Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38727377

ABSTRACT

This paper explores methods to enhance the reproducibility of Josephson junctions, which are crucial elements in superconducting quantum technologies, when employing the Dolan technique in 30 kV e-beam processes. The study explores the influence of dose distribution along the bridge area on reproducibility, addressing challenges related to fabrication sensitivity. Experimental methods include e-beam lithography, with electron trajectory simulations shedding light on the behavior of backscattered electrons. Wedescribe the fabrication of various Josephson junction geometries and analyze the correlation between the success rates of different lithography patterns and the simulated distribution of backscattered electrons. Our findings demonstrate a success rate of up to 96.3% for the double-resist 1-step low-energy e-beam lithography process. As a means of implementation strategy, we provide a geometric example that takes advantage of simulated stability regions to administer a controlled, uniform dose across the junction area, introducing novel features to overcome the difficulties associated with fabricating bridge-like structures.

2.
ACS Appl Mater Interfaces ; 13(31): 37455-37465, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34339168

ABSTRACT

Multi-material and multilayered micro- and nanostructures are prominently featured in nature and engineering and are recognized by their remarkable properties. Unfortunately, the fabrication of micro- and nanostructured materials through conventional processes is challenging and costly. Herein, we introduce a high-throughput, continuous, and versatile strategy for the fabrication of polymer fibers with complex multilayered nanostructures. Chaotic electrospinning (ChE) is based on the coupling of continuous chaotic printing (CCP) and electrospinning, which produces fibers with an internal multi-material microstructure. When a CCP printhead is used as an electrospinning nozzle, the diameter of the fibers is further scaled down by 3 orders of magnitude while preserving their internal structure. ChE enables the use of various polymer inks for the creation of nanofibers with a customizable number of internal nanolayers. Our results showcase the versatility and tunability of ChE to fabricate multilayered structures at the nanoscale at high throughput. We apply ChE to the synthesis of unique carbon textile electrodes composed of nanofibers with striations carved into their surface at regular intervals. These striated carbon electrodes with high surface areas exhibit 3- to 4-fold increases in specific capacitance compared to regular carbon nanofibers; ChE holds great promise for the cost-effective fabrication of electrodes for supercapacitors and other applications.

3.
Sensors (Basel) ; 18(10)2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30257516

ABSTRACT

In this study, individual nanofabricated SnO micro-disks, previously shown to exhibit exceptional sensitivity to NOx, are investigated to further our understanding of gas sensing mechanisms. The SnO disks presenting different areas and thickness were isolated and electrically connected to metallic electrodes aided by a Dual Beam Microscope (SEM/FIB). While single micro-disk devices were found to exhibit short response and recovery times and low power consumption, large interconnected arrays of micro-disks exhibit much higher sensitivity and selectivity. The source of these differences is discussed based on the gas/solid interaction and transport mechanisms, which showed that thickness plays a major role during the gas sensing of single-devices. The calculated Debye length of the SnO disk in presence of NO2 is reported for the first time.

4.
ACS Nano ; 11(10): 9678-9688, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28853862

ABSTRACT

Optical printing is a powerful all-optical method that allows the incorporation of colloidal nanoparticles (NPs) onto substrates with nanometric precision. Here, we present a systematic study of the accuracy of optical printing of Au and Ag NPs, using different laser powers and wavelengths. When using light of wavelength tuned to the localized surface plasmon resonance (LSPR) of the NPs, the accuracy improves as the laser power is reduced, whereas for wavelengths off the LSPR, the accuracy is independent of the laser power. Complementary studies of the printing times of the NPs reveal the roles of Brownian and deterministic motion. Calculated trajectories of the NPs, taking into account the interplay between optical forces, electrostatic forces, and Brownian motion, allowed us to rationalize the experimental results and gain a detailed insight into the mechanism of the printing process. A clear framework is laid out for future optimizations of optical printing and optical manipulation of NPs near substrates.

5.
Micromachines (Basel) ; 8(12)2017 Nov 29.
Article in English | MEDLINE | ID: mdl-30400538

ABSTRACT

Micropatterning and manipulation of mammalian and bacterial cells are important in biomedical studies to perform in vitro assays and to evaluate biochemical processes accurately, establishing the basis for implementing biomedical microelectromechanical systems (bioMEMS), point-of-care (POC) devices, or organs-on-chips (OOC), which impact on neurological, oncological, dermatologic, or tissue engineering issues as part of personalized medicine. Cell patterning represents a crucial step in fundamental and applied biological studies in vitro, hence today there are a myriad of materials and techniques that allow one to immobilize and manipulate cells, imitating the 3D in vivo milieu. This review focuses on current physical cell patterning, plus chemical and a combination of them both that utilizes different materials and cutting-edge micro-nanofabrication methodologies.

6.
Nano Lett ; 16(10): 6529-6533, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27648741

ABSTRACT

Optical printing has been proved a versatile and simple method to fabricate arbitrary arrays of colloidal nanoparticles (NPs) on substrates. Here, we show that is also a powerful tool for studying chemical reactions at the single NP level. We demonstrate that 60 nm gold NPs immobilized by optical printing can be used as seeds to obtain larger NPs by plasmon-assisted reduction of aqueous HAuCl4. The final size of each NP is simply controlled by the irradiation time. Moreover, we show conditions for which the growth occurs preferentially in the direction of light polarization, enabling the in situ anisotropic reshaping of the NPs in predetermined orientations.

7.
J Colloid Interface Sci ; 466: 150-61, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26722796

ABSTRACT

A facile and reproducible route that can lead to two-dimensional arrays of nanopores in thin polymer films is demonstrated. The formation of the pores in the polymer films involves breath figure phenomenon and occurs during the film deposition by spin coating. The formation of nanoporous thin films takes only few seconds, and the method does not require complex equipment or expensive chemicals. This method also constitutes a straightforward approach to control the size of the pores formed in thin films. Besides allowing control over the average pore size of the porous films, the use of dynamic deposition with the breath figure phenomenon causes the reduction in the pore size to nanometer scale. The nanoporous arrays obtained by the breath figure are applied as substrates for cell growth, and the effect of their nanopore size on cell growth was evaluated. Notably, it is found that cell viability is related to pore size, where 2D nanoporous structure is more beneficial for cell culture than 2D microporous structures. The change in the average pore size of the polymer films from 1.22 µm to 346 nm results in a threefold increase in cell viability.


Subject(s)
Cell Proliferation , Nanotechnology/instrumentation , Animals , Cell Survival , Cells, Cultured , Chlorocebus aethiops , Nanopores , Particle Size , Polymers/chemistry , Surface Properties , Vero Cells
8.
Sensors (Basel) ; 15(12): 30539-44, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26690158

ABSTRACT

Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2.

SELECTION OF CITATIONS
SEARCH DETAIL