Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.583
Filter
1.
Rev. enferm. UERJ ; 32: e74792, jan. -dez. 2024.
Article in English, Spanish, Portuguese | LILACS-Express | LILACS | ID: biblio-1554732

ABSTRACT

Objetivo: analisar as características e os desfechos obstétricos adversos em gestantes/puérperas infectadas pelo SARS-CoV-2 em serviço de referência. Método: série de casos retrospectiva entre gestantes com Covid-19 em um hospital universitário em Minas Gerais, Brasil, atendidas no serviço de 2020 a 2021, coletados em abril de 2022, empregando-se estatística descritiva para análise dos dados através do Statistical Package for the Social Science. Resultados: incluídas 26 gestantes, em sua maioria brancas, que tiveram como principais desfechos obstétricos adversos a internação em UTI (43,5%), parto prematuro (34,6%), dado reestratificado de semanas para dias para investigar o encurtamento da gestação, onde constatou-se média de 38,6 dias potenciais de gravidez perdidos dos 280 dias ideais, e ainda 15,4% evoluíram para óbito materno. Conclusão: o estudo proporcionou evidenciar a necessidade de vigilância e atenção às gestantes com foco nos principais desfechos adversos, podendo-se intervir em tempo oportuno para diminuir adversidades.


Objective: to analyze the characteristics and adverse obstetric outcomes in pregnant/puerperal women infected by SARS-CoV-2 at a reference service. Method: a retrospective case series conducted among pregnant women with Covid-19 in a university hospital from Minas Gerais, Brazil, treated at the service from 2020 to 2021. The cases were collected in April 2022 employing descriptive statistics for data analysis in the Statistical Package for the Social Science. Results: a total of 26 pregnant women were included, mostly white-skinned, whose main adverse obstetric outcomes were admission to the ICU (43.5%), premature birth (34.6%) and data restratified from weeks to days to investigate shortening of pregnancy, where a mean of 38.6 potential days of pregnancy were lost out of the ideal 280 days, and 15.4% resulted in maternal death. Conclusion: the study provided evidence of the need for surveillance and care for pregnant women with a focus on the main adverse outcomes, enabling timely intervention to reduce adversities.


Objetivo: analizar las características y resultados obstétricos adversos en gestantes/puérperas infectadas por SARS-CoV-2 en un servicio de referencia. Método: serie de casos retrospectiva entre gestantes con Covid-19 en un hospital universitario de Minas Gerais, Brasil, atendidas en el servicio de 2020 a 2021. Los datos se recolectaron en abril de 2022, se utilizó estadística descriptiva para analizar los datos mediante el Statistical Package for the Social Science. Resultados: se incluyeron 26 gestantes, la mayoría de raza blanca, cuyos principales resultados obstétricos adversos fueron ingreso a UCI (43,5%), parto prematuro (34,6%), dato reestratificado de semanas a días para investigar el acortamiento de la gestación, que arrojó como resultado un promedio de 38,6. Se comprobó que se perdieron en promedio 38,6 días potenciales de embarazo de los 280 días ideales, y muerte materna (15,4%). Conclusión: la evidencia que proporcionó el estudio indica que es necesario vigilar y atender a las gestantes enfocándose en los principales resultados adversos, lo que permite intervenir de forma oportuna para reducir adversidades.

2.
J. bras. nefrol ; 46(3): e20240023, July-Sept. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558252

ABSTRACT

In the last few years, evidence from the Brazilian Registry of Bone Biopsy (REBRABO) has pointed out a high incidence of aluminum (Al) accumulation in the bones of patients with CKD under dialysis. This surprising finding does not appear to be merely a passive metal accumulation, as prospective data from REBRABO suggest that the presence of Al in bone may be independently associated with major adverse cardiovascular events. This information contrasts with the perception of epidemiologic control of this condition around the world. In this opinion paper, we discussed why the diagnosis of Al accumulation in bone is not reported in other parts of the world. We also discuss a range of possibilities to understand why bone Al accumulation still occurs, not as a classical syndrome with systemic signs of intoxication, as occurred it has in the past.


Nos últimos anos, evidências do Registro Brasileiro de Biópsia óssea (REBRABO) apontaram uma alta incidência de intoxicação por alumínio (Al) no tecido ósseo de pacientes com DRC em diálise. Essa surpreendente informação parece representar não apenas um acúmulo passivo deste metal, visto que dados prospectivos do REBRABO sugerem que a presença de Al no tecido ósseo pode estar independentemente relacionada a eventos cardiovasculares adversos maiores. Essas informações contrastam com a percepção mundial do controle epidemiológico dessa condição. Neste artigo de opinião, discutimos por que o diagnóstico de acúmulo ósseo de Al não é relatado em outras partes do mundo, e também discutimos uma gama de possibilidades para entender por que nós acreditamos que o acúmulo de Al no tecido ósseo ainda ocorre, não como se apresentava no passado, ou seja, como uma síndrome com sinais e sintomas sistêmicos de intoxicação.

3.
J. bras. nefrol ; 46(3): e20230175, July-Sept. 2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1558256

ABSTRACT

Abstract Introduction: Secondary hyperparathyroidism (SHPT) is one of the causes for inflammation in CKD. We assessed the impact of parathyroidectomy (PTX) on neutrophil-to-lymphocyte (N/L) and platelet-to-lymphocyte (P/L) ratios in SHPT patients. Methods: A total of 118 patients [hemodialysis (HD, n = 81), and transplant recipients (TX, n = 37)] undergoing PTX between 2015 and 2021 were analyzed. Results: There was a significant reduction in calcium and PTH levels in both groups, in addition to an increase in vitamin D. In the HD group, PTX did not alter N/L and P/L ratios. In the TX group, there was a reduction in N/L and P/L ratios followed by a significant increase in total lymphocyte count. Conclusion: N/L and P/L ratios are not reliable biomarkers of inflammation in SHPT patients undergoing PTX. Uremia, which induces a state of chronic inflammation in dialysis patients, and the use of immunosuppression in kidney transplant recipients are some of the confounding factors that prevent the use of this tool in clinical practice.


Resumo Introdução: O hiperparatireoidismo secundário (HPTS) é uma das causas de inflamação na DRC. Avaliamos o impacto da paratireoidectomia (PTX) nas relações neutrófilo/linfócito (N/L) e plaqueta/linfócito (P/L) em pacientes com HPTS. Métodos: Foram analisados 118 pacientes [hemodiálise (HD, n = 81) e transplantados (TX, n = 37)] submetidos à PTX entre 2015 e 2021. Resultados: Houve redução significativa de cálcio e PTH nos dois grupos, além de elevação de vitamina D. No grupo HD, a PTX não mudou as relações N/L e P/L. Já no grupo TX, houve redução nas relações N/L e P/L acompanhadas de elevação significativa do número de linfócitos totais. Conclusão: As relações N/L e P/L não são marcadores fidedignos de inflamação em pacientes com HPTS submetidos à PTX. A uremia, que induz um estado de inflamação crônica em pacientes dialíticos, e o uso de imunossupressão em pacientes transplantados renais são alguns dos fatores de confusão que impedem o uso dessa ferramenta na prática clínica.

4.
Plant J ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981025

ABSTRACT

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.

5.
Scand J Med Sci Sports ; 34(7): e14688, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38973702

ABSTRACT

AIM: To assess the impact of endurance training on skeletal muscle release of H+ and K+. METHODS: Nine participants performed one-legged knee extension endurance training at moderate and high intensities (70%-85% of Wpeak), three to four sessions·week-1 for 6 weeks. Post-training, the trained and untrained (control) leg performed two-legged knee extension at low, moderate, and high intensities (40%, 62%, and 83% of Wpeak) in normoxia and hypoxia (~4000 m). The legs were exercised simultaneously to ensure identical arterial inflow concentrations of ions and metabolites, and identical power output was controlled by visual feedback. Leg blood flow was measured (ultrasound Doppler), and acid-base variables, lactate- and K+ concentrations were assessed in arterial and femoral venous blood to study K+ and H+ release. Ion transporter abundances were assessed in muscle biopsies. RESULTS: Lactate-dependent H+ release was similar in hypoxia to normoxia (p = 0.168) and was lower in the trained than the control leg at low-moderate intensities (p = 0.060-0.006) but similar during high-intensity exercise. Lactate-independent and total H+ releases were higher in hypoxia (p < 0.05) and increased more with power output in the trained leg (leg-by-power output interactions: p = 0.02). K+ release was similar at low intensity but lower in the trained leg during high-intensity exercise in normoxia (p = 0.024) and hypoxia (p = 0.007). The trained leg had higher abundances of Na+/H+ exchanger 1 (p = 0.047) and Na+/K+ pump subunit α (p = 0.036). CONCLUSION: Moderate- to high-intensity endurance training increases lactate-independent H+ release and reduces K+ release during high-intensity exercise, coinciding with increased Na+/H+ exchanger 1 and Na+/K+ pump subunit α muscle abundances.


Subject(s)
Endurance Training , Hypoxia , Lactic Acid , Leg , Muscle, Skeletal , Potassium , Humans , Potassium/metabolism , Potassium/blood , Hypoxia/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/blood supply , Leg/blood supply , Adult , Lactic Acid/blood , Young Adult , Protons , Regional Blood Flow , Sodium-Potassium-Exchanging ATPase/metabolism , Exercise/physiology , Sodium-Hydrogen Exchanger 1/metabolism
6.
Arh Hig Rada Toksikol ; 75(2): 147-154, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38963138

ABSTRACT

Mistakes in translation are mostly associated with toxic effects in the cell due to the production of functionally aberrant and misfolded proteins. However, under certain circumstances mistranslation can have beneficial effects and enable cells to preadapt to other stress conditions. Mistranslation may be caused by mistakes made by aminoacyl-tRNA synthetases, essential enzymes that link amino acids to cognate tRNAs. There is an Escherichia coli strain expressing isoleucyl-tRNA synthetase mutant variant with inactivated editing domain which produces mistranslated proteomes where valine (Val) and norvaline (Nva) are misincorporated into proteins instead of isoleucine. We compared this strain with the wild-type to determine the effects of such mistranslation on bacterial growth in oxidative stress conditions. When the cells were pre-incubated with 0.75 mmol/L Nva or 1.5 mmol/L Val or Nva and exposed to hydrogen peroxide, no beneficial effect of mistranslation was observed. However, when the editing-deficient strain was cultivated in medium supplemented with 0.75 mmol/L Val up to the early or mid-exponential phase of growth and then exposed to oxidative stress, it slightly outgrew the wild-type grown in the same conditions. Our results therefore show a modest adaptive effect of isoleucine mistranslation on bacterial growth in oxidative stress, but only in specific conditions. This points to a delicate balance between deleterious and beneficial effects of mistranslation.


Subject(s)
Escherichia coli , Oxidative Stress , Oxidative Stress/drug effects , Escherichia coli/drug effects , Escherichia coli/genetics , Protein Biosynthesis/drug effects , Escherichia coli Proteins/genetics , Hydrogen Peroxide
7.
Front Pharmacol ; 15: 1411822, 2024.
Article in English | MEDLINE | ID: mdl-38966545

ABSTRACT

Background: Obstructive sleep apnea (OSA) has been linked to various pathologies, including arrhythmias such as atrial fibrillation. Specific treatment options for OSA are mainly limited to symptomatic approaches. We previously showed that increased production of reactive oxygen species (ROS) stimulates late sodium current through the voltage-dependent Na+ channels via Ca2+/calmodulin-dependent protein kinase IIδ (CaMKIIδ), thereby increasing the propensity for arrhythmias. However, the impact on atrial intracellular Na+ homeostasis has never been demonstrated. Moreover, the patients often exhibit a broad range of comorbidities, making it difficult to ascertain the effects of OSA alone. Objective: We analyzed the effects of OSA on ROS production, cytosolic Na+ level, and rate of spontaneous arrhythmia in atrial cardiomyocytes isolated from an OSA mouse model free from comorbidities. Methods: OSA was induced in C57BL/6 wild-type and CaMKIIδ-knockout mice by polytetrafluorethylene (PTFE) injection into the tongue. After 8 weeks, their atrial cardiomyocytes were analyzed for cytosolic and mitochondrial ROS production via laser-scanning confocal microscopy. Quantifications of the cytosolic Na+ concentration and arrhythmia were performed by epifluorescence microscopy. Results: PTFE treatment resulted in increased cytosolic and mitochondrial ROS production. Importantly, the cytosolic Na+ concentration was dramatically increased at various stimulation frequencies in the PTFE-treated mice, while the CaMKIIδ-knockout mice were protected. Accordingly, the rate of spontaneous Ca2+ release events increased in the wild-type PTFE mice while being impeded in the CaMKIIδ-knockout mice. Conclusion: Atrial Na+ concentration and propensity for spontaneous Ca2+ release events were higher in an OSA mouse model in a CaMKIIδ-dependent manner, which could have therapeutic implications.

8.
J Thorac Dis ; 16(6): 4011-4015, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38983182

ABSTRACT

Primary spontaneous pneumothorax (PSP) is an important disease commonly seen in young males. While incidentally diagnosed cases can be managed conservatively, symptomatic patients often necessitate intervention. Chest tube placement (tube thoracostomy) is commonly used, at least in the USA as a primary treatment modality, which requires hospitalization. On the other hand, needle aspiration (NA) has been widely adopted due to simplicity and reported efficacy and safety. No consensus is reached regarding superiority and/or preferred modality, with a lack of guidelines agreement. Therefore, we conducted an updated meta-analysis of randomized controlled trials comparing NA to tube thoracostomy in patients with symptomatic PSP. Prespecified outcomes were immediate success rate, 12-month recurrence rate, post intervention complications rate, and hospital length of stay. We identified and pooled data from six randomized trials, with a total of 759 patients and a median follow up of 12 months. Our analysis showed that NA and tube thoracostomy have similar immediate success rate and 12-month recurrence rate. We also found that NA has less complication rate, need for surgical intervention, and less hospital stays. In conclusion, our review showed that in symptomatic patients with PSP, NA is as effective as tube thoracostomy regarding immediate success rate and 12-month recurrence rate, with the added benefit of less complications rate and need for surgical intervention.

9.
Heliyon ; 10(12): e33265, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022107

ABSTRACT

Electroacupuncture pretreatment is considered as an optimal strategy for inducing cerebral ischaemic tolerance. However, the underlying neuroprotective mechanism of this approach has never been explored from the perspective of calcium homeostasis. Intracellular calcium overload is a key inducer of cascade neuronal injury in the early stage after cerebral ischaemia attack and the Na+/Ca2+ exchanger (NCX) is the main plasma membrane calcium extrusion pathway maintaining post-ischaemic calcium homeostasis. This study aims to investigate whether the regulation of NCX-mediated calcium transport contributes to the cerebroprotective effect of electroacupuncture pretreatment against ischaemic injury and to elucidate the underlying mechanisms involved in this process. Following five days of repeated electroacupuncture stimulation on Baihui (GV20), Neiguan (PC6), and Sanyinjiao (SP6) acupoints in rats, in vivo and in vitro models of cerebral ischaemia were induced through middle cerebral artery occlusion and oxygen/glucose deprivation (OGD), respectively. Firstly, we verified the neuroprotective effect of electroacupuncture pretreatment from the perspective of neurological score, infarct volume and neuronal apoptosis. Our findings from brain slice patch-clamp indicated that electroacupuncture pretreatment enhanced the Ca2+ efflux capacity of NCX after OGD. NCX1 expression in the ischaemic penumbra exhibited a consistent decline from 1 to 24 h in MCAO rats. Electroacupuncture pretreatment upregulated the expression of NCX1, especially at 24 h, and silencing NCX1 by short hairpin RNA (shRNA) administration reversed the protective effect of electroacupuncture pretreatment against cerebral ischaemic injury. Furthermore, we administered LY294002, a phosphatidylinositol 3 kinase (PI3K) inhibitor, prior to inducing ischaemia to investigate the upstream regulatory mechanism of electroacupuncture pretreatment on NCX1 expression. Electroacupuncture pretreatment activates PI3K/Akt pathway, leading to an increase in the expression of NCX1, which facilitates calcium extrusion and exerts a neuroprotective effect against cerebral ischaemia. These findings provided a novel insight into the prevention of ischemic stroke and other similar conditions characterized by brain ischaemia or hypoperfusion.

10.
Indian J Microbiol ; 64(2): 635-649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39010987

ABSTRACT

The current paper deals with new metabolites of different groups produced by Azotobacter chroococcum XU1. The strain's metabolic diversity is strongly altered by different factors, and some secondary metabolites are being reported for the first time for this species. As an abiotic/biotic stress response, the strain produced a broad spectrum of indole ring-containing compounds, n-alkanes (eicosane, heneicosane, docosane, tetracosane, and hexacosane), alkanes (7-hexyl eicosane and 2-methyloctacosane), saturated fatty acids (hexanoic and octanoic acids), esters (hexadecanoic acid methyl and pentadecanoic acid-14-methyl-methyl esters), and amides (9-Octadecenamide, (Z)- and 13-Docosenamide, (Z)-). Furthermore, to mitigate the abiotic stress the strain actively produced exopolysaccharide (EPS) to biosorb the Na+ ions. Apart from these metabolites, A. chroococcum XU1 synthesized lactones, namely 1,5-d-gluconolactone and d, l-mevalonic acid lactone in response to carbon source modification. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01212-x.

11.
Chemistry ; : e202402355, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963800

ABSTRACT

The oxidative formation of N-N bonds from primary amides has been recently reported and then retracted in the journal Nature Communications by Kathiravan, Nicholls, and coauthors, utilizing a hypervalent iodane reagent. Unfortunately, the authors failed to recognize the Curtius reaction taking place under the described reaction conditions. Thus, the claimed N-N coupling products were not formed. Instead, the Curtius rearrangement urea coupling products were obtained. We demonstrate this herein by means of NMR and x-ray analysis, as well as with the support of an alternative synthetic route.

12.
Adv Sci (Weinh) ; : e2403865, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965796

ABSTRACT

In the quest to enhance Zn-air batteries (ZABs) for operating across a wide spectrum of temperatures, synthesizing robust oxygen electrocatalysts is paramount. Conventional strategies focusing on orbital hybridization of d-d and p-d aim to moderate the excessive interaction between the d-band of the transition metal active site and oxygen intermediate, yet often yield suboptimal performance. Herein, an innovative s-block metal modulation is reported to refine the electronic structure and catalytic behavior of Co─NC catalysts. Employing density functional theory (DFT) calculations, it is revealed that incorporating Mg markedly depresses the d-band center of Co sites, thereby fine-tuning the adsorption energy of the oxygen reduction reaction (ORR) intermediate. Consequently, the Mg-modified Co─NC catalyst (MgCo─NC) unveils remarkable intrinsic ORR activity with a significantly reduced activation energy (Ea) of 10.0 kJ mol-1, outstripping the performance of both Co─NC (17.6 kJ mol-1), benchmark Pt/C (15.9 kJ mol-1), and many recent reports. Moreover, ZABs outfitted with the finely tuned Mg0.1Co0.9─NC realize a formidable power density of 157.0 mW cm-2, paired with an extremely long cycle life of 1700 h, and an exceptionally minimal voltage gap decay rate of 0.006 mV h-1. Further, the Mg0.1Co0.9─NC-based flexible ZAB presents a mere 2% specific capacity degradation when the temperature fluctuates from 25 to -20 °C, underscoring its robustness and suitability for practical deployment in diverse environmental conditions.

13.
J Biol Chem ; : 107552, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002678

ABSTRACT

Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson Syndrome (CS), an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: co-immunoprecipitation (co-IP); over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9), and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.

14.
ACS Nano ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995623

ABSTRACT

Given the pressing depletion of lithium resources, sodium-ion batteries (SIBs) stand out as a cost-effective alternative for energy storage solutions in the near future. Layered transition metal oxides (LTMOs) emerge as the leading cathode materials for SIBs due to their superior specific capacities and abundant raw materials. Nonetheless, achieving long-term stability in LTMOs for SIBs remains a challenge due to the inevitable structural degradation during charge-discharge cycles. The complexity and diversity of cation configurations/superstructures within the transition metal layers (TMO2) further complicate the understanding for newcomers. Therefore, it is critical to summarize and discuss the factors leading to structural degradation and the available strategies for enhancing LTMOs' stability. In this review, the cationic configurations of TMO2 layers are introduced from a crystallographic perspective. It then identifies and examines four key factors responsible for structural decay, alongside the impacts of various modification strategies. Finally, more effective and practical research approaches for investigating LTMOs have been proposed. The work aims to enhance the comprehension of the structural deterioration of LTMOs and facilitate a substantial improvement in their cycle life and energy density.

15.
Small ; : e2403736, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990899

ABSTRACT

Transition metal selenides (TMSs) are receiving considerable interest as improved anode materials for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) due to their considerable theoretical capacity and excellent redox reversibility. Herein, ZIF-12 (zeolitic imidazolate framework) structure is used for the synthesis of Cu2Se/Co3Se4@NPC anode material by pyrolysis of ZIF-12/Se mixture. When Cu2Se/Co3Se4@NPC composite is utilized as an anode electrode material in LIB and SIB half cells, the material demonstrates excellent electrochemical performance and remarkable cycle stability with retaining high capacities. In LIB and SIB half cells, the Cu2Se/Co3Se4@NPC anode material shows the ultralong lifespan at 2000 mAg-1, retaining a capacity of 543 mAhg-1 after 750 cycles, and retaining a capacity of 251 mAhg-1 after 200 cycles at 100 mAg-1, respectively. The porous structure of the Cu2Se/Co3Se4@NPC anode material can not only effectively tolerate the volume expansion of the electrode during discharging and charging, but also facilitate the penetration of electrolyte and efficiently prevents the clustering of active particles. In situ X-ray difraction (XRD) analysis results reveal the high potential of Cu2Se/Co3Se4@NPC composite in building efficient LIBs and SIBs due to reversible conversion reactions of Cu2Se/Co3Se4@NPC for lithium-ion and sodium-ion storage.

16.
Article in English | MEDLINE | ID: mdl-38961847

ABSTRACT

Dietary potassium deficiency causes stimulation of sodium reabsorption leading to increased risk in blood pressure elevation. The distal convoluted tubule is the main rheostat linking plasma K+ levels to the activity of the Na-Cl cotransporter (NCC). This occurs through basolateral membrane potential sensing by Kir4.1/5.1; decrease in intracellular Cl-; activation of WNK4, interaction and phosphorylation of Ste20/SPS1-related Proline/Alanine-rich Kinase (SPAK); binding of the calcium-binding protein 39 (cab39) adaptor protein to SPAK leading to its trafficking to the apical membrane; and SPAK binding, phosphorylating, and activating NCC. As Kidney-Specific With-No-Lysine (K) Kinase 1 (WNK1) isoform (KS-WNK1) is another participant in this pathway, we examined its function in NCC regulation. We eliminated KS-WNK1 specifically in the DCT and demonstrated increased expression of WNK4 and L-WNK1 and increased phosphorylation of NCC. As in other KS-WNK1 models, the mice are not hyperkalemic. While wild-type mice under low dietary K+ conditions demonstrated increased NCC phosphorylation, the phosphorylation levels of the transporter, already high in the KS-WNK1, did not change under the low K+ diet. Thus, in the absence of KS-WNK1 the transporter has lost its sensitivity to low plasma K+. We also show that under low K+ conditions, in the absence of KS-WNK1, there is no formation of WNK bodies. These bodies are observed in adjacent segments, not affected by the targeting of KS-WNK1. As our data are overall consistent with those of the global KS-WNK1 knockout, they indicate that the DCT is the predominant segment affecting the salt transport regulated by KS-WNK1.

17.
J Magn Reson Imaging ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963154

ABSTRACT

BACKGROUND: Lower back pain affects 75%-85% of people at some point in their lives. The detection of biochemical changes with sodium (23Na) MRI has potential to enable an earlier and more accurate diagnosis. PURPOSE: To measure 23Na relaxation times and apparent tissue sodium concentration (aTSC) in ex-vivo intervertebral discs (IVDs), and to investigate the relationship between aTSC and histological Thompson grade. STUDY TYPE: Ex-vivo. SPECIMEN: Thirty IVDs from the lumbar spines of 11 human body donors (4 female, 7 male, mean age 86 ± 8 years). FIELD STRENGTH/SEQUENCE: 3 T; density-adapted 3D radial sequence (DA-3D-RAD). ASSESSMENT: IVD 23Na longitudinal (T1), short and long transverse (T2s* and T2l*) relaxation times and the proportion of the short transverse relaxation (ps) were calculated for one IVD per spine sample (11 IVDs). Furthermore, aTSCs were calculated for all IVDs. The degradation of the IVDs was assessed via histological Thompson grading. STATISTICAL TESTS: A Kendall Tau correlation (τ) test was performed between the aTSCs and the Thompson grades. The significance level was set to P < 0.05. RESULTS: Mean 23Na relaxation parameters of a subset of 11 IVDs were T1 = 9.8 ± 1.3 msec, T2s* = 0.7 ± 0.1 msec, T2l* = 7.3 ± 1.1 msec, and ps = 32.7 ± 4.0%. A total of 30 IVDs were examined, of which 3 had Thompson grade 1, 4 had grade 2, 5 had grade 3, 5 had grade 4, and 13 had grade 5. The aTSC decreased with increasing degradation, being 274.6 ± 18.9 mM for Thompson grade 1 and 190.5 ± 29.5 mM for Thompson grade 5. The correlation between whole IVD aTSC and Thompson grade was significant and strongly negative (τ = -0.56). DATA CONCLUSION: This study showed a significant correlation between aTSC and degenerative IVD changes. Consequently, aTSC has potential to be useful as an indicator of degenerative spinal changes. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

18.
Article in English | MEDLINE | ID: mdl-38953524

ABSTRACT

This study was to compare glutaminase and Na+, K+-ATPase inhibitory activities of 20 herbal extracts and investigate the isolation, structural elucidation and those inhibitory activities of three triterpenes from the selected extract of Eucalyptus globulus Labill. Three triterpenes, ursolic acid (1), robustanic acid (2) and ursolic acid lactone (3), were identified by analyzing their NMR and MS spectral data and comparison of these with reported data. The IC50 values of 1-3 and the control compound against glutaminase, 6-diazo-5-oxo-l-norleucine (DON), were 443 µM, 334 µM, 963 µM and 134 µM, respectively. The IC50 values of 1, 2 and the control compound against Na+, K+-ATPase and ouabain, were 180 µM, 56 µM and 0.5 µM, respectively. Compounds 1 and 2 may serve as potential lead compounds for the prevention and treatment of neurodegenerative and lifestyle-related diseases by targeting glutaminase and Na+, K+-ATPase. This is the first report on glutaminase and Na+, K+-ATPase inhibitory activities of 2.

19.
Article in English | MEDLINE | ID: mdl-39004301

ABSTRACT

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.

20.
ACS Appl Mater Interfaces ; 16(28): 36774-36783, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38953275

ABSTRACT

Li-rich layered oxide cathodes have attracted extensive attention due to their high energy density. However, due to the low initial Coulombic efficiency and the capacity fading and voltage fading during cycling, its practical application is still a great challenge. Here, we report the one-step realization of layered/spinel heterostructures and Na doping by the sodium dodecyl sulfate (SDS)-assisted sol-gel method. The spinel phase provides 3D diffusion channels for Li-ions, and sodium doping changes the layered lattice constant and expands the layer spacing. Therefore, the designed Li1.15Mn0.54Ni0.13Co0.13Na0.05O2 (SDS-2) cathode possesses excellent electrochemical performance such as higher initial Coulombic efficiency and rate capacity and also alleviates voltage decay. The initial discharge-specific capacity of SDS-2 is 298.8 mAh g-1 at 0.1 C, and the discharge-specific capacity can reach 111.7 mAh g-1 at 10 C. This strategy can provide new insights into the design and synthesis of high-performance Li-rich layered oxide cathode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...