Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 251
Filter
Add more filters











Publication year range
1.
Nano Lett ; 24(37): 11756-11762, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39236070

ABSTRACT

Developing a nanofluidic membrane with simultaneously enhanced ion selectivity and permeability for high-performance osmotic energy conversion has largely been unexplored. Here, we tackle this issue by the confinement of highly space-charged hydrogels within an orderedly aligned nanochannel array membrane. The nanoconfinement effect endows the hydrogel-based membrane with excellent antiswelling property. Furthermore, experimental and simulation results demonstrate that such a nanoconfined hydrogel membrane exhibits massively enhanced cation selectivity and ion transport properties. Consequently, an amazingly high power density up to ∼52.1 W/m2 with an unprecedented energy conversion efficiency of 37.5% can be reached by mixing simulated salt-lake water (5 M NaCl) and river water (0.01 M NaCl). Both efficiency indexes surpass those of most of the state-of-the-art nanofluidic membranes. This work offers insights into the design of highly ion-selective membranes to achieve ultrafast ion transport and high-performance osmotic energy harvesting.

2.
Adv Sci (Weinh) ; : e2410446, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279471

ABSTRACT

The rapid advancement in attractive platforms such as biomedicine and human-machine interaction has generated urgent demands for intelligent materials with high strength, flexibility, and self-healing capabilities. However, existing self-healing ability materials are challenged by a trade-off between high strength, low elastic modulus, and healing ability due to the inherent low strength of noncovalent bonding. Here, drawing inspiration from human fibroblasts, a monomer trapping synthesis strategy is presented based on the dissociation and reconfiguration in amphiphilic ionic restrictors (7000-times volume monomer trapping) to develop a eutectogel. Benefiting from the nanoconfinement and dynamic interfacial interactions, the molecular chain backbone of the formed confined domains is mechanically reinforced while preserving soft movement capabilities. The resulting eutectogels demonstrate superior mechanical properties (1799% and 2753% higher tensile strength and toughness than pure polymerized deep eutectic solvent), excellent self-healing efficiency (>90%), low tangential modulus (0.367 MPa during the working stage), and the ability to sensitively monitor human activities. This strategy is poised to offer a new perspective for developing high strength, low modulus, and self-healing wearable electronics tailored to human body motion.

3.
ACS Appl Mater Interfaces ; 16(38): 50726-50735, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39265150

ABSTRACT

The electrocatalytic coreduction of CO2 and nitrate is a green method for urea synthesis, mitigating CO2 emission and nitrate contamination. However, its slow kinetics and high energy barrier result in a poor urea production performance. Herein, we reported N-doped porous hollow carbon spheres (N-PHCS) for promoting CO2 and nitrate conversion to urea via nanoconfinement and N-doping from both reaction kinetics and thermodynamics. A high urea yield of 12.0 mmol h-1 gcat-1 with Faradaic efficiency of 19.1% was achieved on N-PHCS at -1.0 V (vs Ag/AgCl), which was comparable to or even higher than those of metal-based electrocatalysts reported. The experimental and theoretical calculation results revealed that carbon spheres with an appropriate interior void and pore size were favorable for confining reactants and intermediates to accelerate urea production, while N-doping can reduce the energy barrier for urea synthesis. By regulating the microstructure and N doping of N-PHCS, it showed a superior performance for urea electrosynthesis. The energy favorable pathway for urea synthesis was through the C-N coupling reaction of *NO and *CO, and pyridinic N can reduce the reaction energy barrier.

4.
ACS Appl Mater Interfaces ; 16(38): 51608-51617, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39283996

ABSTRACT

In this study, we use molecular dynamics (MD) simulation to study pressure-driven CO2 and CH4 flows and their slippage behaviors in ß-cristobalite mesopores. The result illustrates that both CO2 and CH4 have an apparent adsorption layer on pore surface. However, significant differences in gas slippage are observed: CH4 flow shows considerable slippage, while it is negligible for CO2 flow. This disparity is attributed to the collective effect of gas molecular configurations and surface structure. The linear molecular structure of CO2 allows it to align perpendicular to the surface, even penetrating into the surface. Notably, the perpendicular orientation of CO2 molecules is energetically favored near the center of the equilateral triangle formed by adjacent oxygen atoms on ß-cristobalite surface. Conversely, the symmetric molecular structure of CH4, coupled with its larger size, prevents its penetration into pore surfaces. Therefore, despite smooth crystalline surfaces, CO2 topological accessible plane is much more curved than that of CH4. Consequently, CO2 displays hesitating motions undergoing rotational movements, which significantly hinders its slippage. This study highlights the collective influences of gas molecular characteristics and surface structure on gas slippage, affording important insights into gas sequestration and the development of functional materials for gas separation.

5.
Angew Chem Int Ed Engl ; : e202414073, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248641

ABSTRACT

Local enrichment of free radicals at the electrode interface may open new opportunities for the development of electrochemiluminescence (ECL) applications. The sensing platform was constructed by assembling ECL-emitting luminol derived carbon dots (Lu CDs) onto the heterojunction Tungsten disulfide/Covalent organic frameworks (WS2@COF) for the first time, establishing a nanoconfinement-reactor with significantly heightened ECL intensity and stability compared to the Lu CDs-H2O2 system. This enhanced performance is credited to the COF domain's restricted pore environment, where WS2@COF exhibits a more negative adsorption energy for H2O2, effectively enriching H2O2 in the catalytic edge sites of WS2. Furthermore, the internal electric field at the WS2 and COF interface accelerates electron flow, boosting WS2's catalytic activity and achieving domain-limited catalytic enhancement of ECL. Self-designed DNA nanomachines combined with cascading molecular keypad locking mechanisms are integrated into the biosensors, effectively guaranteeing the accuracy of the sensing process while providing crucial safeguards for molecular diagnostics and information security applications. In essence, this innovative approach represents the first system to enhance local free radical concentrations by enriching co-reactants on the electrode surface through nanoconfinement catalysis, yielding heightened ECL luminescence intensity. The potential impact of this novel strategy and sensing mechanism on real-bioanalysis applications is promising.

6.
ACS Nano ; 18(32): 21376-21387, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39088237

ABSTRACT

Water under soft nanoconfinement features physical and chemical properties fundamentally different from bulk water; yet, the multitude and specificity of confining systems and geometries mask any of its potentially universal traits. Here, we advance in this quest by resorting to lipidic mesophases as an ideal nanoconfinement system, allowing inspecting the behavior of water under systematic changes in the topological and geometrical properties of the confining medium, without altering the chemical nature of the interfaces. By combining Terahertz absorption spectroscopy experiments and molecular dynamics simulations, we unveil the presence of universal laws governing the physics of nanoconfined water, recapitulating the data collected at varying levels of hydration and nanoconfinement topologies. This geometry-independent universality is evidenced by the existence of master curves characterizing both the structure and dynamics of simulated water as a function of the distance from the lipid-water interface. Based on our theoretical findings, we predict a parameter-free law describing the amount of interfacial water against the structural dimension of the system (i.e., the lattice parameter), which captures both the experimental and numerical results within the same curve, without any fitting. Our results offer insight into the fundamental physics of water under soft nanoconfinement and provide a practical tool for accurately estimating the amount of nonbulk water based on structural experimental data.

7.
Small ; : e2405351, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162121

ABSTRACT

The construction of stable and efficient nanocomposites with low addition and light weight has always been the goal pursued in the field of electromagnetic wave (EMW) absorption. In this study, the Co@CNTs nanocomposites with Co nanoparticles (13 nm) nanoconfined in the carbon nanotube (CNT) are successfully synthesized by a simple hydrothermal method and phenolic assisted pyrolysis method. The degree of graphitization of CNTs and the microstructure of Co nanoparticles can be effectively regulated by controlling the calcination temperature. The sample calcined at 700 °C can obtain excellent absorption performance at a low filling capacity of 10 wt.%: the minimum reflection loss (RL) is -41.2 dB and the effective absorption bandwidth (EAB) reaches a maximum width of 14.2 GHz. When the sample thickness is only 2.2 mm, the EAB of <-20 dB reaches 8.3 GHz, which is the maximum EAB of most current Co-based absorbers. In particular, the polarization and ferromagnetic coupling behaviors are elucidated in depth with the aid of electromagnetic field simulations using the High-Frequency Structure Simulator (HFSS). This work provides a new nanoconfinement strategy for constructing the Co@CNTs nanocomposites as lightweight and ultra-broadband absorbing materials for EMW protection and EMW pollution control.

8.
ACS Nano ; 18(36): 24829-24841, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39110912

ABSTRACT

In the realm of nanoscience, the dynamic behaviors of liquids at scales beyond the conventional structural relaxation time, τ, unfold a fascinating blend of solid-like characteristics, including the propagation of collective shear waves and the emergence of elasticity. However, in classical bulk liquids, where τ is typically of the order of 1 ps or less, this solid-like behavior remains elusive in the low-frequency region of the density of states (DOS). Here, we provide evidence for the emergent solid-like nature of liquids at short distances through inelastic neutron scattering measurements of the low-frequency DOS in liquid water and glycerol confined within graphene oxide membranes. In particular, upon increasing the strength of confinement, we observe a transition from a liquid-like DOS (linear in the frequency ω) to a solid-like behavior (Debye law, ∼ω2) in the range of 1-4 meV. Molecular dynamics simulations confirm these findings and reveal additional solid-like features, including propagating collective shear waves and a reduction in the self-diffusion constant. Finally, we show that the onset of solid-like dynamics is pushed toward low frequency along with the slowing-down of the relaxation processes upon confinement. This nanoconfinement-induced transition, aligning with k-gap theory, underscores the potential of leveraging liquid nanoconfinement in advancing nanoscale science and technology, building more connections between fluid dynamics and materials engineering.

9.
ACS Appl Mater Interfaces ; 16(35): 46750-46760, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39164204

ABSTRACT

Ce-based metal-organic frameworks (Ce-MOFs) were successfully synthesized by coordinating binary acid and amino structures with cerium oxides. The quantum dot scale endows Ce-MOFs with enhanced modifiability. Additionally, the phosphorus-rich biomass phytic acid, with its numerous hydroxyl groups, strengthens the H-bond network within the system. Ce-MOFs-centered nanoconfinement can form through the multiple H-bond interactions between Ce-MOFs and polylactic acid (PLA) molecules, thereby improving the mechanical and flame-retardant properties of PLA. The PLA/CeCxOy-P-3 composite exhibited excellent fire retardancy and toxic gas suppression, with a 27.8% decrease in the peak heat release rate and a 50% reduction in the peak smoke production rate. Notably, PLA/CeCxOy-P-3 showed an 80% lower peak CO release compared with the pure PLA sample. Moreover, the incorporation of Ce-MOFs positively influenced the tensile properties of PLA, transforming it from brittle to tough. This work designed and synthesized Ce-MOFs on the quantum scale. The resulting Ce-MOFs with the anticipated structure offer a novel direction for preparing MOFs for flame retardant applications.

10.
Small ; : e2402982, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011738

ABSTRACT

The synergies of nanoconfinement and catalysis is an effective strategy to improve the kinetic and thermodynamic properties of Mg-based materials. However, obtaining Mg-based materials with high loading, anti-aggregation, and containing nanocatalysts to achieve dehydrogenation at room temperature remains a huge challenge. Herein, a novel and universal preparation strategy for Mg-Co@C nanocomposites with 9.5 nm Mg nanoparticles and 9.4 nm Co nanocatalysts embedded in carbon scaffold is reported. The 9.3 nm MgBu2 nanosheets precipitated by solvent displacement are encapsulated in ZIF-67 to prepare MgBu2@ZIF-67 precursors, then removing excess MgBu2 on the precursor surface and pyrolysis to obtain Mg-Co@C. It is worth noting that the Mg loading rate of Mg-Co@C is as high as rare 69.7%. Excitingly, the Mg-Co@C begins to dehydrogenate at room temperature with saturate capacity of 5.1 wt.%. Meanwhile, its dehydrogenation activation energy (Ea(des) = 68.8 kJ mol-1) and enthalpy (ΔH(des) = 61.6 kJ mol-1) significantly decrease compared to bulk Mg. First principles calculations indicate that the hydrogen adsorption energy on the Mg2CoH5 surface is only -0.681 eV. This work provides a universally applicable novel method for the preparation of nanoscale Mg-based materials with various nanocatalysts added, and provides new ideas for Mg-based materials to achieve room temperature hydrogen storage.

11.
J Colloid Interface Sci ; 674: 702-712, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38950469

ABSTRACT

The diffusion and adsorption properties of the O2/H2O corpuscles at active sites play a crucial role in the fast photo-electrocatalytic reaction of hydrogen peroxide (H2O2) production. Herein, SnS2 nanosheets with abundant interfacial boundaries and large specific areas are encapsulated into hollow mesoporous carbon spheres (CSs) with flexibility, producing a yolk-shell SnS2@CSs Z-scheme photocatalyst. The nanoconfined microenvironment of SnS2@CSs could enrich O2/H2O in catalyst cavities, which allows sufficient internal O2 transfer, improving the surface chemistry of catalytic O2 to O2- conversion and increasing reaction kinetics. By shaping the mixture of SnS2@CSs and polytetrafluoroethylene (PTFE) on carbon felt (CF) using the vacuum filtration method, the natural air-breathing gas diffusion photoelectrode (AGPE) was prepared, and it can achieve an accumulated concentration of H2O2 about 12 mM after a 10 h stability test from pure water at natural pH without using electrolyte and sacrificial agents. The H2O2 product is upgraded through one downstream route of conversion of H2O2 to sodium perborate. The improved H2O2 production performance could be ascribed to the combination of the confinement effect of SnS2@CSs and the rich triple phase interfaces with the continuous hydrophobic layer and hydrophilic layer to synergistically modulate the photoelectron catalytic microenvironment, which enhanced the transfer of O2 mass and offered a stronger affinity to oxygen bubbles. The strategy of combining the confined material with the air-breathing gas diffusion electrode equips a wide practical range of applications for the synthesis of high-yield hydrogen peroxide.

12.
J Hazard Mater ; 474: 134842, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38852246

ABSTRACT

Heterogeneous catalytic ozonation (HCO) enables the destruction of organic pollutants in wastewater via oxidation by powerful hydroxyl radicals (·OH). However, the availability of short-lived ·OH in aqueous bulk is low in practical treatment scenarios due to mass transfer limitations and quenching of water constituents. Herein, we overcome these challenges by loading MgO catalysts inside the pores of a tubular ceramic membrane (denoted as CCM) to confine ·OH within the nanopores and achieve efficient pollutant removal. When the pore size of the membrane was reduced from 1000 to 50 nm, the removal of ibuprofen (IBU) by CCM was increased from 49.6 % to 90.2 % due to the enhancement of ·OH enrichment in the nanospace. In addition, the CCM exhibited high catalytic activity in the presence of co-existing ions and over a wide pH range, as well as good self-cleaning ability in treating secondary wastewater. The experimental results revealed that ·OH were the dominant reactive oxygen species (ROS) in pollutant degradation, while surface hydroxyl groups were active sites for the generation of ·OH via ozone decomposition. This work provides a promising strategy to enhance the utilization of ·OH in HCO for the efficient degradation of organic pollutants in wastewater under spatial confinement.

13.
Angew Chem Int Ed Engl ; 63(38): e202406126, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38923075

ABSTRACT

Aqueous zinc batteries based on the conversion-type sulfur cathodes are promising in energy storage system due to the high theoretical energy density, low cost, and good safety. However, the multi-electron solid-state intermediate conversion reaction of sulfur cathodes generally possess sluggish kinetics, which leads to lower discharge voltage and inefficient sulfur utilization, thus suppressing the practical energy density. Herein, sulfur nanoparticles derived from metal-organic frameworks confined in situ within electrospun fibers derived sulfur and nitrogen co-doped carbon nanofibers (S@S,N-CNF) composite, which possesses yolk-shell S@C nanostructure, is fabricated through successive sulfidation, pyrolysis, and sulfide oxidation processes, and served as a high-performance cathode material for Zn-S battery. The S and N dopants on carbon can collectively catalyse sulfur reduction reaction (SRR) by lowering energy barrier and accelerating kinetics to increase discharge voltage and specific capacity. Meanwhile, the yolk-shell S@C structure with spatially confined S nanoparticle yolks is beneficial to improve charge transfer and lower activation energy, thus further expediting SRR kinetics. Furthermore, extensive density functional theory (DFT) calculations reveal that S and N dual-doping can thermodynamically and dynamically reduce the energy barrier of rate-determining step (i.e., the transformation of *ZnS4 into *ZnS2) for the overall SRR, thereby significantly accelerating SRR kinetics.

14.
J Colloid Interface Sci ; 674: 482-489, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38941940

ABSTRACT

Dielectric effects and the coupled electrostatics between the nanoconfined and the internal/external aqueous media contribute to the observed deviations of chemistry within the nanoconfined environment when compared with unconfined systems. A systematic understanding has remained elusive, especially with respect to background salt concentration and boundary condition effects like the nanopore surface chemistry and the reference state used to calculate free energies. We utilize molecular dynamics simulations along with thermodynamic integration to determine the free energy difference associated with acid-base chemistry in 2 nm and 4 nm slit pores open to a bulk-like reservoir. pKa increases are predicted when confining acetic acid, formic acid, and bicarbonate in the slits at infinite dilution conditions. We find that confinement weakens the acids, and the modulation of outer pore surface dipole magnitudes can tune the pKa shift values, suggesting that purely "intrinsic" electrostatic effect on confinement may not exist. At sufficiently high salt concentrations, the dielectric/electrostatic effects on pKa values diminish due to charge screening effects. These discoveries enable future modifications of nanopore chemistries to achieve desirable properties for industrial applications.

15.
Angew Chem Int Ed Engl ; 63(34): e202406214, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38825853

ABSTRACT

Crystal polymorphism, characterized by different packing arrangements of the same compound, strongly ties to the physical properties of a molecule. Determining the polymorphic landscape is complex and time-consuming, with the number of experimentally observed polymorphs varying widely from molecule to molecule. Furthermore, disappearing polymorphs, the phenomenon whereby experimentally observed forms cannot be reproduced, pose a significant challenge for the pharmaceutical industry. Herein, we focused on oxindole (OX), a small rigid molecule with four known polymorphs, including a reported disappearing form. Using crystal structure prediction (CSP), we assessed OX solid-state landscape and thermodynamic stability by comparing predicted structures with experimentally known forms. We then performed melt and solution crystallization in bulk and nanoconfinement to validate our predictions. These experiments successfully reproduced the known forms and led to the discovery of four novel polymorphs. Our approach provided insights into reconstructing disappearing polymorphs and building more comprehensive polymorph landscapes. These results also establish a new record of packing polymorphism for rigid molecules.

16.
Water Res ; 260: 121954, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38909421

ABSTRACT

Ferrous (Fe(II))-based oxygen activation for pollutant abatements in soil and groundwater has attracted great attention, while the low utilization and insufficient longevity of electron donors are the primary challenges to hinder its practical applications. Herein, we propose a nanoconfined Fe(II) releasing strategy that enables stable long-term electron donation for oxygen activation and efficient arsenic (As) immobilization under oxic conditions, by encapsulating zero-valent iron in biomass-derived carbon shell (ZVI@porous carbon composites; ZVI@PC). This strategy effectively enhances the generation of reactive oxygen species, enabling efficient oxidation and subsequent immobilization of As(III) in soils. Importantly, this Fe(II) releaser exhibits strong anti-interference capability against complex soil matrices, and the accompanying generation of Fe(III) enables As immobilization in soils, effectively lowering soil As bioavailability. Soil fixed-bed column experiments demonstrate a 79.5 % reduction of the total As in effluent with a simulated rainfall input for 10 years, indicating the excellent long-term stability for As immobilization in soil. Life cycle assessment results show that this Fe(II) releaser can substantially mitigate the negative environmental impacts. This work offers new insights into developing green and sustainable technologies for environmental remediation.


Subject(s)
Arsenic , Arsenic/chemistry , Soil Pollutants/chemistry , Soil/chemistry , Iron/chemistry , Oxidation-Reduction , Groundwater/chemistry , Environmental Restoration and Remediation/methods
17.
J Hazard Mater ; 473: 134652, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38781854

ABSTRACT

Herein, a highly efficient As(III) purifier Ce-Mn@N201 with excellent reusability was developed by stepwise precipitating hydrated cerium(IV) oxides (HCO) and hydrated manganese(IV) oxides (HMO) inside N201, a widely-used gel-type anion exchange resin. Owing to confinement of unique nanopores in N201, the in-situ generated nanoparticles (NPs) inside Ce-Mn@N201 were highly dispersed with ultra-small sizes of around 2.6 nm. Results demonstrated that HMO NPs effectively oxidized As(III) to As(V) with the conversion of Mn(IV) to Mn(II), while the generated Mn2+ was mostly re-adsorbed onto the negatively-charged surface of HMO NPs. During the regeneration process by simple alkaline treatment, the re-adsorbed Mn2+ was firstly precipitated as (hydr)oxides of Mn(II) and then oxidized to HMO NPs by dissolved oxygen to fully refresh its oxidation capacity. Though HCO NPs mainly served as adsorbent for arsenic, they could partially oxidize As(III) to As(V) at the beginning, while the oxidation capacities continuously diminished with the irreversible conversion of Ce(IV) to Ce(III). In 10 consecutive adsorption-regeneration cycle, Ce-Mn@N201 efficiently decontaminated As(III) from 500 µg/L to below 5 µg/L with Mn2+ leaching less than 0.3% per batch. During 3 cyclic fixed-bed adsorptions, Ce-Mn@N201 steadily produced 8500-9150 bed volume (BV) and 3150-3350 BV drinkable water from the synthesized and real groundwater, respectively, with Mn leaching in effluent constantly < 100 µg/L.

18.
Polymers (Basel) ; 16(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675074

ABSTRACT

Semicrystalline polymers under nanoconfinement show distinct structural and thermomechanical properties compared to their bulk counterparts. Despite extensive research on semicrystalline polymers under nanoconfinement, the nanoconfinement effect on the local crystallization process and the unique structural evolution of such polymers have not been fully understood. In this study, we unveil such effects by using coarse-grained molecular dynamics simulations to study the crystallization process of a model semicrystalline polymer-polyvinyl alcohol (PVA)-under different levels of nanoconfinement induced by nanoparticles that are represented implicitly. We quantify in detail the evolution of the degree of crystallinity (XC) of PVA and examine distinct crystalline regions from simulation results. The results show that nanoconfinement can promote the crystallization process, especially at the early stage, and the interfaces between nanoparticles and polymer can function as crystallite nucleation sites. In general, the final XC of PVA increases with the levels of nanoconfinement. Further, nanoconfined cases show region-dependent XC with higher and earlier increase of XC in regions closer to the interfaces. By tracking region-dependent XC evolution, our results indicate that nanoconfinement can lead to a heterogenous crystallization process with a second-stage crystallite nucleation in regions further away from the interfaces. In addition, our results show that even under very high cooling rates, the nanoconfinement still promotes the crystallization of PVA. This study provides important insights into the underlying mechanisms for the intricate interplay between nanoconfinement and the crystallization behaviors of semicrystalline polymer, with the potential to guide the design and characterization of semicrystalline polymer-based nanocomposites.

19.
J Colloid Interface Sci ; 666: 505-511, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38613973

ABSTRACT

Solvent expulsion away from an intervening region between two approaching particles plays important roles in particle aggregation yet remains poorly understood. In this work, we use metadynamics molecular simulations to study the free energy landscape of removing water molecules from gibbsite and pyrophyllite slit pores representing the confined spaces between two approaching particles. For gibbsite, removing water from the intervening region is both entropically and enthalpically unfavorable. The closer the particles approach each other, the harder it is to expel water molecules. For pyrophyllite, water expulsion is spontaneous, which is different from the gibbsite system. A smaller pore makes the water removal more favorable. When water is being drained from the intervening region, single chains of water molecules are observed in gibbsite pore, while in pyrophyllite pore water cluster is usually observed. Water-gibbsite hydrogen bonds help stabilize water chains, while water forms clusters in pyrophyllite pore to maximize the number of hydrogen bonds among themselves. This work provides the first assessment into the energetics and structure of water being drained from the intervening region between two approaching particles during oriented attachment and aggregation.

20.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675673

ABSTRACT

Layered double hydroxides (LDHs) are fascinating clay-like materials that display versatile properties, making them an extremely fertile playground for diverse applications, ranging from bio-compatible materials to the pharmaceutical industry to catalysis and photocatalysis. When intercalating organic and bio-organic species between the inorganic layers, such materials are named hybrid LDHs. The structure-property relation in these systems is particularly relevant, since most of the properties of the materials may be fine-tuned if a comprehensive understanding of the microscopic structure in the interlamellar space is achieved, especially with respect to the reorganization under water uptake (swelling). In this work, we combined experiments and simulations to rationalize the behavior of LDHs intercalating three carboxylates, the general structure of which can be given as [Mg4Al2(OH)12]A2-·XH2O (with A2- = succinate, aspartate, or glutamate and X representing increasing water content). Following this strategy, we were able to provide an interpretation of the different shapes observed for the experimental water adsorption isotherms and for the evolution of the infrared carboxylate band of the anions. Apart from small differences, due to the different reorganization of the conformational space under confinement, the behavior of the two amino acids is very similar. However, such behavior is quite different in the case of succinate. We were able to describe the different response of the anions, which has a significant impact on the isotherm and on the size of the interlamellar region, in terms of a different interaction mechanism with the inorganic layer.

SELECTION OF CITATIONS
SEARCH DETAIL