Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Asian J ; 19(1): e202300908, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37969065

ABSTRACT

In this study, we introduced the electron-donating group (-OH) to the aromatic rings of Ru(salophen)(NO)Cl (0) (salophenH2 =N,N'-(1,2-phenylene)bis(salicylideneimine)) to investigate the influence of the substitution on NO photolysis and NO-releasing dynamics. Three derivative complexes, Ru((o-OH)2 -salophen)(NO)Cl (1), Ru((m-OH)2 -salophen)(NO)Cl (2), and Ru((p-OH)2 -salophen)(NO)Cl (3) were developed and their NO photolysis was monitored by using UV/Vis, EPR, NMR, and IR spectroscopies under white room light. Spectroscopic results indicated that the complexes were diamagnetic Ru(II)-NO+ species which were converted to low-spin Ru(III) species (d5 , S=1/2) and released NO radicals by photons. The conversion was also confirmed by determining the single-crystal structure of the photoproduct of 1. The photochemical quantum yields (ΦNO s) of the photolysis were determined to be 0>1, 2, 3 at both the visible and UV excitations. Femtosecond (fs) time-resolved mid-IR spectroscopy was employed for studying NO-releasing dynamics. The geminate rebinding (GR) rates of the photoreleased NO to the photolyzed complexes were estimated to be 0≃1, 2, 3. DFT and TDDFT computations found that the introduction of the hydroxyl groups elevated the ligand π-bonding orbitals (π (salophen)), resulting in decrease of the HOMO-LUMO gaps in 1-3. The theoretical calculations suggested that the Ru-NNO bond dissociations of the complexes were mostly initiated by the ligand-to-ligand charge transfer (LLCT) of π(salophen)→π*(Ru-NO) with both the visible and UV excitations and the decreasing ΦNO s could be explained by the changes of the electronic structures in which the photoactivable bands of 1-3 have relatively less contribution of transitions related with Ru-NO bond than those of 0.

2.
J Dent Sci ; 16(1): 29-36, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33384775

ABSTRACT

BACKGROUND/PURPOSE: Antimicrobial activity and biocompatibility of root canal sealer are related to the success of endodontic treatments. This study investigated the efficacy of mixture of mineral trioxide aggregate (MTA) and a NO-releasing compound for the antimicrobial activity, biocompatibility, and physical properties. MATERIALS AND METHODS: MTA was mixed with diethylenetriamine-NO (MTA-NO), and the extracts from MTA and the MTA-NO mixture before and after setting was obtained were investigated the antimicrobial activity against Enterococcus faecalis and Porphyromonas endodontalis. After setting MTA and MTA-NO, pulp cell was incubated in the presence of MTA and MTA-NO disk using Transwell® cell culture insert, and the proliferation assay and mineralization-stimulated factors of the cells were analyzed by MTT assay and real-time RT-PCR, respectively. The physical properties of MTA and the MTA-NO mixture, such as surface hardness and flowability was also analyzed. RESULTS: The MTA-NO mixture showed stronger antimicrobial activity against E. faecalis and P. endodontalis than that by MTA. Both MTA and MTA-NO mixture increase the ratio of cell proliferation and induced the expression of alkaline phosphatase, collagen type I, osteocalcin, and osteopontin. Moreover, the induction of gene expression by MTA-NO mixture was higher than that by MTA alone. No significant difference was observed for surface hardness and flowability between MTA and MTA-NO mixture. CONCLUSION: The addition of a NO-releasing compound to the endodontic treatment using MTA root canal sealer might reduce the risk of bacterial infection and help to regenerate the dental pulp tissue.

SELECTION OF CITATIONS
SEARCH DETAIL