Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Am J Physiol Renal Physiol ; 325(3): F283-F298, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37439199

ABSTRACT

Tissue hypoxia has been pointed out as a major pathogenic factor in chronic kidney disease (CKD). However, epidemiological and experimental evidence inconsistent with this notion has been described. We have previously reported that chronic exposure to low ambient Po2 promoted no renal injury in normal rats and in rats with 5/6 renal ablation (Nx) unexpectedly attenuated renal injury. In the present study, we investigated whether chronic exposure to low ambient Po2 would also be renoprotective in two additional models of CKD: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. In both models, normobaric ambient hypoxia attenuated the development of renal injury and inflammation. In addition, renal hypoxia limited the activation of NF-κB and NOD-like receptor family pyrin domain containing 3 inflammasome cascades as well as oxidative stress and intrarenal infiltration by angiotensin II-positive cells. Renal activation of hypoxia-inducible factor (HIF)-2α, along with other adaptive mechanisms to hypoxia, may have contributed to these renoprotective effects. The present findings may contribute to unravel the pathogenesis of CKD and to the development of innovative strategies to arrest its progression.NEW & NOTEWORTHY Hypoxia is regarded as a major pathogenic factor in chronic kidney disease (CKD). In disagreement with this view, we show here that sustained exposure to low ambient Po2 lessened kidney injury and inflammation in two CKD models: adenine (ADE) excess and chronic nitric oxide (NO) inhibition. Together with our previous findings in the remnant kidney, these observations indicate that local changes elicited by hypoxia may exert renoprotection in CKD, raising the prospect of novel therapeutic strategies for this disease.


Subject(s)
Nitric Oxide , Renal Insufficiency, Chronic , Rats , Animals , Kidney/pathology , Renal Insufficiency, Chronic/pathology , Immunity, Innate , Hypoxia/pathology , Inflammation/pathology , Adenine/pharmacology
2.
Anim Reprod ; 20(1): e20220093, 2023.
Article in English | MEDLINE | ID: mdl-37228386

ABSTRACT

Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) have critical effects on interfaces of the immune and reproductive systems, and the spleen plays a key role in both innate and adaptive immune functions. It is hypothesized that NLR family participates in maternal splenic immune regulation during early pregnancy in sheep. In this study, maternal spleens were collected on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation (n = 6 for each group) in ewes. Expression of NLR family, including NOD1, NOD2, class II transactivator (CIITA), NLR family apoptosis inhibitory protein (NAIP), nucleotide-binding oligomerization domain, Leucine rich repeat and Pyrin domain containing 1 (NLRP1), NLRP3 and NLRP7, was analyzed using quantitative real-time PCR, Western blot and immunohistochemistry analysis. The results revealed that expression levels of NOD1, NOD2, CIITA and NLRP3 were downregulated at days 13 and 16 of pregnancy, but expression of NLRP3 was increased at day 25 of pregnancy. In addition, expression values of NAIP and NLRP7 mRNA and proteins were improved at days 16 and 25 of pregnancy, and NLRP1 was peaked at days 13 and 16 of pregnancy in the maternal spleen. Furthermore, NOD2 and NLRP7 proteins were limited to the capsule, trabeculae and splenic cords. In summary, early pregnancy changes expression of NLR family in the maternal spleen, which may be related with the maternal splenic immunomodulation during early pregnancy in sheep.

3.
Anim. Reprod. (Online) ; 20(1): e20220093, 2023. tab, graf, ilus
Article in English | VETINDEX | ID: biblio-1433934

ABSTRACT

Nucleotide-binding oligomerization domain receptors (NOD-like receptors, NLRs) have critical effects on interfaces of the immune and reproductive systems, and the spleen plays a key role in both innate and adaptive immune functions. It is hypothesized that NLR family participates in maternal splenic immune regulation during early pregnancy in sheep. In this study, maternal spleens were collected on day 16 of the estrous cycle, and days 13, 16 and 25 of gestation (n = 6 for each group) in ewes. Expression of NLR family, including NOD1, NOD2, class II transactivator (CIITA), NLR family apoptosis inhibitory protein (NAIP), nucleotide-binding oligomerization domain, Leucine rich repeat and Pyrin domain containing 1 (NLRP1), NLRP3 and NLRP7, was analyzed using quantitative real-time PCR, Western blot and immunohistochemistry analysis. The results revealed that expression levels of NOD1, NOD2, CIITA and NLRP3 were downregulated at days 13 and 16 of pregnancy, but expression of NLRP3 was increased at day 25 of pregnancy. In addition, expression values of NAIP and NLRP7 mRNA and proteins were improved at days 16 and 25 of pregnancy, and NLRP1 was peaked at days 13 and 16 of pregnancy in the maternal spleen. Furthermore, NOD2 and NLRP7 proteins were limited to the capsule, trabeculae and splenic cords. In summary, early pregnancy changes expression of NLR family in the maternal spleen, which may be related with the maternal splenic immunomodulation during early pregnancy in sheep.(AU)


Subject(s)
Animals , Female , Pregnancy , Pregnancy, Animal , Sheep/immunology , NLR Proteins/analysis , Spleen/physiology
4.
Front Cell Infect Microbiol ; 11: 696719, 2021.
Article in English | MEDLINE | ID: mdl-34336720

ABSTRACT

Resistance or susceptibility to T. cruzi infection is dependent on the host immunological profile. Innate immune receptors, such as Toll-like receptors (TLRs/TLR2, TLR4, TLR7, and TLR9) and Nod-like receptors (NLRs/NOD1 and NLRP3 inflammasome) are involved with the resistance against acute experimental T. cruzi infection. Here, we evaluated the impact of T. cruzi virulence on the expression of innate immune receptors and its products in mice. For that, we used six T. cruzi strains/isolates that showed low (AM64/TcIV and 3253/Tc-V), medium (PL1.10.14/TcIII and CL/TcVI), or high (Colombian/Tc-I and Y/TcII) virulence and pathogenicity to the vertebrate host and belonging to the six discrete typing units (DTUs)-TcI to TcVI. Parasitemia, mortality, and myocarditis were evaluated and correlated to the expression of TLRs, NLRs, adapter molecules, cytokines, and iNOS in myocardium by real time PCR. Cytokines (IL-1ß, IL-12, TNF-α, and IFN-γ) were quantified in sera 15 days after infection. Our data indicate that high virulent strains of T. cruzi, which generate high parasitemia, severe myocarditis, and 100% mortality in infected mice, inhibit the expression of TLR2, TLR4, TLR9, TRIF, and Myd88 transcripts, leading to a low IL-12 production, when compared to medium and low virulent T. cruzi strains. On the other hand, the high virulent T. cruzi strains induce the upregulation of NLRP3, caspase-1, IL-1ß, TNF-α, and iNOS mRNA in heart muscle, compared to low and medium virulent strains, which may contribute to myocarditis and death. Moreover, high virulent strains induce higher levels of IL-1ß and TNF-α in sera compared to less virulent parasites. Altogether the data indicate that differential TLR and NLR expression in heart muscle is correlated with virulence and pathogenicity of T cruzi strains. A better knowledge of the immunological mechanisms involved in resistance to T. cruzi infection is important to understand the natural history of Chagas disease, can lead to identification of immunological markers and/or to serve as a basis for alternative therapies.


Subject(s)
Chagas Disease , Immunity, Innate , Myocardium/immunology , Trypanosoma cruzi , Animals , Caspase 1 , Heart , Mice , Trypanosoma cruzi/pathogenicity , Virulence
5.
Nutr Res Rev ; 32(1): 128-145, 2019 06.
Article in English | MEDLINE | ID: mdl-30707092

ABSTRACT

Early-life nutrition plays a critical role in fetal growth and development. Food intake absence and excess are the two main types of energy malnutrition that predispose to the appearance of diseases in adulthood, according to the hypothesis of 'developmental origins of health and disease'. Epidemiological data have shown an association between early-life malnutrition and the metabolic syndrome in later life. Evidence has also demonstrated that nutrition during this period of life can affect the development of the immune system through epigenetic mechanisms. Thus, epigenetics has an essential role in the complex interplay between environmental factors and genetics. Altogether, this leads to the inflammatory response that is commonly seen in non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome. In conjunction, DNA methylation, covalent modification of histones and the expression of non-coding RNA are the epigenetic phenomena that affect inflammatory processes in the context of NAFLD. Here, we highlight current understanding of the mechanisms underlying developmental programming of NAFLD linked to epigenetic modulation of the immune system and environmental factors, such as malnutrition.


Subject(s)
Epigenesis, Genetic , Immune System/physiology , Liver/pathology , Malnutrition/complications , Maternal Nutritional Physiological Phenomena , Non-alcoholic Fatty Liver Disease/etiology , Nutritional Status , Carcinoma, Hepatocellular/etiology , DNA Methylation , Female , Histones , Humans , Inflammation/etiology , Metabolic Syndrome/etiology , MicroRNAs , Pregnancy , Prenatal Exposure Delayed Effects
6.
Front Immunol ; 8: 786, 2017.
Article in English | MEDLINE | ID: mdl-28740491

ABSTRACT

The NOD-like receptor P3 (NLRP3) inflammasome is an intracellular multimeric complex that triggers the activation of inflammatory caspases and the maturation of IL-1ß and IL-18, important cytokines for the innate immune response against pathogens. The functional NLRP3 inflammasome complex consists of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1. Various molecular mechanisms were associated with NLRP3 activation including the presence of extracellular ATP, recognized by the cell surface P2X7 receptor (P2X7R). Several pattern recognition receptors on innate immune cells recognize Paracoccidioides brasiliensis components resulting in diverse responses that influence adaptive immunity and disease outcome. However, the role of NLRP3 inflammasome was scantily investigated in pulmonary paracoccidioidomycosis (PCM), leading us to use an intratracheal (i.t.) model of infection to study the influence of this receptor in anti-fungal immunity and severity of infection. For in vivo studies, C57BL/6 mice deficient for several NLRP3 inflammasome components (Nlrp3-/-, Casp1/11-/-, Asc-/-) as well as deficient for ATP receptor (P2x7r-/-) were infected via i.t. with P. brasiliensis and several parameters of immunity and disease severity analyzed at the acute and chronic periods of infection. Pulmonary PCM was more severe in Nlrp3-/-, Casp1/11-/-, Asc-/-, and P2x7r-/- mice as demonstrated by the increased fungal burdens, mortality rates and tissue pathology developed. The more severe disease developed by NLRP3, ASC, and Caspase-1/11 deficient mice was associated with decreased production of IL-1ß and IL-18 and reduced inflammatory reactions mediated by PMN leukocytes and activated CD4+ and CD8+ T cells. The decreased T cell immunity was concomitant with increased expansion of CD4+CD25+Foxp3 regulatory T (Treg) cells. Characterization of intracellular cytokines showed a persistent reduction of CD4+ and CD8+ T cells expressing IFN-γ and IL-17 whereas those producing IL-4 and TGF-ß appeared in increased frequencies. Histopathological studies showed that all deficient mouse strains developed more severe lesions containing elevated numbers of budding yeast cells resulting in increased mortality rates. Altogether, these findings led us to conclude that the activation of the NLRP3 inflammasome has a crucial role in the immunoprotection against pulmonary PCM by promoting the expansion of Th1/Th17 immunity and reducing the suppressive control mediated by Treg cells.

7.
Immunology ; 151(2): 154-166, 2017 06.
Article in English | MEDLINE | ID: mdl-28140444

ABSTRACT

Sporotrichosis is a mycosis caused by fungi from the Sporothrix schenckii species complex, whose prototypical member is Sporothrix schenckii sensu stricto. Pattern recognition receptors (PRRs) recognize and respond to pathogen-associated molecular patterns (PAMPs) and shape the following adaptive immune response. A family of PRRs most frequently associated with fungal recognition is the nucleotide-binding oligomerization domain-like receptor (NLR). After PAMP recognition, NLR family pyrin domain-containing 3 (NLRP3) binds to apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1 to form the NLRP3 inflammasome. When activated, this complex promotes the maturation of the pro-inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18 and cell death through pyroptosis. In this study, we aimed to evaluate the importance of the NLRP3 inflammasome in the outcome of S. schenckii infection using the following three different knockout (KO) mice: NLRP3-/- , ASC-/- and caspase-1-/- . All KO mice were more susceptible to infection than the wild-type, suggesting that NLRP3-triggered responses contribute to host protection during S. schenckii infection. Furthermore, the NLRP3 inflammasome appeared to be critical for the ex vivo release of IL-1ß, IL-18 and IL-17 but not interferon-γ. Additionally, a role for the inflammasome in shaping the adaptive immune response was suggested by the lower frequencies of type 17 helper T (Th17) cells and Th1/Th17 but not Th1 cells in S. schenckii-infected KO mice. Overall, our results indicate that the NLRP3 inflammasome links the innate recognition of S. schenckii to the adaptive immune response, so contributing to protection against this infection.


Subject(s)
Inflammasomes/immunology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sporothrix/immunology , Sporotrichosis/immunology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , Sporothrix/cytology , Sporotrichosis/microbiology
8.
Immunol Res ; 64(5-6): 1101-1117, 2016 12.
Article in English | MEDLINE | ID: mdl-27699580

ABSTRACT

A complex interplay between pathogen and host determines the immune response during viral infection. A set of cytosolic sensors are expressed by immune cells to detect viral infection. NOD-like receptors (NLRs) comprise a large family of intracellular pattern recognition receptors. Members of the NLR family assemble into large multiprotein complexes, termed inflammasomes, which induce downstream immune responses to specific pathogens, environmental stimuli, and host cell damage. Inflammasomes are composed of cytoplasmic sensor molecules such as NLRP3 or absent in melanoma 2 (AIM2), the adaptor protein ASC (apoptosis-associated speck-like protein containing caspase recruitment domain), and the effector protein procaspase-1. The inflammasome operates as a platform for caspase-1 activation, resulting in caspase-1-dependent proteolytic maturation and secretion of interleukin (IL)-1ß and IL-18. This, in turn, activates the expression of other immune genes and facilitates lymphocyte recruitment to the site of primary infection, thereby controlling invading pathogens. Moreover, inflammasomes counter viral replication and remove infected immune cells through an inflammatory cell death, program termed as pyroptosis. As a countermeasure, viral pathogens have evolved virulence factors to antagonise inflammasome pathways. In this review, we discuss the role of inflammasomes in sensing viral infection as well as the evasion strategies that viruses have developed to evade inflammasome-dependent immune responses. This information summarises our understanding of host defence mechanisms against viruses and highlights research areas that can provide new approaches to interfere in the pathogenesis of viral diseases.


Subject(s)
Caspase 1/metabolism , Inflammasomes/immunology , Inflammation/immunology , Pyroptosis , Virus Diseases/immunology , Animals , Humans , Immune Evasion , Inflammation/virology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Virulence Factors/immunology , Virus Replication/immunology
9.
Virulence ; 6(5): 449-57, 2015.
Article in English | MEDLINE | ID: mdl-25950847

ABSTRACT

Dermatophytosis are one of the most common fungal infections in the world. They compromise keratinized tissues and the main etiological agent is Trichophyton rubrum. Macrophages are key cells in innate immunity and prominent sources of IL-1ß, a potent inflammatory cytokine whose main production pathway is by the activation of inflammasomes and caspase-1. However, the role of inflammasomes and IL-1 signaling against T.rubrum has not been reported. In this work, we observed that bone marrow-derived macrophages produce IL-1ß in response to T.rubrum conidia in a NLRP3-, ASC- and caspase-1-dependent fashion. Curiously, lack of IL-1 signaling promoted hyphae development, uncovering a protective role for IL-1ß in macrophages. In addition, mice lacking IL-1R showed reduced IL-17 production, a key cytokine in the antifungal defense, in response to T.rubrum. Our findings point to a prominent role of IL-1 signaling in the immune response to T.rubrum, opening the venue for the study of this pathway in other fungal infections.


Subject(s)
Interleukin-17/immunology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Signal Transduction , Trichophyton/immunology , Trichophyton/physiology , Animals , Female , Hyphae/growth & development , Hyphae/metabolism , Inflammasomes/immunology , Interleukin-17/metabolism , Interleukin-1beta/chemistry , Interleukin-1beta/genetics , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Macrophages/ultrastructure , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Spores, Fungal/growth & development , Tinea/immunology , Tinea/prevention & control
10.
Acta méd. colomb ; 36(2): 78-84, abr.-jun. 2011. ilus
Article in Spanish | LILACS | ID: lil-635340

ABSTRACT

Objetivo: exponer los aspectos que tienen en común o aquellos que diferencien las condiciones autoinmunes y autoinflamatorias, con énfasis en los mecanismos relacionados con la inmunidad innata. Métodos: se realiza una revisión sistemática de la literatura médica expuesta en la base de datos Medline (en lo que respecta a trabajos originales y revisiones de tema de los autores de dichos trabajos), de aspectos de la inmunidad innata y su relación con las enfermedades autoinmunes y autoinflamatorias, utilizando términos "MESH" como "autoimmuny diseases, autoinflammatory diseases, periodic fever syndromes, Toll-like receptor, NOD-like receptor" y otros que fuesen necesarios para lograr el objetivo de la revisión. Se procede luego a la consecución de los artículos completos, a su lectura, complementación con artículos referenciados relevantes, y luego se procede al ordenamiento, clasificación y posterior redacción del texto. Resultados: se estudiaron 254 resúmenes, encontrando que 44 de ellos informaban los tópicos que ayudarán a desarrollar el objetivo de esta revisión. Fue necesario acudir a algunas ayudas extras en libros de inmunología, reumatología, biología molecular y biología celular, para complementar la actualización. Conclusión: apenas se inicia el conocimiento científico de los posibles enlaces directos de la respuesta inmune innata y adaptativa, en lo que respecta a las condiciones autoinmune y autoinflamatoria (Acta Med Colomb 2011; 36: 78-84).


Objetive: to show the common aspects and the differences of autoimmune and autoinflammatory conditions, with an emphasis on the mechanisms of innate immunity. Methods: a systematic review of the literature was performed, using the Medline database, in order to identify original research studies and reviews by the authors of these studies on the topic of innate immunity and its relations with autoimmune and autoinflammatory diseases. "MESH" terms such as autoimmune diseases, autoinflammatory diseases, periodic fever syndromes, Toll-like receptor, NOD-like receptor, and others were necessary to achieve the objective of the review. Sorting, reading, and writing were then carried out. Results: 254 abstracts were studied, 44 of which reported the topics related to the objective of this review. It was necessary to perform a complementary review of textbooks of immunology, rheumatology, molecular biology, and cell biology to achieve the objective of this review. Conclusion: scientific knowledge of the possible links between the innate and adaptive immune responses has just begun with regard to autoimmune and autoinflammatory conditions (Acta Med Colomb 2011; 36: 78-84).

SELECTION OF CITATIONS
SEARCH DETAIL