Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.014
Filter
1.
Food Sci Nutr ; 12(8): 5561-5571, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139972

ABSTRACT

The quality of pistachio, one of the export products of Iran, will be decreased during storage as a result of mold spoilage, toxins production, and oil oxidation. This study aimed to investigate the capability of pistachio hull extract (PHE) loaded in fenugreek seed gum (FSG):whey protein isolate (WPI) nanoemulsion to control oil oxidation, and fungi growth in fresh pistachio nut during storage at 4°C. The total anthocyanin and total phenolic content of the PHE were 125.44 µg/g and 675.18 mg/g, respectively. The DPPH radical scavenging activity of PHE at 100 ppm was higher than that of tert-butylhydroquinon (TBHQ). In comparison with other concentrations, 50 ppm showed the strongest antifungal activity against Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius. All nanoemulsions have a mean size lower than 265 nm. The polydispersity index (PDI) of different nanoemulsions was lower than 0.3, and a negative zeta potential was observed. The encapsulation efficiency was higher than 67.0% and all nanoemulsions had spherical morphology. The pistachio nuts were coated with different coating solutions containing 0 and 100 ppm of PHE and stored at 4°C for 8 weeks. The results showed that the pistachio sample coated with a composite coating of WPI and FSG containing 100 ppm of PHE has a higher moisture content and lower changes in L*, a*, and b* indexes, oil oxidation, fungi development, and total mold and yeast count. This treatment exhibited higher overall acceptance than other samples at the end of storage time. The results of this study suggest the use of biodegradable coatings enriched with natural extracts that have high antioxidant and antifungal activities.

2.
Food Sci Nutr ; 12(8): 5605-5618, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39139976

ABSTRACT

This research was undertaken to assess the effect of tragacanth gum-chitin nanofiber (TG-CNF) film containing free (CEO) or encapsulated cumin essential oil (CNE) combined with oxygen absorber (OA) packaging on the shelf-life of ready-to-cook (RTC) turkey breast burgers during chilled storage. The experimental groups were OA and TG-CNF as single treatments, TG-CNF + CEO, TG-CNF + CNE, and TG-CNF + OA as binary treatments, TG-CNF + CEO + OA and TG-CNF + CNE + OA as ternary treatments, and control. The samples were stored at 3°C for 20 days and analyzed for microbial, physicochemical, and sensory attributes. Binary treatments, when compared to single treatments, and ternary treatments, when compared to binary treatments, exhibited enhanced effectiveness in managing microbial growth, hindering physicochemical alterations, and decelerating sensory alterations. At day 20, TG-CNF + CNE + OA group was identified as the most effective group in inhibiting the growth of total mesophilic bacteria (TMB), total psychrophilic bacteria (TSB), and coliforms (final counts were 4.8, 4.16, and ≤1 log CFU/g, respectively), and TG-CNF + CNE + OA and TG-CNF + CEO + OA groups were known as the most effective groups in inhibiting lactic acid bacteria (LAB) (final counts were 4.71 and 5.15 log CFU/g, respectively). Furthermore, the TG-CNF + CNE + OA treatment proved to be the most effective group in reducing the total volatile nitrogen (TVN) (final level was 19.2 mg N/100 g) and thiobarbituric acid reactive substances (TBARS) (final level was 0.119 mg malondialdehyde (MDA)/kg). TG-CNF + CNE + OA and TG-CNF + CEO + OA were the most efficient groups to delay the increasing rate of cooking loss (final values were 23.3% and 24.6%) and pH (final values were 7.01 and 6.99). The sample's shelf-life was 4 days in control and TG-CNF, 8 days in OA and TG-CNF + OA, 12 days in TG-CNF + CEO, 16 days in TG-CNF + CNE and TG-CNF + CEO + OA, and at least 20 days in TG-CNF + CNE + OA. As a result, the incorporation of TG-CNF + CNE alongside OA packaging emerges as a highly effective active packaging method for preserving RTC turkey breast burgers during chilled storage.

3.
J Biomater Sci Polym Ed ; : 1-22, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39102358

ABSTRACT

The main focus of this study was to create a stable and efficient nanoemulsion (NE) using Callistemon citrinus essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis via IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against Fusarium oxysporum, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against Escherichia coli, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against Chilo suppressalis (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum C. citrinus NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.

4.
J Microencapsul ; : 1-16, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092777

ABSTRACT

AIM: This study was aimed at investigating the cytotoxic effect of a novel combination of doxorubicin (DOX) and nano-formulation of Santolina chamaecyparissus L. essential oil (SCEO-NANO) on hepatic (HepG2) and colon (HT29) cancer cell lines. METHODS: A nano-emulsion was prepared by high-pressure homogenisation, then analysed by zetasizer and Fourier transform infrared spectroscopy. HepG2 and HT29 cells were used in in vitro tests for apoptosis detection. RESULTS: Formulated droplet size increased in DOX@SCEO-NANO/DOX to 11.54 ± 0.02 with uniform distribution (PDI = 0.13 ± 0.01), when compared with SCEO-NANO (size: 8.91 ± 0.02 nm; PDI = 0.1 ± 0.02). In both cells, DOX@SCEO-NANO/DOX led to a considerable reduction in colony formation. Compared to DOX, apoprotein proteins were overexpressed in HepG2 cells, showing increases of 8.66-fold for caspase-3 and 4.24-fold for the Bax/Bcl-2 ratio. In HT29 cells, ROS-dependent necrosis and apoptosis were seen. Comparing DOX@SCEO-NANO/DOX versus DOX, greater levels of caspase-3 and the Bax/Bcl-2 ratio were observed. CONCLUSION: The DOX@SCEO-NANO/DOX formulation showed potential for targeted eradication of colon adenocarcinoma and hepatocellular carcinoma cells.

5.
Foods ; 13(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39123598

ABSTRACT

The health benefits of long-chain omega-3 polyunsaturated fatty acid (LCn-3PUFA) intake have been well documented. However, currently, the consumption of oily fish (the richest dietary source of LCn-3PUFA) in the UK is far below the recommended level, and the low digestibility of LCn-3PUFA bulk oil-based supplements from triglyceride-based sources significantly impacts their bioavailability. LCn-3PUFA-rich microalgal oil offers a potential alternative for populations who do not consume oily fish, and nanoemulsions have the potential to increase LCn-3PUFA digestibility and bioavailability. The aims of this study were to produce stable algal oil-in-water nanoemulsions with ultrasonic technology to increase DHA digestibility, measured using an in vitro digestion model. A nanoemulsion of LCn-3PUFA algal oil was developed with 6% w/w emulsifiers: lecithin (LE) or an equal ratio of Tween 40 (3%) and lecithin (LTN) (3%), 50% w/w, algal oil and 44% w/w water using rotor-stator and ultrasound homogenization. The in vitro digestion experiments were conducted with a gastric and duodenal digestion model. The results showed the creation of nanoemulsions of LCn-3PUFA algal oils offers potentially significant increases in the bioavailability of DHA in the human body. The increase in digestibility can be attributed to the smaller particle size of the nanoemulsions, which allows for higher absorption in the digestive system. This showed that the creation of nanoemulsions of LCn-3PUFA algal oils offers a potentially significant increase in the bioavailability of DHA in the human body. The LE and LTN nanoemulsions had average droplet sizes of 0.340 ± 0.00 µm and 0.267 ± 0.00 µm, respectively, but the algal oil mix (sample created with same the components as the LTN nanoemulsion, hand mixed, not processed by rotor-stator and ultrasound homogenization) had an average droplet size of 73.6 ± 6.98 µm. The LTN algal oil nanoemulsion was stable in the gastric and duodenal phases without detectable destabilization; however, the LE nanoemulsion showed signs of oil phase separation in the gastric phase. Under the same conditions, the amount of DHA digested from the LTN nanoemulsion was 47.34 ± 3.14 mg/g, compared to 16.53 ± 0.45 mg/g from the algal oil mix, showing DHA digestibility from the LTN nanoemulsion was 2.86 times higher. The findings of this study contribute to the insight of in vitro DHA digestion under different conditions. The stability of the LTN nanoemulsion throughout digestion suggests it could be a promising delivery system for LCn-3PUFAs, such as DHA, in various food and pharmaceutical applications.

6.
Article in English | MEDLINE | ID: mdl-39177784

ABSTRACT

Psoriasis is a chronic inflammatory disease that is becoming widespread and is associated with many kinds of additional severe diseases. The present study aimed to develop a methotrexate-loaded almond oil-based nanoemulsion formulation (MTX NE) for topical administration. The drug-loaded nanoemulsion formulation was prepared by high shear homogenization technique. The formulation's stability, as well as other physical and chemical characteristics, including entrapment effectiveness, drug release kinetics, skin permeability, skin irritation, and in vivo evaluation of the optimized formulation, was assessed. Additionally, imiquimod-induced psoriasis in rats was employed to investigate the efficacy of MTX NE against skin disorders. The MTX NE formulation was developed with a particle size of 18.74 ± 9.748 nm, a polydispersity index (PDI) of 0.198 ± 0.01, and an average entrapment efficiency of 79.65 ± 3.84%. The release kinetics model estimates 81.08% drug release at pH 5.5 after 24 h. The major layers of the skin, the epidermis, and dermis were successfully fluidized by the optimized MTX NE formulation, as shown by FTIR results, most likely enhancing drug retention and permeability. However, since Tween 80 and PEG 400 are well-known penetration enhancers, their application greatly accelerates these effects. Permeation data indicate that after 24 h, methotrexate was released from the nano-emulsion at 76.83 ± 4.98 g/cm2 with a flux rate of 2.385 ± 0.61 µg/cm2/h. The in vivo study conducted on rabbit skin showed that the enhanced skin penetration of the prepared MTX-loaded nanoemulsion formulation does not cause any structural modifications in the inter-cellular lipid layers of the stratum corneum. Rabbits used in the in vivo anti-psoriatic investigation demonstrated that MTX NE produced a 95% reduction in PASI. The pharmacokinetic profile revealed that the Cmax, Tmax, and t1/2 values were 8.63 µg/mL, 12.5 h, and 17.77 ± 2.21 h, respectively. These findings suggest that the formulation MTX NE is effective in treating psoriasis and may reduce psoriasis symptoms.

7.
Int J Biol Macromol ; 278(Pt 2): 134826, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39154684

ABSTRACT

Forest frog's oviduct oil (FFOO) is highly susceptible to microbial spoilage during storage, which causes serious safety concerns and economic losses. However, little information is available regarding the preservation of it up to now. The aim of this research is to understand the dominant microbial community of FFOO spoilage, and based on this, develop a kind of edible nanoemulsion coating for preserving FFOO. Microbial metagenomic analysis indicated that the Aspergillus genus increased significantly during storage. In the present study, gum arabic and whey protein isolate were chosen as the coating matrix, the natural compounds sanguinarine and glabridin were selected as antimicrobial agents to prepare double-layer nanoemulsion edible coating. When the ratio of sanguinarine and glabridin in the nanoemulsion was 1:3, it exhibited strongest storage stability and antifungal activity. The mycelial inhibition rate of 1:3 nanoemulsion against dominant microbial community (Aspergillus niger and Aspergillus glaucus) reached 88.89 ± 1.37 % and 89.68 ± 1.37 %, respectively. The experimental results indicated that the edible nanoemulsion coating not only had outstanding antifungal activity, but also had excellent fresh-keeping effect on FFOO. This nanoemulsion coating could be a promising and potential candidate for food preservation.

8.
Heliyon ; 10(15): e35069, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170221

ABSTRACT

The utilization of phytoconstituents in skin care products has emerged as a notable trend due to their recognized safety and therapeutic efficacy. However, the challenge lies in improving the effective delivery of phytoconstituents to specific tissues, primarily attributed to their poor solubility and low permeability. This study endeavors to address this challenge by developing, optimizing and characterizing Cucumis melo var. agrestis (CME) extract loaded nanoemulsion gel (CME-NEG), aiming to enhance the skin permeability and antifungal activity. Herein, nanoemulsions encapsulating the plant extract were prepared using ultrasonication technique and were characterized for droplet size, zeta potential, polydispersity index (PDI) and entrapment efficiency. Further, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis were conducted to characterize the optimized CME extract loaded nanoemulsion (CME-NE 3) formulation. The optimized formulation was blended with Carbopol 940 gel to develop CME-NEG, which was evaluated for release kinetics, in vitro permeation and in vitro antifungal activity. High performance liquid chromatography (HPLC) analysis confirmed the presence of gallic acid, chlorogenic acid, 4-Hydroxy benzoic acid (HB acid), kaempferol, caffeic acid and quercetin. Findings of 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that the ethanolic extract had highest antioxidant activity (88.88 %). The optimized formulation displayed smooth spherical nanodroplets with size of 175.5 ± 1.56 nm, zeta potential of -21.5 ± 0.12 mV, PDI of 0.192 ± 0.06, and highest entrapment efficiency (EE) of 91.35 ± 1.65 %. The release profile of CME-NE exhibited a controlled release characteristic and the release kinetic mechanism was best described by the Korsmeyer-Peppas (Kp) model. In a 24 h permeation study, it was observed that the in vitro permeation of CME-NEG was 58.63 %, significantly higher than that of CME extract loaded plain gel (CME-PG) with an enhancement ratio of 2.12. The prepared CME-NEG formulation also presented enhanced antifungal activity as compared to pure CME extract. In conclusion, the designed CME-NEG offers a promising topical drug delivery system with enhanced skin permeability and antifungal activity.

9.
Sci Rep ; 14(1): 18841, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39138188

ABSTRACT

Pomegranate (Punica granatum) is a tree of the Punicaceae family that is widespread all over the world and has several types and therapeutic uses. The current study aimed to investigate the phytochemical compounds by GC analysis and carried out physical characterization of the pomegranate seed oil and its self-nanoemulsifying system. Then antioxidant, anti-diabetic, and anti-lipase activities were investigated for both.The pomegranate seed oil was extracted, and its self-nanoemulsifying system was then prepared. Phytochemical compounds were analyzed by GC, and physical characterization was established of the pomegranate seed oil and its self-nanoemulsifying system. Then antioxidant, anti-diabetic, and anti-lipase activities were investigated for both.The GC-MS analysis revealed that punicic acid, ß-eleosteric acid, catalpic acid, α-eleosteric acid, and oleic acid were the most predominant compounds in pomegranate seed oil. Other active compounds like linoleic acid, palmitic acid, stearic acid, and α-linolenic acid were detected in trace percentages. The self-nanoemulsifying system was prepared using various concentrations of surfactant (Tween 80), co-surfactant (Span 80), and pomegranate seed oil. The selected formulation had a PDI of 0.229 ± 0.09 and a droplet size of 189.44 ± 2.1 nm. The free radical scavenging activity of pomegranate seed oil, the self-emulsifying system, and Trolox was conducted using DPPH. The oil-self-nanoemulsifying system showed potent antioxidant activity compared to Trolox. Also, pomegranate oil inhibited α-amylase with a weak IC50 value of 354.81 ± 2.3 µg/ml. The oil self-nanoemulsifying system showed potent activity compared to acarbose and had a weaker IC50 value (616.59 ± 2.1 µg/ml) and a potent IC50 value (43.65 ± 1.9 µg/ml) compared to orlistat.Pomegranate seed oil self-nanoemulsifying system could be applied in the future for the preparation of possible oral medications for the prevention and treatment of oxidative stress, diabetes, and obesity due to its high activity against free radical, amylase, and lipase enzymes compared to pomegranate seed oil itself and the references used. This study reveals that self-nanoemulsion systems can enhance oil drug formulations by improving pharmacokinetics and pharmacodynamics, acting as drug reservoirs, and facilitating efficient oil release.


Subject(s)
Antioxidants , Emulsions , Hypoglycemic Agents , Plant Oils , Pomegranate , Seeds , Pomegranate/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Seeds/chemistry , Emulsions/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Lipase/antagonists & inhibitors , Lipase/metabolism , Nanoparticles/chemistry
10.
Int J Pharm ; 663: 124570, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39134291

ABSTRACT

A multi-component paclitaxel (PTX) -loaded ß-elemene nanoemulsion by transferrin modification (Tf-PE-MEs) was developed to enhance non-small-cell lung cancer (NSCLC) treatment. After transferrin modification, the particle size of Tf-PE-MEs was (14.87 ± 1.84) nm, and the zeta potential was (-10.19 ± 0.870) mV, respectively. In vitro experiments showed that Tf-PE-MEs induced massive apoptosis in A549 cells, indicating that it had significant cytotoxicity to A549 cells. Through transferrin modification, Tf-PE-MEs accumulated at the tumor site efficiently with overexpressed transferrin receptor (TfR) on the surface of A549 cells. This will allow increasing PTX and ß-elemene concentration in the target cells, enhancing the therapeutic effect. Compared to PTX alone, Tf-PE-MEs displayed good anti-tumor efficacy and diminished systemic toxicity in vivo studies. With favourable therapeutic potential, this study provides a new strategy for the combined anticancer treatment of non-small cell lung cancer.

11.
Microb Pathog ; 195: 106837, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39103128

ABSTRACT

Microbial resistance to drugs continues to be a global public health issue that demands substantial investment in research and development of new antimicrobial agents. Essential oils (EO) have demonstrated satisfactory and safe antimicrobial action, being used in pharmaceutical, cosmetic, and food formulations. In order to improve solubility, availability, and biological action, EO have been converted into nanoemulsions (NE). This review identified scientific evidence corroborating the antimicrobial action of nanoemulsions of essential oils (NEEO) against antibiotic-resistant pathogens. Using integrative review methodology, eleven scientific articles evaluating the antibacterial or antifungal assessment of NEEO were selected. The synthesis of evidence indicates that NEEO are effective in combating multidrug-resistant microorganisms and in the formation of their biofilms. Factors such as NE droplet size, chemical composition of essential oils, and the association of NE with antibiotics are discussed. Furthermore, NEEO showed satisfactory results in vitro and in vivo evaluations against resistant clinical isolates, making them promising for the development of new antimicrobial and antivirulence drugs.

12.
Drug Dev Ind Pharm ; : 1-13, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39093556

ABSTRACT

OBJECTIVE: Preparation and characterization of nano-emulsion formulations for Asparagus densiflorus aerial and root parts extracts. SIGNIFICANCE: Genus Asparagus is known for its antimicrobial and anticancer activities, however, freeze dried powder of aqueous - alcoholic extract prepared in this study, exhibited a limited water solubility, limiting its therapeutic application. Thus, encapsulation of its phytochemicals into nano-emulsion is proposed as a solution to improve water solubility, and facilitate its clinical translation. METHODS: the composition of extracts for both aerial and root parts of Asparagus densiflorus was identified by HPLC and LC-MS analysis. Nano-emulsion was prepared via homogenization where a mixture of Castor oil: phosphate buffered saline (10 mM, pH 7.4): Tween 80: PEG 600 in a ratio of 10: 5: 2.5: 2.5, respectively. Nano-emulsion formulations were characterized for particle size, polydispersity index (PDI), zeta potential, TEM, viscosity and pH. Then, the antibacterial and anticancer activities of nano-emulsion formulations versus their pure plant counterparts was assessed. RESULTS: The analysis of extracts identified several flavonoids, phenolics, and saponins which were reported to have antimicrobial and anticancer activities. Nano-emulsion formulations were monodispersed with droplet sizes ranging from 80.27 ± 2.05 to 111.16 ± 1.97 nm, and polydispersity index ≤0.3. Nano-emulsion formulations enhanced significantly the antibacterial (multidrug resistant bacteria causing skin and dental soft tissues infections) and anticancer (HuH7, HEPG2, H460 and HCT116) activities compared to their pure plant extract counterparts. CONCLUSION: Employing a nano-delivery system as a carrier for phytochemicals might be an effective strategy to enhance their pharmacological activity, overcome their limitations, and ultimately increase their potential for clinical applications.

13.
Int J Biol Macromol ; 277(Pt 4): 134404, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39111460

ABSTRACT

Atopic dermatitis (AD) is a prevalent chronic skin condition characterized by complex immune responses. Chamomile possesses potent anti-inflammatory properties and has been widely used in treating various skin diseases. This study aimed to assess the therapeutic benefits of chamomile volatile oil nanoemulsion gels (CVO-NEGs) for the treatment of AD. Chamomile volatile oil nanoemulsions (CVO-NEs) were prepared using the phase transition method, yielding spherical nanoparticles with a particle size of 19.07 nm. Subsequently, Bletilla striata polysaccharides were employed to encapsulate CVO-NEs, resulting in the formation of CVO-NEGs. In vivo studies demonstrated that the preparation of CVO-NEGs enhanced the biological activity of volatile oil in AD therapy. Histopathological results indicated that CVO-NEGs reduced skin damage, epidermal thickness, and mast cell infiltration. CVO-NEGs suppressed IgG production and reduced the levels of cytokines, including TNF-α, IL-4, and IFN-γ, in AD mice. Furthermore, flow cytometry revealed that CVO-NEGs were involved in regulating the differentiation of CD4+ T cell subsets. The immune imbalance of Th1/Th2 in AD mice can be controlled, resulting in a reduction in the hypersensitivity reaction caused by excessive Th2 activation. In conclusion, the present study confirms that CVO-NEGs have the potential to serve as an effective alternative treatment for AD.

14.
Heliyon ; 10(14): e34665, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39130479

ABSTRACT

In the present, whitening products are most popular in the cosmetics market, and nanoemulsions are effective drug delivery systems through the skin. The objective of this study was to investigate multiple nanoemulsion formulations for lightning skin effects. The method of this study was the selection of active compounds based on synergistic tyrosinase inhibition activity, formulation preparation by low and high energy methods, physicochemical property determination, stability test, cell toxicity, and anti-melanogenesis in cell culture. From the results, it was found that tyrosinase inhibition with substrate l-tyrosine from the mixture of curcumin and alpha-arbutin gave the highest activity with an IC50 of 63.58 ± 4.99 µM, showed a synergistic effect at a CI value of 0.99, and selected these compounds to develop formulations by the low energy method. However, the most formulations prepared by this method were unstable and phase separated, while the high energy method gave the most formulations with good properties, which were selected for further investigation. The best formulation was 2DS which showed internal droplet morphology in the range of nanometers under a TEM microscope. For 3 months stability test, the formulations had no phase separation and gave the slightly changed values of particle size, polydispersity index (PDI), zeta potentials, and pH values. In addition, multiple nanoemulsions also enhanced the stability of active compounds, with the highest percentage of remaining content of curcumin and arbutin at 94.69 and 90.45 %, respectively at 4 °C for 3 months. In a cell culture test on B16F10, 2DS at 0.05 g/ml gave no cell cytotoxicity and anti-melanogenesis at 57.75 ± 5.74 %, the same potency as kojic acid at a concentration of 20 µg/ml. Therefore, this study will be useful to prepare multiple nanoemulsions for further development into novel health care products.

15.
ACS Nano ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167921

ABSTRACT

Achieving a reversible decrease of metabolism and other physiological processes in the whole organism, as occurs in animals that experience torpor or hibernation, could contribute to increased survival after serious injury. Using a Bayesian network tool with transcriptomic data and chemical structure similarity assessments, we predicted that the Alzheimer's disease drug donepezil (DNP) could be a promising candidate for a small molecule drug that might induce a torpor-like state. This was confirmed in a screening study with Xenopus laevis tadpoles, a nonhibernator whole animal model. To improve the therapeutic performance of the drug and minimize its toxicity, we encapsulated DNP in a nanoemulsion formulated with low-toxicity materials. This formulation is composed of emulsified droplets <200 nm in diameter that contain 1.250 mM DNP, representing ≥95% encapsulation efficiency. The DNP nanoemulsion induced comparable torpor-like effects to those produced by the free drug in tadpoles, as indicated by reduced swimming motion, cardiac beating frequency, and oxygen consumption, but with an improved biodistribution. Use of the nanoemulsion resulted in a more controlled increase of DNP concentration in the whole organism compared to free DNP, and to a higher concentration in the brain, which reduced DNP toxicity and enabled induction of a longer torpor-like state that was fully reversible. These studies also demonstrate the potential use of Xenopus tadpoles as a high-throughput in vivo screen to assess the efficacy, biodistribution, and toxicity of drug-loaded nanocarriers.

16.
Int J Biol Macromol ; : 134894, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39168215

ABSTRACT

Vitamin D encapsulation can significantly improve its bioavailability, stability, and solubility. Various biopolymers viz. whey protein isolate, carboxymethyl cellulose, alginate and gum arabic were studied for their potential to be used as wall material and gum arabic was selected for encapsulating vitamin D3 as it possesses lesser particle size, apparent viscosity and better stability in terms of zeta potential. Box Behnken design was employed for optimizing the process conditions for developing vitamin D3 nanoemulsion. Box Behnken design was constructed using ultrasonic amplitude, sonication time and vitamin D3/wall material percent as independent factors. The optimum conditions obtained were ultrasonic amplitude (80 %), sonication time (12 min) and vitamin D3/wall material percent (5). The designed nanoemulsion showed a particle size of 20.04 nm, zeta potential of -28.2 mV, and encapsulation efficiency of 71.9 %. Chemical interactions were observed in the developed nanoemulsion as demonstrated by Differential scanning calorimeter thermograms and Fourier transform infrared spectra of the nanoemulsion. The Korsmeyer-Peppas model was the most suitable for describing the release of vitamin D3 from the nanoemulsion. Fabricated nanoemulsion has the potential to be used in food and pharmaceutical industries.

17.
Food Chem ; 460(Pt 1): 140442, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39047475

ABSTRACT

Soy isolate protein / chitooligosaccharide (SPI/COS) glycosylated conjugates was prepared and employed as an emulsifier to stabilize carvacrol-loaded nanoemulsions (CNE-SPI/COS). The effects of CNE-SPI/COS on the oxidation and aggregation of myofibrillar protein (MPs) from sea bass (Lateolabrax maculatus) were investigated. Samples were immersed in sterile water (CK), SPI/COS solution and CNE-SPI/COS solution, respectively, follow by a 15-day refrigerated storage. MPs were extracted from fish fillets at 3-day intervals, then assessed for the oxidation degree and conformational changes in MPs, as well as structural variations in myofibrils. Compared with the CK group, the results obtained from protein oxidation assessment clarified that the oxidation and aggregation of MPs was significantly reduced by the CNE-SPI/COS treatment, as evidenced by the higher total sulfhydryl content and Ca2+-ATPase activity and lower surface hydrophobicity. Conformational analysis of MPs showed that CNE-SPI/COS was effective in maintaining the ordered secondary structure of MPs and reducing the exposure of hydrophobic residues in the hydrophobic core of the tertiary structure. In addition, CNE-SPI/COS was found to be effective in protecting the microstructure of muscle fibers and myofibrils in fish fillets. These results suggest that CNE-SPI/COS can be a promising method to prevent protein oxidation and aggregation in fish.

18.
Adv Sci (Weinh) ; : e2402267, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049710

ABSTRACT

Despite the proceeds in the management of acute myocardial infarction (AMI), the current therapeutic landscape still suffers from limited success in the clinic. Exaggerated inflammatory immune response and excessive oxidative stress are key pathological features aggravating myocardium damage. Herein, catalytic immunomodulatory nanocomplexes as anti-AMI therapeutics to resolve reactive oxygen species (ROS)-proinflammatory neutrophils-specific-inflammation is engineered. The nanocomplexes contain lyophilic S100A8/9 inhibitor ABR2575 in the core of nanoemulsions, which effectively disrupts the neutrophils-S100A8/A9-inflammation signaling pathway in the AMI microenvironment. Additionally, ROS scavenger ultrasmall CuxO nanoparticles are incorporated into the nanoemulsions via coordinating with SH groups of poly(ethylene glycol) (PEG)-conjugated lipids, which mimic multiple enzymes, dramatically alleviating the oxidative stress damage to myocardial tissue. This combination strategy significantly suppresses the infiltration of pro-inflammatory monocytes, macrophages, and neutrophils, as well as the secretion of inflammatory cytokines. Additionally, it potentially triggers cardiac Tert activation, which promotes myocardial function and decreases infarction size in preclinical murine AMI models. This approach offers a new nanomedicine for treating AMI, resulting in a dramatically enhanced therapeutic outcome.

19.
Int J Nanomedicine ; 19: 7253-7271, 2024.
Article in English | MEDLINE | ID: mdl-39050880

ABSTRACT

Soft tissue injuries often involve muscle and peripheral nerves and are qualitatively distinct from single-tissue injuries. Prior research suggests that damaged innervation compromises wound healing. To test this in a traumatic injury context, we developed a novel mouse model of nerve and lower limb polytrauma, which features greater pain hypersensitivity and more sustained macrophage infiltration than either injury in isolation. We also show that macrophages are crucial mediators of pain hypersensitivity in this model by delivering macrophage-targeted nanoemulsions laden with the cyclooxygenase-2 (COX-2) inhibitor celecoxib. This treatment was more effective in males than females, and more effective when delivered 3 days post-injury than 7 days post-injury. The COX-2 inhibiting nanoemulsion drove widespread anti-inflammatory changes in cytokine expression in polytrauma-affected peripheral nerves. Our data shed new light on the modulation of inflammation by injured nerve input and demonstrate macrophage-targeted nanoimmunomodulation can produce rapid and sustained pain relief following complex injuries.


Subject(s)
Celecoxib , Cyclooxygenase 2 Inhibitors , Cyclooxygenase 2 , Macrophages , Animals , Macrophages/drug effects , Male , Female , Celecoxib/pharmacology , Celecoxib/administration & dosage , Cyclooxygenase 2 Inhibitors/pharmacology , Mice , Cyclooxygenase 2/metabolism , Multiple Trauma/complications , Emulsions/chemistry , Emulsions/pharmacology , Mice, Inbred C57BL , Pain/drug therapy , Disease Models, Animal , Cytokines/metabolism , Immunomodulation/drug effects
20.
Int Immunopharmacol ; 139: 112733, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39043105

ABSTRACT

Psoriasis is an inflammatory immune-mediated skin disease that affects nearly 2-3 % of the global population. The current study aimed to develop safe and efficient anti-psoriatic nanoformulations from Artemisia monosperma essential oil (EO). EO was extracted using hydrodistillation (HD), microwave-assisted hydrodistillation (MAHD), and head-space solid-phase microextraction (HS-SPME), as well as GC/ MS was used for its analysis. EO nanoemulsion (NE) was prepared using the phase inversion method, while the biodegradable polymeric film (BF) was prepared using the solvent casting technique. A.monosperma EO contains a high percentage of non-oxygenated compounds, being 90.45 (HD), 82.62 (MADH), and 95.17 (HS-SPME). Acenaphthene represents the major aromatic hydrocarbon in HD (39.14 %) and MADH (48.60 %), while sabinene as monoterpene hydrocarbon (44.2 %) is the primary compound in the case of HS-SPME. The anti-psoriatic Effect of NE and BF on the successful delivery of A.monosperma EO was studied using the imiquimod (IMQ)-induced psoriatic model in mice. Five groups (n = 6 mice) were classified into control group, IMQ group, IMQ+standard group, IMQ+NE group, and IMQ+BF group. NE and BF significantly alleviated the psoriatic skin lesions and decreased the psoriasis area severity index, Baker's score, and spleen index. Also, they reduced the expression of Ki67 and attenuated the levels of tumor necrosis factor-alpha, interleukin 6, and interleukin 17. Additionally, NE and NF were able to downregulate the NF-κB and GSK-3ß signaling pathways. Despite the healing properties of BF, NE showed a more prominent effect on treating the psoriatic model, which could be referred to as its high skin penetration ability and absorption. These results potentially contribute to documenting experimental and theoretical evidence for the clinical uses of A.monosperma EO nanoformulations for treating psoriasis.


Subject(s)
Artemisia , Imiquimod , Oils, Volatile , Psoriasis , Animals , Psoriasis/drug therapy , Psoriasis/chemically induced , Artemisia/chemistry , Oils, Volatile/therapeutic use , Oils, Volatile/chemistry , Mice , Humans , Skin/drug effects , Skin/pathology , Disease Models, Animal , Cytokines/metabolism , Nanoparticles/chemistry , Mice, Inbred BALB C , Female , Male , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Emulsions
SELECTION OF CITATIONS
SEARCH DETAIL