , Immunity, Innate
10.
J Biotechnol ; 360: 79-91, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36341973

ABSTRACT

This study has employed mammalian transient expression systems to generate afucosylated antibodies and antibody Fc mutants for rapid candidate screening in discovery and early development. While chemical treatment with the fucose analogue 2-fluoro-peracetyl-fucose during transient expression only partially produced antibodies with afucosylated N-glycans, the genetic inactivation of the FUT8 gene in ExpiCHO-S™ by CRISPR/Cas9 enabled the transient production of fully afucosylated antibodies. Human IgG1 and murine IgG2a generated by the ExpiCHOfut8KO cell line possessed a 8-to-11-fold enhanced FcγRIIIa binding activity in comparison with those produced by ExpiCHO-S™. The Fc mutant S239D/S298A/I332E produced by ExpiCHO-S™ had an approximate 2-fold higher FcγRIIIa affinity than that of the afucosylated wildtype molecule, although it displayed significantly lower thermal-stability. When the Fc mutant was produced in the ExpiCHOfut8KO cell line, the resulting afucosylated Fc mutant antibody had an additional approximate 6-fold increase in FcγRIIIa binding affinity. This synergistic effect between afucosylation and the Fc mutations was further verified by a natural killer (NK) cell activation assay. Together, these results have not only established an efficient large-scale transient CHO system for rapid production of afucosylated antibodies, but also confirmed a cooperative impact between afucosylation and Fc mutations on FcγRIIIa binding and NK cell activation.


Subject(s)
Immunoglobulin G , Killer Cells, Natural , Humans , Animals , Mice , Immunoglobulin G/genetics , Mammals
11.
Nutrients ; 14(14)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35889747

ABSTRACT

Chronic hepatitis B (CHB) virus infection, causing immune dysfunction and chronic hepatitis, is one of the leading risk factors for hepatocellular cancer. We investigated how Arthrospira affected hepatitis B surface antigen (HBsAg) reduction in CHB patients under continued nucleos(t)ide analogues (NA). Sixty CHB patients who had been receiving NA for at least one year with undetectable HBV DNA were randomized into three groups: control and oral Arthrospira at 3 or 6 g daily add-on therapy groups. Patients were followed up for 6 months. Oral Arthrospira-diet mice were established to investigate the possible immunological mechanism of Arthrospira against HBV. Within 6 months, mean quantitative HBsAg (qHBsAg) decreased in the oral Arthrospira add-on therapy group. Interestingly, interferon gamma (IFN-γ) increased but TNF-α, interleukin 6 (IL-6), hepatic fibrosis, and steatosis decreased in the add-on groups. In mice, Arthrospira enhanced both innate and adaptive immune system, especially natural killer (NK) cell cytotoxicity, B cell activation, and the interleukin 2 (IL-2), IFN-γ immune response. Arthrospira may modulate IL-2- and TNF-α/IFN-γ-mediated B and T cell activation to reduce HBsAg. Also, Arthrospira has the potential to restore immune tolerance and enhance HBsAg seroclearance in CHB patients through promoting T, B, and NK cell activation.


Subject(s)
Hepatitis B, Chronic , Spirulina , Animals , Antiviral Agents/therapeutic use , Hepatitis B Surface Antigens/blood , Humans , Interferon-gamma , Interleukin-2 , Mice , Treatment Outcome , Tumor Necrosis Factor-alpha
12.
Front Immunol ; 13: 879124, 2022.
Article in English | MEDLINE | ID: mdl-35720328

ABSTRACT

Infection with the human immunodeficiency virus (HIV), when left untreated, typically leads to disease progression towards acquired immunodeficiency syndrome. Some people living with HIV (PLWH) control their virus to levels below the limit of detection of standard viral load assays, without treatment. As such, they represent examples of a functional HIV cure. These individuals, called Elite Controllers (ECs), are rare, making up <1% of PLWH. Genome wide association studies mapped genes in the major histocompatibility complex (MHC) class I region as important in HIV control. ECs have potent virus specific CD8+ T cell responses often restricted by protective MHC class I antigens. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors also use a subset of MHC class I antigens as ligands. This interaction educates NK cells, priming them to respond to HIV infected cell with reduced MHC class I antigen expression levels. NK cells can also be activated through the crosslinking of the activating NK cell receptor, CD16, which binds the fragment crystallizable portion of immunoglobulin G. This mode of activation confers NK cells with specificity to HIV infected cells when the antigen binding portion of CD16 bound immunoglobulin G recognizes HIV Envelope on infected cells. Here, we review the role of NK cells in antibody independent and antibody dependent HIV control.


Subject(s)
HIV Infections , HIV-1 , Genome-Wide Association Study , HLA Antigens , Histocompatibility Antigens Class I/genetics , Humans , Immunoglobulin G/genetics , Killer Cells, Natural , Ligands , Receptors, Natural Killer Cell/genetics
13.
Front Med (Lausanne) ; 9: 897264, 2022.
Article in English | MEDLINE | ID: mdl-35602479

ABSTRACT

Human T cell leukemia virus type 1 (HTLV-1) persists in the host despite a vigorous immune response that includes cytotoxic T cells (CTL) and natural killer (NK) cells, suggesting the virus has developed effective mechanisms to counteract host immune surveillance. We recently showed that in vitro treatment of HTLV-1-infected cells with the drug pomalidomide (Pom) increases surface expression of MHC-I, ICAM-1, and B7-2, and significantly increases the susceptibility of HTLV-1-infected cells to NK and CTL killing, which is dependent on viral orf-I expression. We reasoned that by restoring cell surface expression of these molecules, Pom treatment has the potential to reduce virus burden by rendering infected cells susceptible to NK and CTL killing. We used the rhesus macaque model to determine if Pom treatment of infected individuals activates the host immune system and allows recognition and clearance of HTLV-1-infected cells. We administered Pom (0.2 mg/kg) orally to four HTLV-1-infected macaques over a 24 day period and collected blood, urine, and bone marrow samples throughout the study. Pom treatment caused immune activation in all four animals and a marked increase in proliferating CD4+, CD8+, and NK cells as measured by Ki-67+ cells. Activation markers HLA-DR, CD11b, and CD69 also increased during treatment. While we detected an increased frequency of cells with a memory CD8+ phenotype, we also found an increased frequency of cells with a Treg-like phenotype. Concomitant with immune activation, the frequency of detection of viral DNA and the HTLV-1-specific humoral response increased as well. In 3 of 4 animals, Pom treatment resulted in increased antibodies to HTLV-1 antigens as measured by western blot and p24Gag ELISA. Consistent with Pom inducing immune and HTLV-1 activation, we measured elevated leukotrienes LTB4 and LTE4 in the urine of all animals. Despite an increase in plasma LTB4, no significant changes in plasma cytokine/chemokine levels were detected. In all cases, however, cellular populations, LTB4, and LTE4 decreased to baseline or lower levels 2 weeks after cessation of treatment. These results indicated that Pom treatment induces a transient HTLV-1-specific immune activation in infected individuals, but also suggest Pom may not be effective as a single-agent therapeutic.

14.
Pharmaceutics ; 13(4)2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33918941

ABSTRACT

Among various immunotherapies, natural killer (NK) cell cancer immunotherapy using adoptive transfer of NK cells takes a unique position by targeting tumor cells that evade the host immune surveillance. As the first-line innate effector cell, it has been revealed that NK cells have distinct mechanisms to both eliminate cancer cells directly and amplify the anticancer immune system. Over the last 40 years, NK cell cancer immunotherapy has shown encouraging reports in pre-clinic and clinic settings. In total, 288 clinical trials are investigating various NK cell immunotherapies to treat hematologic and solid malignancies in 2021. However, the clinical outcomes are unsatisfying, with remained challenges. The major limitation is attributed to the immune-suppressive tumor microenvironment (TME), low activity of NK cells, inadequate homing of NK cells, and limited contact frequency of NK cells with tumor cells. Innovative strategies to promote the cytolytic activity, durable persistence, activation, and tumor-infiltration of NK cells are required to advance NK cell cancer immunotherapy. As maturing nanotechnology and nanomedicine for clinical applications, there is a greater opportunity to augment NK cell therapeutic efficacy for the treatment of cancers. Active molecules/cytokine delivery, imaging, and physicochemical properties of nanoparticles are well equipped to overcome the challenges of NK cell cancer immunotherapy. Here, we discuss recent clinical trials of NK cell cancer immunotherapy, NK cell cancer immunotherapy challenges, and advances of nanoparticle-mediated NK cell therapeutic efficacy augmentation.

15.
Cancers (Basel) ; 13(3)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540698

ABSTRACT

Natural killer (NK) cells represent promising tools for cancer immunotherapy. We report the optimization of an NK cell activation-expansion process and its validation on clinical-scale. METHODS: RPMI-1640, stem cell growth medium (SCGM), NK MACS and TexMACS were used as culture mediums. Activated and expanded NK cells (NKAE) were obtained by coculturing total peripheral blood mononuclear cells (PBMC) or CD45RA+ cells with irradiated K562mbIL15-41BBL or K562mbIL21-41BBL. Fold increase, NK cell purity, activation status, cytotoxicity and transcriptome profile were analyzed. Clinical-grade NKAE cells were manufactured in CliniMACS Prodigy. RESULTS: NK MACS and TexMACs achieved the highest NK cell purity and lowest T cell contamination. Obtaining NKAE cells from CD45RA+ cells was feasible although PBMC yielded higher total cell numbers and NK cell purity than CD45RA+ cells. The highest fold expansion and NK purity were achieved by using PBMC and K562mbIL21-41BBL cells. However, no differences in activation and cytotoxicity were found when using either NK cell source or activating cell line. Transcriptome profile showed to be different between basal NK cells and NKAE cells expanded with K562mbIL21-41BBL or K562mbIL15-41BBL. Clinical-grade manufactured NKAE cells complied with the specifications from the Spanish Regulatory Agency. CONCLUSIONS: GMP-grade NK cells for clinical use can be obtained by using different starting cells and aAPC.

16.
Cell Mol Immunol ; 18(3): 686-697, 2021 03.
Article in English | MEDLINE | ID: mdl-33469162

ABSTRACT

One of the hallmarks of live cells is the asymmetric distribution of lipids across their plasma membrane. Changes in this asymmetry due to lipid "scrambling" result in phosphatidylserine exposure at the cell surface that is detected by annexin V staining. This alteration is observed during cell death processes such as apoptosis, and during physiological responses such as platelet degranulation and membrane repair. Previous studies have shown that activation of NK cells is accompanied by exposure of phosphatidylserine at the cell surface. While this response was thought to be indicative of ongoing NK cell death, it may also  reflect the regulation of NK cell activation in the absence of cell death. Herein, we found that NK cell activation was accompanied by rapid phosphatidylserine exposure to an extent proportional to the degree of NK cell activation. Through enforced expression of a lipid scramblase, we provided evidence that activation-induced lipid scrambling in NK cells is reversible and does not lead to cell death. In contrast, lipid scrambling attenuates NK cell activation. This response was accompanied by reduced cell surface expression of activating receptors such as 2B4, and by loss of binding of Src family protein tyrosine kinases Fyn and Lck to the inner leaflet of the plasma membrane. Hence, lipid scrambling during NK cell activation is, at least in part, a physiological response that reduces the NK cell activation level. This effect is due to the ability of lipid scrambling to alter the distribution of membrane-associated receptors and kinases required for NK cell activation.


Subject(s)
Anoctamins/physiology , Cell Membrane/metabolism , Killer Cells, Natural/immunology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Phosphatidylserines/metabolism , Phospholipid Transfer Proteins/physiology , Proto-Oncogene Proteins c-fyn/metabolism , Animals , Cell Membrane/immunology , Killer Cells, Natural/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
J Leukoc Biol ; 109(2): 327-337, 2021 02.
Article in English | MEDLINE | ID: mdl-32421903

ABSTRACT

HLA-DR-expressing cells comprise an intriguing group of NK cells, which combine phenotypic characteristics of both NK cells and dendritic cells. These cells can be found in humans and mice; they are present in blood and tissues in healthy conditions and can expand in a spectrum of pathologies. HLA-DR+ NK cells are functionally active: they produce proinflammatory cytokines, degranulate, and easily proliferate in response to stimuli. Additionally, HLA-DR+ NK cells seem able to take in and then present certain antigens to CD4+ and CD8+ T cells, inducing their activation and proliferation, which puts them closer to professional antigen-presenting cells. It appears that these NK cells should be considerable players of the innate immune system, both due to their functional activity and regulation of the innate and adaptive immune responses. In this review, for the first time, we provide a detailed description and analysis of the available data characterizing phenotypic, developmental, and functional features of the HLA-DR+ NK cells in a healthy condition and a disease.


Subject(s)
Antigen Presentation/immunology , HLA-DR Antigens/metabolism , Killer Cells, Natural/immunology , Animals , Disease , Humans , Lymphocyte Activation/immunology
18.
Cancers (Basel) ; 12(9)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32858904

ABSTRACT

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.

19.
Methods Enzymol ; 631: 257-275, 2020.
Article in English | MEDLINE | ID: mdl-31948551

ABSTRACT

Natural killer (NK) cells have shown to play a critical, but as yet poorly defined, role in the process by which the immune system controls tumor progression. Indeed, NK cell-based immunotherapy, particularly NK cell adoptive transfer therapy, has become a very attractive cancer weapon against multiple types of cancers such as metastatic and hematological cancers. Unfortunately, the implementation of these therapies has been challenged by the existence of immunosuppression mechanisms that have prevented NK cell functionality. Additionally, the development of protocols to obtain purified and functional NK cells has faced some difficulties due to the limitations in the numbers of cells that can be obtained and the development of an exhaustion phenotype with impaired proliferative and functional capabilities during lengthy ex vivo NK cell expansion protocols. Thus, the development of new strategies to obtain a rapid expansion of highly functional NK cells without the appearance of exhaustion is still much needed. This is particularly true in the case of mouse NK cells, a surrogate commonly used to evaluate NK cell biology and human NK cell-based immunotherapeutic alternatives. Here, we describe a feasible and rapid protocol to produce strongly activated mouse NK cells in vivo taking advantage of the hydrodynamic delivery of a plasmid that contains interleukin-15, a cytokine known to cause NK cell expansion and activation, fused with the binding domain of the IL-15Rα ("sushi" domain) and apolipoprotein A-I.


Subject(s)
Cell Separation/methods , Killer Cells, Natural , Animals , Interleukin-15 , Mice
20.
Carbohydr Polym ; 225: 115223, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31521276

ABSTRACT

A polysaccharide isolated from Strongylocentrotus nudus eggs (SEP) reportedly displays immune activity in vivo. Here, its effect and underlying mechanism in the treatment of pancreatic cancer were investigated. SEP obviously inhibited pancreatic cancer growth by activating NK cells in vitro/vivo via TLR4/MAPKs/NF-κB signaling pathway, The tumor inhibitory rate achieved to 44.5% and 50.8% at a dose of 40 mg/kg in Bxpc-3 and SW1990 nude mice, respectively. Moreover, SEP obviously augmented the Gemcitabine (GEM) antitumor effect by upregulating NKG2D, which improved the sensitivity of NK cells targeting to its ligand MICA; meanwhile, the antitumor inhibitory rate was 68.6% in BxPC-3 tumor-bearing mice. Moreover, SEP reversed GEM-induced apoptosis and atrophy in both spleen and bone marrow via suppressing ROS secretion in vivo. These results suggested that pancreatic cancer was effectively inhibited by SEP-enhanced NK cytotoxicity mediated primarily through TLR4/MAPKs/NF-κB signaling pathway, representing a potential immunotherapy candidate for the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Deoxycytidine/analogs & derivatives , Killer Cells, Natural , Pancreatic Neoplasms/drug therapy , Polysaccharides/pharmacology , Animals , Antimetabolites, Antineoplastic/pharmacology , Cell Line, Tumor , Deoxycytidine/pharmacology , Drug Synergism , Humans , Immunosuppressive Agents/pharmacology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Mice , Mice, Inbred BALB C , Mice, Nude , Strongylocentrotus/metabolism , Toll-Like Receptor 4/metabolism , Gemcitabine
SELECTION OF CITATIONS
SEARCH DETAIL