Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Biomedicines ; 12(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39200173

ABSTRACT

Nuclear Protein in Testis (NUT)-rearranged tumors comprise predominantly NUT carcinoma but also include certain lymphomas, leukemias, skin appendage tumors, and sarcomas. Although histologically diverse, all are genetically identified by oncogenic rearrangement in the NUTM1 gene. Many fusion partners occur, and NSD3 is NUT carcinoma's third most common partner. Herein, we present a case of a 26-year-old man with an NSD3::NUTM1 fusion sarcoma. The patient presented at the age of 13 months with a scalp nodule. Over the next 24 years, he experienced five local recurrences and ultimately expired of a rapidly progressive recurrence. His treatment included surgical resections, radiation, and various chemotherapies. Deceptively, the clinical presentation and histopathology aligned with a malignant peripheral nerve sheath tumor, a diagnosis rendered at initial resection with concurrence by a national soft tissue tumor expert. The patient's exceptionally long survival could be due to NSD3 as the fusion partner, aided by the initial small tumor size and young patient age. Thus, this case expands NUT fusion sarcomas' histologic and immunohistochemical profile to include mimicking a malignant peripheral nerve sheath tumor (MPNST). Additionally, it indicates that the NSD3::NUTM1 fusion can drive sarcoma genesis.

2.
JCEM Case Rep ; 2(3): luae037, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524390

ABSTRACT

NUT carcinoma is an aggressive, poorly differentiated squamous cell carcinoma, defined by rearrangement of the NUTM1 (Nuclear Protein in Testis) gene. Diagnosis is challenging due to histologic similarities with other poorly differentiated tumors requiring advanced diagnostic techniques. There is no established treatment, and prognosis remains extremely poor. A 27-year-old woman without known medical history presented with a rapidly enlarging neck mass and compressive symptoms. Chemotherapy for presumed squamous cell carcinoma with a component of anaplastic thyroid cancer based on pathology was initiated. Next-generation sequencing revealed thyroid NUT carcinoma with high PD-L1 expression, prompting PD-1 targeted therapy. The patient expired shortly afterwards from progressive disease. NUT carcinoma of thyroid origin is an extremely rare disease. This case brings awareness to the disease, highlights the importance of advanced diagnostic techniques and complexities in managing patients with NUT carcinoma.

3.
Eur J Med Chem ; 268: 116264, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38412693

ABSTRACT

Nuclear receptor binding SET domain (NSD) proteins are a class of histone lysine methyltransferases and implicated in multiple cancer types with aberrant expression and involvement of cancer related signaling pathways. In this study, a series of small-molecule compounds including compound 2 and 3 are identified against the SET domain of NSDs through structure-based virtual screening. Our lead compound 3 exhibits potent inhibitory activities in vitro towards the NSD2-SET and NSD3-SET with an IC50 of 0.81 µM and 0.84 µM, respectively, and efficiently inhibits histone H3 lysine 36 dimethylation and decreases the expression of NSDs-targeted genes in non-small cell lung cancer cells at 100 nM. Compound 3 suppresses cell proliferation and reduces the clonogenicity in H460 and H1299 non-small cell lung cancer cells, and induces s-phase cell cycle arrest and apoptosis. These data establish our compounds as a valuable tool-kit for the study of the biological roles of NSDs in cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Histone-Lysine N-Methyltransferase/metabolism , Lysine , Repressor Proteins/metabolism
4.
Int J Mol Sci ; 25(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38256018

ABSTRACT

NSD3 (nuclear receptor-binding SET domain protein 3) is a member of the NSD histone methyltransferase family of proteins. In recent years, it has been identified as a potential oncogene in certain types of cancer. The NSD3 gene encodes three isoforms, the long version (NSD3L), a short version (NSD3S) and the WHISTLE isoforms. Importantly, the NSD3S isoform corresponds to the N-terminal region of the full-length protein, lacking the methyltransferase domain. The chromosomal location of NSD3 is frequently amplified across cancer types, such as breast, lung, and colon, among others. Recently, this amplification has been correlated to a chromothripsis event, that could explain the different NSD3 alterations found in cancer. The fusion proteins containing NSD3 have also been reported in leukemia (NSD3-NUP98), and in NUT (nuclear protein of the testis) midline carcinoma (NSD3-NUT). Its role as an oncogene has been described by modulating different cancer pathways through its methyltransferase activity, or the short isoform of the protein, through protein interactions. Specifically, in this review we will focus on the functions that have been characterized as methyltransferase dependent, and those that have been correlated with the expression of the NSD3S isoform. There is evidence that both the NSD3L and NSD3S isoforms are relevant for cancer progression, establishing NSD3 as a therapeutic target. However, further functional studies are needed to differentiate NSD3 oncogenic activity as dependent or independent of the catalytic domain of the protein, as well as the contribution of each isoform and its clinical significance in cancer progression.


Subject(s)
Histone-Lysine N-Methyltransferase , Neoplasms , Nuclear Proteins , Humans , Male , Carcinoma/enzymology , Leukemia/enzymology , Oncogenes , Protein Isoforms/genetics , Histone-Lysine N-Methyltransferase/metabolism , Nuclear Proteins/metabolism , Neoplasms/enzymology , Neoplasms/pathology
5.
Cancer Genet ; 280-281: 1-5, 2024 01.
Article in English | MEDLINE | ID: mdl-38056049

ABSTRACT

BACKGROUND: Only rare cases of acute myeloid leukemia (AML) have been shown to harbor a t(8;11)(p11.2;p15.4). This translocation is believed to involve the fusion of NSD3 or FGFR1 with NUP98; however, apart from targeted mRNA quantitative PCR analysis, no molecular approaches have been utilized to define the chimeric fusions present in these rare cases. CASE PRESENTATION: Here we present the case of a 51-year-old female with AML with myelodysplastic-related morphologic changes, 13q deletion and t(8;11), where initial fluorescence in situ hybridization (FISH) assays were consistent with the presence of NUP98 and FGFR1 rearrangements, and suggestive of NUP98/FGFR1 fusion. Using a streamlined clinical whole-genome sequencing approach, we resolved the breakpoints of this translocation to intron 4 of NSD3 and intron 12 of NUP98, indicating NUP98/NSD3 rearrangement as the likely underlying aberration. Furthermore, our approach identified small variants in WT1 and STAG2, as well as an interstitial deletion on the short arm of chromosome 12, which were cryptic in G-banded chromosomes. CONCLUSIONS: NUP98 fusions in acute leukemia are predictive of poor prognosis. The associated fusion partner and the presence of co-occurring mutations, such as WT1, further refine this prognosis with potential clinical implications. Using a clinical whole-genome sequencing analysis, we resolved t(8;11) breakpoints to NSD3 and NUP98, ruling out the involvement of FGFR1 suggested by FISH while also identifying multiple chromosomal and sequence level aberrations.


Subject(s)
Leukemia, Myeloid, Acute , Female , Humans , Middle Aged , In Situ Hybridization, Fluorescence , Base Sequence , Leukemia, Myeloid, Acute/genetics , Nuclear Pore Complex Proteins/genetics , Translocation, Genetic
6.
Pharmacol Res ; 194: 106839, 2023 08.
Article in English | MEDLINE | ID: mdl-37400043

ABSTRACT

Nuclear receptor binding SET domain protein 3 (NSD3) has recently been recognized as a new epigenetic target in the fight against cancer. NSD3, which is amplified, overexpressed or mutated in a variety of tumors, promotes tumor development by regulating the cell cycle, apoptosis, DNA repair and EMT. Therefore, the inhibition, silencing or knockdown of NSD3 are highly promising antitumor strategies. This paper summarizes the structure and biological functions of NSD3 with an emphasis on its carcinogenic or cancer-promoting activity. The development of NSD3-specific inhibitors or degraders is also discussed and reviewed in this paper.


Subject(s)
Lysine , Humans , Neoplasms/drug therapy
7.
J Cell Sci ; 136(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37288770

ABSTRACT

Sister chromatid cohesion is a multi-step process implemented throughout the cell cycle to ensure the correct transmission of chromosomes to daughter cells. Although cohesion establishment and mitotic cohesion dissolution have been extensively explored, the regulation of cohesin loading is still poorly understood. Here, we report that the methyltransferase NSD3 is essential for mitotic sister chromatid cohesion before mitosis entry. NSD3 interacts with the cohesin loader complex kollerin (composed of NIPBL and MAU2) and promotes the chromatin recruitment of MAU2 and cohesin at mitotic exit. We also show that NSD3 associates with chromatin in early anaphase, prior to the recruitment of MAU2 and RAD21, and dissociates from chromatin when prophase begins. Among the two NSD3 isoforms present in somatic cells, the long isoform is responsible for regulating kollerin and cohesin chromatin-loading, and its methyltransferase activity is required for efficient sister chromatid cohesion. Based on these observations, we propose that NSD3-dependent methylation contributes to sister chromatid cohesion by ensuring proper kollerin recruitment and thus cohesin loading.


Subject(s)
Cell Cycle Proteins , Chromatids , Histone Methyltransferases , Cell Cycle Proteins/metabolism , Chromatids/genetics , Chromatids/metabolism , Chromatin , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Histone Methyltransferases/metabolism , Cohesins
8.
Eur J Med Chem ; 256: 115440, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37182335

ABSTRACT

Nuclear receptor-binding SET domain 3, otherwise known as NSD3, is a member of the group of lysine methyltransferases and is involved in a variety of cellular processes, including transcriptional regulation, DNA damage repair, non-histone related functions and several others. NSD3 gene is mutated or loss of function in a variety of cancers, including breast, lung, pancreatic, and osteosarcoma. These mutations produce dysfunction of the corresponding tumor tissue proteins, leading to tumorigenesis, progression, chemoresistance, and unfavorable prognosis, which suggests that the development of NSD3 probe molecules is important for understanding the specific role of NSD3 in disease and drug discovery. In recent years, NSD3 has been increasingly reported, demonstrating that this target is a very hot epigenetic target. However, the number of NSD3 inhibitors available for cancer therapy is limited and none of the drugs that target NSD3 are currently available on the market. In addition, there are very few reviews describing NSD3. Within this review, we highlight the role of NSD3 in tumorigenesis and the development of NSD3 targeted small-molecule inhibitors over the last decade. We hope that this publication can serve as a guide for the development of potential drug candidates for various diseases in the field of epigenetics, especially for the NSD3 target.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Nuclear Proteins/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Carcinogenesis
9.
Cancer Med ; 12(9): 10961-10978, 2023 05.
Article in English | MEDLINE | ID: mdl-37062069

ABSTRACT

BACKGROUND: Members of the nuclear receptor-binding SET domain (NSD) family of histone H3 lysine 36 methyltransferases comprise NSD1, NSD2 (MMSET/WHSC1), and NSD3 (Wolf-Hirschhorn syndrome candidate 1-like 1, WHSC1L1). While the expression of NSD genes is essential to normal biological processes and cancer, knowledge of their expression levels to prognosticate in cancer remains unclear. METHODS: We analyzed the expression patterns for NSD family genes across multiple cancer types and examined their association with clinical features and patient survival profiles. Next, we explored the association between NSD3 expression and described features of the tumor microenvironment (TME) in PAAD, a severe type of pancreatic cancer. In particular, we correlated promoter methylation levels for NSD3 with patient outcomes in PAAD. Finally, we explored the putative oncogenic roles for NSD3 using a series of experiments with pancreatic cancer cells. RESULTS: We report that the expression of NSD family members is correlated with clinical prognosis across multiple types of cancers. Also, we demonstrate that NSD3 variants are most prevalent among NSD genes across cancers we analyzed. Notably, when compared with NSD1 and NSD2, we find that NSD3 is prominently expressed, and its expression is significantly linked with clinical outcome in pancreatic cancer. Furthermore, NSD3 is frequently amplified, exhibits low promoter methylation, and is correlated with immune cell infiltration and enhanced proliferation of pancreatic cancer. Finally, we demonstrate that knockdown of NSD3 alters H3K36me2 methylation, downstream gene expression and EGFR/ERK signaling in pancreatic cancer cells. CONCLUSIONS: We find that expression levels, the presence of genetic variants of NSD family genes, as well as their promoter methylation are correlated with clinical outcomes in cancer, including pancreatic cancer. Our in vitro experiments suggest that NSD3 may be relevant to gene expression regulation and growth factor signaling in pancreatic cancer.


Subject(s)
Histones , Pancreatic Neoplasms , Humans , Histones/metabolism , PR-SET Domains , Prognosis , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Histone Methyltransferases/metabolism , Pancreatic Neoplasms/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Biomarkers , Tumor Microenvironment , Pancreatic Neoplasms
10.
Chem Biol Drug Des ; 102(3): 500-513, 2023 09.
Article in English | MEDLINE | ID: mdl-37072259

ABSTRACT

NSD3/WHSC1L1 lysine methyltransferase promotes the transcription of target genes through di- or tri-methylation at histone H3K36 using SAM as a cofactor. Genetic alterations such as amplification and gain-of-function mutation of NSD3 act as oncogenic drivers in several cancers including squamous cell lung cancer and breast cancer. NSD3 is an important therapeutic target for cancers, but the reported NSD3 inhibitors targeting the catalytic SET domain are very rare and show a poor activity. Herein, from a virtual library screening and the subsequent medicinal chemistry optimization, we identified a novel class of NSD3 inhibitors. Our docking analysis and pulldown result suggested that the most potent analogue 13i shows a unique, bivalent binding mode interacting with both SAM-binding site and BT3-bindig site within the SET domain. We found 13i inhibits NSD3 activity with IC50 = 287 µM in vitro and suppresses the proliferation of JIMT1 breast cancer cells with GI50 = 36.5 µM, which express a high level of NSD3. Also, 13i downregulated the levels of H3K36me2/3 in a dose-dependent manner. Our study could provide an insight in designing high-affinity NSD3 inhibitors. Also, as the acrylamide group of 13i was predicted to position near Cys1265 in the BT3-binding site, further optimization would lead to a discovery of novel irreversible NSD3 inhibitors.


Subject(s)
Breast Neoplasms , PR-SET Domains , Humans , Female , Histones , Protein Domains , Methylation , Breast Neoplasms/drug therapy
11.
J Clin Med ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36902501

ABSTRACT

BACKGROUND: Copy number alterations are common genetic lesions in cancer. In squamous non-small cell lung carcinomas, the most common copy-number-altered loci are at chromosomes 3q26-27 and 8p11.23. The genes that may be drivers in squamous lung cancers with 8p11.23 amplifications are unclear. METHODS: Data pertaining to copy number alterations, mRNA expression and protein expression of genes located in the 8p11.23 amplified region were extracted from various sources including The Cancer Genome Atlas, the Human Protein Atlas and the Kaplan Meier Plotter. Genomic data were analyzed using the cBioportal platform. Survival analysis of cases with amplifications compared to nonamplified cases was performed using the Kaplan Meier Plotter platform. RESULTS: The 8p11.23 locus is amplified in 11.5% to 17.7% of squamous lung carcinomas. The most frequently amplified genes include NSD3, FGFR1 and LETM2. Only some of the amplified genes present concomitant overexpression at the mRNA level. These include NSD3, PLPP5, DDHD2, LSM1 and ASH2L, while other genes display lower levels of correlation, and still, some genes in the locus show no mRNA overexpression compared with copy-neutral samples. The protein products of most locus genes are expressed in squamous lung cancers. No significant difference in overall survival in 8p11.23-amplified squamous cell lung cancers versus nonamplified cancers is observed. In addition, there is no adverse effect of mRNA overexpression for relapse-free survival of any of the amplified genes. CONCLUSION: Several genes that are part of the commonly amplified locus 8p11.23 in squamous lung carcinomas are putative oncogenic candidates. A subset of genes of the centromeric part of the locus, which is amplified more commonly than the telomeric part, show high concomitant mRNA expression.

12.
Int J Surg Pathol ; 31(2): 213-220, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35502835

ABSTRACT

Epithelioid rhabdomyosarcoma is a rare rhabdomyosarcoma variant for which no diagnostic recurrent driver genetic events have been identified. Here we report a rapidly progressive and widely metastatic rhabdomyosarcoma with epithelioid features that arose in the thigh of a male infant. Conventional cytogenetics revealed a t(8;13)(p11.2;q14) translocation. Fluorescence in situ hybridization studies showed rearrangement of FOXO1 and amplification of its 3" end, and rearrangement of NSD3 and amplification of its 5` end. Next generation sequencing identified a NSD3::FOXO1 fusion, which is a previously unreported gene fusion. We also review the historic report of a FOXO1::FGFR1 fusion in a solid variant of alveolar rhabdomyosarcoma and propose that NSD3::FOXO1 fusion may have been the more appropriate interpretation of the data presented in that report.


Subject(s)
Paired Box Transcription Factors , Rhabdomyosarcoma , Humans , Infant , Male , Forkhead Box Protein O1/genetics , Forkhead Transcription Factors/genetics , In Situ Hybridization, Fluorescence , Paired Box Transcription Factors/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , Rhabdomyosarcoma/diagnosis , Rhabdomyosarcoma/genetics
13.
Cancers (Basel) ; 14(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36291782

ABSTRACT

The histone H3 lysine 36 (H3K36) methyltransferase NSD3, a neighboring gene of FGFR1, has been identified as a critical genetic driver of lung squamous cell carcinoma (LUSC). However, the molecular characteristics, especially the immunological roles of NSD3 in driving carcinogenesis, are poorly understood. In this study, we systematically integrated multi-omics data (e.g., genome, transcriptome, proteome, and TMA array) to dissect the immunological profiles in NSD3-amplified LUSC. Next, pharmaco-transcriptomic correlation analysis was implemented to identify the molecular underpinnings and therapeutic vulnerabilities in LUSC. We revealed that NSD3-amplified LUSC presents a non-inflamed tumor immune microenvironment (TIME) state in multiple independent LUSC patient cohorts. Predictably, elevated NSD3 expression was correlated with a worse immunotherapy outcome. Further molecular characterizations revealed that the high activity of unfolded protein response (UPR) signaling might be a pivotal mediator for the non-immunogenic phenotype of NSD3-amplified LUSC. Concordantly, we showed that NSD3-amplified LUSCs exhibited a more sensitive phenotype to compounds targeting UPR branches than the wild-type group. In brief, our multi-level analyses point to a previously unappreciated immunological role for NSD3 and provide therapeutic rationales for NSD3-amplified squamous lung cancer.

14.
Thyroid ; 32(10): 1271-1276, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35880417

ABSTRACT

Background: Nuclear protein in testis (NUT) carcinomas (NC) are a rare, highly aggressive, subset of squamous cell carcinomas, characterized by a translocation involving the NUTM1 gene. Thyroid location of NUT carcinomas has rarely been described. Methods: We report here two cases of thyroid NC with NSD3::NUTM1 translocation. Results: The first case presented as a very aggressive undifferentiated thyroid carcinoma in a 38-year-old man who died 21 months after the diagnosis. The second case was diagnosed after multiple lymphadenopathy recurrences mainly in the neck in a 37-year-old woman 7 years after total thyroidectomy for papillary thyroid carcinoma with a classic and a solid/trabecular component. Conclusions: Our case reports highlight the challenges in diagnosing these exceptional carcinomas. The therapeutic impact of the administration of pharmacological compounds with epigenetic action, in line with the physiopathology of these carcinomas, is also discussed.


Subject(s)
Carcinoma , Nuclear Proteins , Male , Female , Humans , Adult , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Neoplasm Proteins/genetics , Thyroid Gland/pathology , Testis/metabolism , Testis/pathology , Sequence Analysis, RNA , Carcinoma/pathology
15.
Eur J Med Chem ; 239: 114528, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35717870

ABSTRACT

Nuclear receptor binding SET domain protein 3 (NSD3) is an attractive potential target in the therapy for human cancers. Herein, we report the discovery of a series of small-molecule NSD3 degraders based on the proteolysis targeting chimera (PROTAC) strategy. The represented compound 8 induces NSD3 degradation with DC50 values of 1.43 and 0.94 µM in NCI-H1703 and A549 lung cancer cells, respectively, and shows selectivity over two other NSD proteins. 8 reduces histone H3 lysine 36 methylation and induces apoptosis and cell cycle arrest in lung cancer cells. Moreover, the RNA sequencing and immunohistochemistry assays showed that 8 downregulates NSD3-associated gene expression. Significantly, 8, but not 1 (a reported NSD3-PWWP antagonist) could inhibit the cell growth of NCI-H1703 and A549 cells. A single administration of 8 effectively decreases the NSD3 protein level in lung cancer xenograft models. Therefore, this study demonstrated that inducing NSD3 degradation is a more effective approach inhibiting the function of NSD3 than blocking the NSD3-PWWP domain, which may provide a potential therapeutic approach for lung cancer.


Subject(s)
Histone Methyltransferases , Lung Neoplasms , A549 Cells , Animals , Histone Methyltransferases/antagonists & inhibitors , Humans , Intercellular Signaling Peptides and Proteins , Lung Neoplasms/drug therapy
16.
Cell Mol Life Sci ; 79(6): 285, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35532818

ABSTRACT

NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.


Subject(s)
Histone-Lysine N-Methyltransferase , Neoplasms , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/metabolism , Humans , Neoplasms/genetics , Neoplasms/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
17.
Epigenetics Chromatin ; 15(1): 17, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35581654

ABSTRACT

The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.


Subject(s)
Histones , Protein Processing, Post-Translational , Chromatin , Histones/metabolism , Humans , Methylation , Nucleosomes
18.
Front Oncol ; 12: 860830, 2022.
Article in English | MEDLINE | ID: mdl-35372003

ABSTRACT

Nuclear protein in testis (NUT) carcinoma is a rare, highly aggressive, poorly differentiated carcinoma occurring mostly in adolescents and young adults. This tumor usually arises from the midline structures of the thorax, head, and neck, and exhibits variable degrees of squamous differentiation. NUT carcinoma is defined by the presence of a NUTM1 (15q14) rearrangement with multiple other genes. In about 70-80% of the cases, NUTM1 is involved in a balanced translocation with the BRD4 gene (19p13.12), leading to a BRD4-NUTM1 fusion oncogene. Other variant rearrangements include BRD3-NUTM1 fusion (~15-20%) and NSD3-NUTM1 fusion (~6%), among others. The diagnosis of NUT carcinoma requires the detection of nuclear expression of the NUT protein by immunohistochemistry. Additional methods for diagnosis include the detection of a NUTM1 rearrangement by fluorescence in situ hybridization or by reverse transcriptase PCR. NUT carcinoma is usually underrecognized due to its rarity and lack of characteristic histological features. Therefore, the goal of this review is to provide relevant recent information regarding the clinicopathologic features of NUT carcinoma, the role of the multiple NUTM1 gene rearrangements in carcinogenesis, and the impact of understanding these underlying molecular mechanisms that may result in the development of possible novel targeted therapies.

19.
Endocr Pathol ; 33(2): 315-326, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34997561

ABSTRACT

In this report, we present a high-grade thyroid carcinoma with an NSD3::NUTM1 fusion detected on expanded next-generation sequencing testing. Nuclear protein of the testis (NUT) carcinomas comprise high-grade, aggressive tumors characterized by rearrangements of the NUTM1 gene with various partner genes, most commonly the bromodomain protein genes BRD4 and BRD3. Approximately 10% of NUT carcinomas contain an NSD3::NUTM1 fusion. NUT carcinomas manifest as poorly differentiated or undifferentiated squamous carcinomas, and 33% show areas of mature squamous differentiation. Only exceptionally have NUT carcinomas shown histology discordant from poorly differentiated/undifferentiated squamous carcinoma, and a thyroid NUT carcinoma with histologic thyrocyte differentiation has not been described to date. Our patient's tumor exhibited mixed cytologic features suggestive of squamoid cells or papillary thyroid carcinoma cells. Overt squamous differentiation was absent, and the tumor produced colloid in poorly formed follicles. Immunophenotypically, the carcinoma was consistent with thyrocyte differentiation with expression of monoclonal PAX8, TTF1, and thyroglobulin (the last predominantly in extracellular colloid). There was zero to < 2% reactivity for proteins typically diffusely expressed in NUT carcinoma: p40, p63, and cytokeratins 5/6. NUT protein expression was equivocal, but fluorescence in situ hybridization confirmed a NUTM1 rearrangement. This exceptional case suggests that NUTM1 fusions may occur in an unknown number of aggressive thyroid carcinomas, possibly with distinctive histologic features but with thyrocyte differentiation. Recognition of this entity potentially has significant prognostic implications. Moreover, thyroid carcinomas with NUTM1 fusions may be amenable to treatment with NUT carcinoma-targeted therapy such as a bromodomain and extraterminal domain protein small molecular inhibitor (BETi).


Subject(s)
Carcinoma, Squamous Cell , Thyroid Epithelial Cells , Thyroid Neoplasms , Cell Cycle Proteins , Colloids , Humans , In Situ Hybridization, Fluorescence , Male , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Thyroid Epithelial Cells/metabolism , Thyroid Neoplasms/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Cell Chem Biol ; 29(3): 386-397.e9, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34469831

ABSTRACT

Nuclear receptor binding SET domain protein 3 (NSD3), a gene located within the 8p11-p12 amplicon frequently detected in human cancers, encodes a chromatin modulator and an attractive onco-target. However, agents that effectively suppress NSD3-mediated oncogenic actions are currently lacking. We report the NSD3-targeting proteolysis targeting chimera (PROTAC), MS9715, which achieves effective and specific targeting of NSD3 and associated cMyc node in tumor cells. MS9715 is designed by linking BI-9321, a NSD3 antagonist, which binds NSD3's PWWP1 domain, with an E3 ligase VHL ligand. Importantly, MS9715, but not BI-9321, effectively suppresses growth of NSD3-dependent hematological cancer cells. Transcriptomic profiling demonstrates that MS9715, but not BI-9321, effectively suppresses NSD3-and cMyc-associated gene expression programs, resembling effects of the CRISPR-Cas9-mediated knockout of NSD3. Collectively, these results suggest that pharmacological degradation of NSD3 as an attractive therapeutic strategy, which co-suppresses NSD3- and cMyc-related oncogenic nodes, is superior to blocking the PWWP1 domain of NSD3.


Subject(s)
Antineoplastic Agents , Neoplasms , Proteolysis , Humans , Antineoplastic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL