Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 857
Filter
1.
J Environ Sci (China) ; 147: 617-629, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003076

ABSTRACT

The manganese-cobalt mixed oxide nanorods were fabricated using a hydrothermal method with different metal precursors (KMnO4 and MnSO4·H2O for MnOx and Co(NO3)2⋅6H2O and CoCl2⋅6H2O for Co3O4). Bamboo-like MnO2⋅Co3O4 (B-MnO2⋅Co3O4 (S)) was derived from repeated hydrothermal treatments with Co3O4@MnO2 and MnSO4⋅H2O, whereas Co3O4@MnO2 nanorods were derived from hydrothermal treatment with Co3O4 nanorods and KMnO4. The study shows that manganese oxide was tetragonal, while the cobalt oxide was found to be cubic in the crystalline arrangement. Mn surface ions were present in multiple oxidation states (e.g., Mn4+ and Mn3+) and surface oxygen deficiencies. The content of adsorbed oxygen species and reducibility at low temperature declined in the sequence of B-MnO2⋅Co3O4 (S) > Co3O4@MnO2 > MnO2 > Co3O4, matching the changing trend in activity. Among all the samples, B-MnO2⋅Co3O4 (S) showed the preeminent catalytic performance for the oxidation of toluene (T10% = 187°C, T50% = 276°C, and T90% = 339°C). In addition, the B-MnO2⋅Co3O4 (S) sample also exhibited good H2O-, CO2-, and SO2-resistant performance. The good catalytic performance of B-MnO2⋅Co3O4 (S) is due to the high concentration of adsorbed oxygen species and good reducibility at low temperature. Toluene oxidation over B-MnO2⋅Co3O4 (S) proceeds through the adsorption of O2 and toluene to form O*, OH*, and H2C(C6H5)* species, which then react to produce benzyl alcohol, benzoic acid, and benzaldehyde, ultimately converting to CO2 and H2O. The findings suggest that B-MnO2⋅Co3O4 (S) has promising potential for use as an effective catalyst in practical applications.


Subject(s)
Cobalt , Manganese Compounds , Oxidation-Reduction , Oxides , Toluene , Oxides/chemistry , Manganese Compounds/chemistry , Catalysis , Cobalt/chemistry , Toluene/chemistry , Air Pollutants/chemistry
2.
Nano Lett ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39324748

ABSTRACT

Gold ultrathin nanorods (Au UNRs) are anisotropic nanostructures constructed by attaching gold nanoclusters in one dimension. Au UNRs exhibit localized surface plasmon resonance (LSPR) only in the longitudinal direction because their diameter is smaller than the Fermi wavelength of an electron (<2 nm). In this study, we found that the LSPR wavelength of oleylamine-stabilized Au UNRs is blue-shifted simply by mixing with Ag(I). High-resolution elemental mapping and X-ray photoelectron spectroscopy of the resulting UNRs indicate that a Ag monatomic layer is formed on the Au UNR surface by the antigalvanic reduction of Ag(I). This process allowed us to synthesize a series of Au@Ag core-shell UNRs with LSPR wavelengths in the range of 1.2-2.0 µm.

3.
Heliyon ; 10(18): e37847, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39315144

ABSTRACT

Developing highly sensitive and selective non-enzymatic electrochemical biosensors for disease biomarker detection has become challenging in healthcare applications. However, advances in material science are opening new avenues for creating more dependable biosensing technologies. In this context, the present work introduces a novel approach by engineering a hybrid structure of zinc oxide nanorod (ZnO NR) modified with iron oxide nanoparticle (Fe2O3 NP) on an FTO electrode. This Fe2O3 NP-ZnO NR hybrid material functions as a nanozyme, facilitating the catalysis of cholesterol and enabling the direct transfer of electrons to the fluorine-doped tin oxide (FTO) electrode, limiting the need for costly and traditional enzymes in the detection process. This innovative non-enzymatic cholesterol biosensor showcases remarkable sensitivity, registering at 642.8 µA/mMcm2 within a linear response range of up to 9.0 mM. It also exhibits a low detection limit (LOD) of ∼12.4 µM, ensuring its capability to detect minimal concentrations of cholesterol accurately. Moreover, the developed biosensor displays exceptional selectivity by effectively distinguishing cholesterol molecules from other interfering biological species, while exhibiting outstanding stability and reproducibility. Our findings indicate that the Fe2O3 NP-ZnO NR hybrid nanostructure on the FTO electrode holds promise for enhancing biosensor stability. Furthermore, the present device fabrication platform offers versatility, as it can be adapted with various enzymes or modified with different metal oxides, potentially broadening its applicability in a wide range of biomarkers detection.

4.
Article in English | MEDLINE | ID: mdl-39228174

ABSTRACT

Alpha-synuclein oligomers play a crucial role in the early diagnosis of Parkinson's disease (PD). In this study, a mercaptoundecanoic acid (MUA)-capped gold nanorod (GNR)-coated and chitosan (CH)-immobilized fiber optic probe has shown considerable sensitivity of its detection. The proposed U-shaped fiber optic biosensor based on localized surface plasmon resonance (LSPR) was applied to detect α-syn oligomer (OA) biomarker. By analyzing OA concentrations, the biosensor achieved a limit of detection of (LOD) 11 pM within the concentration range of 10-100 pM and the sensitivity value was found as 502.69 Δλ/RIU. Upon analysis of the CV% (coefficient of variation) and accuracy/recovery values, it is revealed that the sensor successfully fulfilled the criteria for success, displaying accuracy/recovery values within the range of 80%-120% and CV% values below 20%. This sensor presents significant advantages, including high sensitivity, specificity, and ability to detect very low concentrations of OA. In conclusion, the suggested U-shaped fiber optic biosensor has the potential to be valuable in the early detection of PD from a clinical perspective.

5.
Sensors (Basel) ; 24(17)2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39275763

ABSTRACT

Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties. Results show the AgNM forms a network with high transparency (79%) and low sheet resistance (7.23 Ω/□). A sol-gel ZnO thin film was coated on this mesh, providing a seed layer with a hexagonal wurtzite structure. Increasing the precursor concentration alters the diameter, length, and area density of ZNAs, affecting their performance. The ZNA-AgNM-based photodetector shows enhanced dark current and photocurrent with increasing precursor concentration, achieving a maximum photoresponsivity of 114 A/W at 374 nm and a detectivity of 6.37 × 1014 Jones at 0.05 M zinc acetate. For gas sensing, the resistance of ZNA-AgNM-based sensors decreases with temperature, with the best hydrogen response (2.71) at 300 °C and 0.04 M precursor concentration. These findings highlight the potential of ZNA-AgNM for high-performance UV photodetectors and hydrogen gas sensors, offering an alternative way for the development of future sensing devices with enhanced performance and functionality.

6.
ACS Appl Mater Interfaces ; 16(37): 49380-49391, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39226580

ABSTRACT

Mo2CTx MXene materials, known for their high conductivity and abundant surface functional groups, are widely utilized as electrode materials in supercapacitors. However, their tendency to stack during electrochemical energy storage hinders their performance. The in situ growth of nanorod-shaped Ni,Co bimetallic metal-organic frameworks (Ni,Co-MOF) on Mo2CTx MXene effectively mitigates this stacking. With their porous structure and high specific surface area, MOFs excel in energy storage, and bimetallic MOFs outperform monometallic ones. The synergy between Mo2CTx MXene and Ni,Co-MOF yields an outstanding performance. In a three-electrode system with 1 M KOH, the Mo2CTx/Ni,Co-MOF composite shows a specific capacitance of 58 mAh g-1 (56.26 mAh cm-3) at 1 A g-1. When used in a Mo2CTx/Ni,Co-MOF//AC asymmetric supercapacitor, it achieves an energy density of 22.7 Wh kg-1(0.022 Wh cm-3) at a power density of 293 W kg-1 (0.284 W cm-3). Future work will focus on enhancing synthesis methods, exploring different bimetallic combinations, and optimizing electrode designs for gas sensors, batteries, fuel cells, biological sensors, and so on, with outstanding performance and sustainability.

7.
Food Chem ; 461: 140940, 2024 Dec 15.
Article in English | MEDLINE | ID: mdl-39182335

ABSTRACT

The accumulation of small doses of hydrogen peroxide (H2O2) into food can cause many diseases in the human body, and it is urgent to develop efficient detection methods of H2O2. Herein, the hierarchical structure composite of NiCo-LDH nanosheets crosslinked NiMoO4 nanorods was grown in situ on carbon cloth (NiMoO4 NRs@NiCo-LDH NSs/CC) by micro-plasma assisted hydrothermal method. Thanks to the synergistic effect of three metals and (NiMoO4 NRs@NiCo-LDH NSs/CC) provided by nanorods/nanosheets hierarchical structure, NiMoO4 NRs@NiCo-LDH NSs/CC exposes more active sites and achieves rapid electron transfer. The H2O2 electrochemical sensor was constructed as the working electrode with a linear range of 1 µmol L-1 to 9.0 mmol L-1 and detection limit of 112 nmol L-1. In addition, the sensor has been successfully applied to the detection of H2O2 in food samples, the recovery rate is 95.2%-106.62%, RSD < 4.89%.


Subject(s)
Electrochemical Techniques , Hydrogen Peroxide , Molybdenum , Nanotubes , Electrochemical Techniques/instrumentation , Hydrogen Peroxide/chemistry , Nanotubes/chemistry , Molybdenum/chemistry , Nickel/chemistry , Food Contamination/analysis , Limit of Detection , Electrodes , Nanostructures/chemistry
8.
ACS Appl Mater Interfaces ; 16(34): 45763-45770, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39143515

ABSTRACT

Chemical interface damping (CID) is a recently proposed plasmon-damping pathway based on the interfacial hot-electron transfer from metal to adsorbate molecules. However, the in situ reversible tuning of CID in single gold nanorods (AuNRs) has remained a considerable challenge. In this study, we used total internal reflection scattering microscopy and spectroscopy to investigate the CID induced by p-aminoazobenzene (p-AAB), which has fast photoisomerization characteristics, attached to single AuNRs. We demonstrated the in situ reversible tuning of CID in single AuNRs by switching between ultraviolet (UV, 365 nm) and visible (vis, 465 nm) irradiation to induce photoresponsive structural conversions between the cis and trans forms of p-AAB in ethanol, leading to different lowest unoccupied molecular orbital (LUMO) energies for both forms. The localized surface plasmon resonance (LSPR) line width was wide under vis irradiation but narrow under UV irradiation, indicating that hot electrons are more efficiently transferred to trans-p-AAB with a low LUMO energy level. We further investigated the in situ photoreversible tuning of CID by manipulating supramolecular host-guest interactions between cucurbit[8]uril (CB[8]) and p-AAB in the single AuNRs. Additionally, real-time in situ reversible tuning of CID in single AuNRs was achieved through photonic switching of the cis-trans forms of p-AAB inside CB[8]. The LSPR line width was narrow under vis irradiation but gradually widened under UV irradiation before narrowing again upon returning to vis irradiation, unlike the case with p-AAB only. These results can be ascribed to the fact that cis-p-AAB completely encapsulated within CB[8] in water is thermodynamically more favorable than trans-p-AAB. Therefore, we have discovered a new strategy for tuning the CID by performing p-AAB photoisomerization and adjusting the wavelength of incident light in single AuNRs. In addition, this study demonstrates that CID can be effectively applied to the development of biosensors to detect guest molecules and their structural changes inside the cavity of CB[8] in single AuNRs.

9.
J Colloid Interface Sci ; 678(Pt A): 130-140, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39182387

ABSTRACT

In the field of energy storage, supercapacitors have received extensive attention in recent years. However, achieving the expected electrochemical performance and energy density of supercapacitors is still a huge challenge. The design and synthesis of binder-free composite electrode with core-shell structure is an effective strategy to improve the electrochemical performance of supercapacitors. In this paper, a heterogeneous core-shell structured and binder-free electrode material MgCo2O4@Ni(OH)2 (MCO@NH) grown on nickel foam (NF) is prepared by a simple hydrothermal and oil bath method. The unique core-shell structure makes the MCO@NH have a large specific surface area, which provides abundant active sites for ion transport and storage, thereby improving the electrochemical performance. The MCO@NH/NF nanocomposite demonstrates a high specific capacitance (Cs) of 1583 F g-1 at 1 A/g. A solid-state asymmetric supercapacitor (ASC) assembled with MCO@NH/NF and active carbon (AC) exhibits excellent energy density (45 Wh kg-1 at 457.5 W kg-1) and outstanding capacitance (89.51 %) and coulombic efficiency (97.8 %) after 12,000 cycles, evidencing its good operation stability and potential practical applications. Therefore, the prepared core-shell MCO@NH/NF electrode can be a promising candidate for energy storage devices.

10.
Nanomedicine ; 62: 102781, 2024 Aug 18.
Article in English | MEDLINE | ID: mdl-39163902

ABSTRACT

Gold nanorods (GNR) produce heat upon irradiation with near-infrared light, enabling a tumor-targeted photothermal therapy. In this study, we prepared GNR coated with sulfated hyaluronic acid (sHA) with a binding affinity for CD44 via electrostatic interactions to deliver GNR to tumors efficiently and stably, and evaluated their usefulness for photothermal therapy. Cationic GNR modified with trimethylammonium groups electrostatically interacted with native HA or sHA with varying degrees of sulfation to form complexes. While GNR/HA was unstable in saline, GNR/sHA maintained the absorbance peak in the near-infrared region, particularly for GNR/sHA with higher degrees of sulfation. GNR/sHA exhibited an intense photothermal effect upon irradiation with near-infrared light. Furthermore, in vitro and in vivo studies revealed that GNR coated with sHA containing approximately 1.2 sulfated groups per HA unit could accumulate in CD44-positive tumors via an HA-specific pathway. These findings indicate the effectiveness of GNR/sHA as a tumor-targeted photothermal therapeutic agent.

11.
J Control Release ; 373: 105-116, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38992622

ABSTRACT

Nanomedicines hold promise for the treatment of various diseases. However, treating cancer metastasis remains highly challenging. In this study, we synthesized gold nanorods (AuNRs) containing (α-GC), an immune stimulator, for the treatment of primary cancer, metastasis, and recurrence of the cancer. Therefore, the AuNR were coated with lipid bilayers loaded with α-GC (α-LA). Upon irradiation with 808 nm light, α-LA showed a temperature increase. Intra-tumoral injection of α-LA in mice and local irradiation of the 4T1 breast cancer tumor effectively eliminated tumor growth. We found that the presence of α-GC in α-LA activated dendritic cells and T cells in the spleen, which completely blocked the development of lung metastasis. In mice injected with α-LA for primary breast cancer treatment, we observed antigen-specific T cell responses and increased cytotoxicity against 4T1 cells. We conclude that α-LA is promising for the treatment of both primary breast cancer and its metastasis.


Subject(s)
Breast Neoplasms , Gold , Immunotherapy , Lung Neoplasms , Mice, Inbred BALB C , Nanotubes , Phototherapy , Animals , Gold/chemistry , Gold/administration & dosage , Nanotubes/chemistry , Female , Cell Line, Tumor , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Immunotherapy/methods , Phototherapy/methods , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
12.
Biomed Pharmacother ; 178: 117149, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39047423

ABSTRACT

In recent years, the application of engineered NMts has significantly contributed to various biomedical fields. ZnO NMts (ZnO NMts) are widely utilized due to their biocompatibility, unique physical and chemical properties, stability, and cost-effectiveness for large-scale production. They have emerged as potential materials for anti-cancer applications. This study aims to study the impact of ZnO Nanorod flowers (ZnO NRfs) and their combination with temozolomide (TMZ) on glioma cells. Normal mouse microglia (BV2) will be used as a control to assess the effects on mouse glioma cells (G422) and human glioma cells (LN229). The effects of these substances were evaluated on G422 and LN229 cells through various parameters such as IC50 value, Zn2+ accumulation, ROS production, apoptosis, mitochondrial membrane potential (MMP) depolarization, and examination of organelles like mitochondria and lysosomes. Additionally, hypoxia-inducible factor-1α (HIF-1α), endothelial cell PAS domain protein 1 (EPAS1), autophagy markers (LC3), mitophagy and phagocytosis marker (BNIP3) were assessed. The results demonstrated that the combination of ZnO NRfs and TMZ could influence the expression of HIF-1α, EPAS1, LC3, and BNIP3 proteins, leading to mitophagy in glioma cells. This combination treatment has the potential to effectively eliminate glioma cells by activating the mitophagy pathway, which provides a good prospect for the clinical treatment of glioma.


Subject(s)
Autophagy , Glioma , Mitophagy , Nanotubes , Temozolomide , Zinc Oxide , Temozolomide/pharmacology , Glioma/drug therapy , Glioma/pathology , Glioma/metabolism , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Animals , Nanotubes/chemistry , Mitophagy/drug effects , Humans , Mice , Cell Line, Tumor , Autophagy/drug effects , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Flowers , Antineoplastic Agents, Alkylating/pharmacology
13.
Biomater Adv ; 163: 213969, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39059114

ABSTRACT

While significant advances have been made in exploring and uncovering the promising potential of biomagnetic materials, persistent challenges remain on various fronts, notably in the characterization of individual elements. This study makes use of advanced modes of Magnetic Force Microscopy (MFM) and tailored MFM probes to characterize individual magnetotactic bacteria in different environments. The characterization of these elements posed a significant challenge, as the magnetosomes, besides presenting low magnetic signal, are embedded in bacteria of much larger size. To overcome this, customed Atomic Force Microscopy probes are developed through various strategies, enhancing sensitivity in different environments, including liquids. Furthermore, employing MFM imaging under an in-situ magnetic field provides an opportunity to gather quantitative data regarding the critical fields of these individual chains of nanoparticles. This approach marks a substantial advancement in the field of MFM for biological applications, enabling the detection of magnetosomes under different conditions.


Subject(s)
Magnetosomes , Microscopy, Atomic Force , Magnetosomes/metabolism , Magnetosomes/chemistry , Magnetosomes/ultrastructure , Microscopy, Atomic Force/methods , Magnetospirillum/metabolism , Magnetic Fields
14.
Adv Funct Mater ; 34(14)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38966003

ABSTRACT

4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.

15.
Chemistry ; 30(46): e202400496, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38864360

ABSTRACT

The prodigious employment of fossil fuels to conquer the global energy demand is becoming a dreadful threat to the human society. This predicament is appealing for a potent photocatalyst that can generate alternate energy sources via solar to chemical energy conversion. With this interest, we have fabricated a ternary heterostructure of Ti3C2 nanosheet modified g-C3N4/Bi2O3 (MCNRBO) Z-scheme photocatalyst through self-assembly process. The morphological analysis clearly evidenced the close interfacial interaction between g-C3N4 nanorod, Bi2O3 and Ti3C2 nanosheets. The oxygen vacancy created on Bi2O3 surface, as suggested by XPS and EPR analysis, supported the Z-scheme heterojunction formation between g-C3N4 nanorod and Bi2O3 nanosheets. The collaborative effect of Z-scheme and Schottky junction significantly reduced charge transfer resistance promoting separation efficiency of excitons as indicated from PL and EIS analysis. The potential of MCNRBO towards photocatalytic application was investigated by H2O2 and H2 evolution reaction. A superior photocatalytic H2O2 and H2 production rate for MCNRBO is observed, which are respectively around 5 and 18 folds higher as compared to pristine CNR nanorod. The present work encourages for the development of a noble, eco-benign and immensely efficient dual heterojunction based photocatalyst, which can acts as saviour of human society from energy crisis.

16.
ACS Sens ; 9(6): 3158-3169, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38843447

ABSTRACT

An integrated approach combining surface-enhanced Raman spectroscopy (SERS) with a specialized deep learning algorithm to rapidly and accurately detect and quantify SARS-CoV-2 variants is developed based on an angiotensin-converting enzyme 2 (ACE2)-functionalized AgNR@SiO2 array SERS sensor. SERS spectra with concentrations of different variants were collected using a portable Raman system. After appropriate spectral preprocessing, a deep learning algorithm, CoVari, is developed to predict both the viral variant species and concentrations. Using a 10-fold cross-validation strategy, the model achieves an average accuracy of 99.9% in discriminating between different virus variants and R2 values larger than 0.98 for quantifying viral concentrations of the three viruses, demonstrating the high quality of the detection. The limit of detection of the ACE2 SERS sensor is determined to be 10.472, 11.882, and 21.591 PFU/mL for SARS-CoV-2, SARS-CoV-2 B1, and CoV-NL63, respectively. The feature importance of virus classification and concentration regression in the CoVari algorithm are calculated based on a permutation algorithm, which showed a clear correlation to the biochemical origins of the spectra or spectral changes. In an unknown specimen test, classification accuracy can achieve >90% for concentrations larger than 781 PFU/mL, and the predicted concentrations consistently align with actual values, highlighting the robustness of the proposed algorithm. Based on the CoVari architecture and the output vector, this algorithm can be generalized to predict both viral variant species and concentrations simultaneously for a broader range of viruses. These results demonstrate that the SERS + CoVari strategy has the potential for rapid and quantitative detection of virus variants and potentially point-of-care diagnostic platforms.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Deep Learning , SARS-CoV-2 , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , SARS-CoV-2/isolation & purification , Humans , COVID-19/diagnosis , COVID-19/virology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Biosensing Techniques/methods , Silicon Dioxide/chemistry , Algorithms , Limit of Detection
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124627, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-38880073

ABSTRACT

The SERS spectra of six bacterial biomarkers, 2,3-DHBA, 2,5-DHBA, Pyocyanin, lipoteichoic acid (LTA), Enterobactin, and ß-carotene, of various concentrations, were obtained from silver nanorod array substrates, and the spectral peaks and the corresponding vibrational modes were identified to classify different spectra. The spectral variations in three different concentration regions due to various reasons have imposed a challenge to use classic calibration curve methods to quantify the concentration of biomarkers. Depending on baseline removal strategy, i.e., local or global baseline removal, the calibration curve differed significantly. With the aid of convolutional neural network (CNN), a two-step process was established to classify and quantify biomarker solutions based on SERS spectra: using a specific CNN model, a remarkable differentiation and classification accuracy of 99.99 % for all six biomarkers regardless of the concentration can be achieved. After classification, six regression CNN models were established to predict the concentration of biomarkers, with coefficient of determination R2 > 0.97 and mean absolute error (MAE) < 0.27. The feature of important calculations indicates the high classification and quantification accuracies were due to the intrinsic spectral features in SERS spectra. This study showcases the synergistic potential of SERS and advanced machine learning algorithms and holds significant promise for bacterial infection diagnostics.


Subject(s)
Bacteria , Biomarkers , Machine Learning , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Biomarkers/analysis , Bacteria/classification , Bacteria/isolation & purification , Silver/chemistry , Neural Networks, Computer
18.
Eur J Med Chem ; 272: 116469, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704939

ABSTRACT

Accurate diagnosis and effective antiviral treatments are urgently needed for the prevention and control of flu caused by influenza viruses. In this study, a novel oleanic acid (OA) functionalized gold nanorod OA-AuNP was prepared through a convenient ligand-exchange reaction. As hemagglutinin (HA) on the viral surface binds strongly to the multiple OA molecules on the surface of the nanoparticle, the prepared OA-AuNP was found to exhibit potent antiviral activity against a wide range of influenza A virus strains. Furthermore, the change in color resulting from the specific binding between HA and OA and the resultant aggregation of the OA-AuNP can be visually observed or measured by UV-vis spectra with a detection limit of 2 and 0.18 hemagglutination units (HAU), respectively, which is comparable to the commercially available influenza colloid gold rapid diagnostic kits. These findings demonstrate the potential of the OA-AuNP for the development of novel multivalent antiviral conjugates and the diagnosis of influenza virus.


Subject(s)
Antiviral Agents , Gold , Nanotubes , Gold/chemistry , Nanotubes/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Humans , Metal Nanoparticles/chemistry , Molecular Structure , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Microbial Sensitivity Tests , Dogs , Animals , Dose-Response Relationship, Drug , Structure-Activity Relationship
19.
ACS Nano ; 18(20): 13130-13140, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38709625

ABSTRACT

In recent years, substantial attention has been directed toward energy-harvesting systems that exploit sunlight energy and water resources. Intensive research efforts are underway to develop energy generation methodologies through interactions with water using various materials. In the present investigation, we synthesized sodium vanadium oxide (SVO) nanorods with n-type semiconductor characteristics. These nanorods facilitate the initiation of capillary phenomena within nanochannels, thereby enhancing the interfacial area between nanomaterials and ions. The open-circuit voltage (VOC) was 0.8 V, and the short-circuit current (ISC) was 30 µA, which were continuously monitored at room temperature using a 0.1 M saltwater solution. Additionally, we achieved enhanced energy generation by efficiently converting light energy into thermal energy using MXene, a 2D material. This was accomplished through the photothermal effect, leveraging the inherent semiconductor characteristics. Under light exposure, the system exhibited improved performance attributed to heightened ion diffusion and increased conductivity. This phenomenon was a result of the concerted synergy between ions and electrons facilitated by a semiconductor nanofluidic channel. Ultimately, we demonstrated an application to showcase real-world viability. In this scenario, electricity was harvested through a smart buoy floating on the water, and, based on this, data from the surrounding environment was sensed and wirelessly transmitted.

20.
Nanotechnology ; 35(34)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38806005

ABSTRACT

This study investigated the hydrophobic-hydrophilic characteristics of zinc oxide (ZnO) nanorod coatings for potential biomedical applications. We examined the effects of different alignments of ZnO nanorods on the wetting and mechanical characteristics of the coatings. ZnO seed layers were prepared on stainless-steel plates using atomic layer deposition (ALD) at five different temperatures ranging from 50 to 250 °C. The ZnO nanorod coatings were then deposited on these seed layers through chemical bath deposition. The polycrystalline structure of the seed layers and the morphology of the nanorods were analyzed using grazing incidence angle x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical and wetting properties of the nanorod coatings were examined using nanoindentation and water-droplet tests. The seed layers produced at 50 and 250 °C showed stronger (0 0 2) peaks than the other layers. ZnO nanorods on these seed layers exhibited greater vertical orientation and lower water contact angles indicating a more hydrophilic surface. Additionally, vertically oriented nanorod coatings demonstrated greater elastic modulus and hardness than those of oblique nanorods. Our findings indicate that ALD technology can be used to control the spatial arrangement of ZnO nanorods and optimize the hydrophobic-hydrophilic and mechanical properties of coating surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL