Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 662: 192-207, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38341942

ABSTRACT

HYPOTHESIS: Two major protein families are present in rapeseed, namely cruciferins and napins. The structural differences between the two protein families indicate that they might behave differently when their mixture stabilises oil-water interfaces. Therefore, this work focuses on elucidating the role of both proteins in interface and emulsion stabilisation. EXPERIMENTS: Protein molecular properties were evaluated, using SEC, DSC, CD, and hydrophobicity analysis. The oil-water interface mechanical properties were studied using LAOS and LAOD. General stress decomposition (GSD) was used as a novel method to characterise the nonlinear response. Additionally, to evaluate the emulsifying properties of the rapeseed proteins, emulsions were prepared using pure napins or cruciferin and also their mixtures at 1:3, 1:1 and 3:1 (w:w) ratios. FINDINGS: Cruciferins formed stiff viscoelastic solid-like interfacial layers (Gs' = 0.046 mN/m; Ed' = 30.1 mN/m), while napin formed weaker and more stretchable layers at the oil-water interface (Gs' = 0.010 mN/m; Ed' = 26.4 mN/m). As a result, cruciferin-formed oil droplets with much higher stability against coalescence (coalescence index, CI up to 10%) than napin-stabilised ones (CI up to 146%) during two months of storage. Both proteins have a different role in emulsions produced with napin-cruciferin mixtures, where cruciferin provides high coalescence stability, while napin induces flocculation. Our work showed the role of each rapeseed protein in liquid-liquid multiphase systems.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/chemistry , Emulsions/chemistry , Rheology , Water/chemistry
2.
Food Res Int ; 175: 113736, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129046

ABSTRACT

Oleosomes are lipid composites providing energy storage in oilseeds. They possess a unique structure, comprised of a triglyceride core stabilized by a phospholipid-protein membrane, and they have shown potential to be used as ingredients in several food applications. Intact oleosomes are extracted by an aqueous process which includes soaking, milling, and gravitational separation. However, the details of the complexes formed between oleosomes, proteins and pectin polysaccharides during this extraction are not known. It was hypothesized that pectins play an important role during the oleosome separation, and different proteins will be complexed on the surface of the oleosomes, depending on the pH of extraction. Rapeseed extracts were treated with and without pectinase (Pectinex Ultra SP-L) and extracted at pH 5.7 or 8.5, as this will affect electrostatic complexation. Acidic conditions led to co-extraction of storage proteins, structured as dense oleosome emulsions, stabilized by a network of proteins and polysaccharides. Pectinase intensified this effect, highlighting pectic polysaccharides' role in bridging interactions among proteins and oleosomes under acidic conditions. The presence of this dense interstitial layer around the oleosomes protected them from coalescence during extraction. Conversely, under alkaline conditions, the extraction process yielded more purified oleosomes characterized by a larger particle size, most likely due to coalescence. Nevertheless, pectinase addition at pH 8.5 mitigated coalescence tendencies. These results contribute to a better understanding of the details of the colloidal complexes formed during extraction and can be used to modulate the composition of the extracted fractions, with significant consequences not only for yields and purity but also for the functional properties of the ingredients produced.


Subject(s)
Brassica napus , Brassica rapa , Lipid Droplets/chemistry , Pectins/analysis , Polygalacturonase , Brassica rapa/chemistry
3.
Molecules ; 28(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38138576

ABSTRACT

Canola is the second-largest cultivated oilseed crop in the world and produces meal consisting of about 35-40% proteins. Despite this, less than 1% of the global plant-based protein market is taken up by canola protein. The reason behind such underutilization of canola protein and its rapeseed counterpart could be the harsh conditions of the industrial oil extraction process, the dark colour of the meal, the presence of various antinutrients, the variability in the protein composition based on the source, and the different properties of the two major protein components. Although academic research has shown immense potential for the use of canola protein and its rapeseed counterpart in emulsion development and stabilization, there is still a vast knowledge gap in efficiently utilizing canola proteins as an effective emulsifier in the development of various emulsion-based foods and beverages. In this context, this review paper summarizes the last 15 years of research on canola and rapeseed proteins as food emulsifiers. It discusses the protein extraction methods, modifications made to improve emulsification, emulsion composition, preparation protocols, and emulsion stability results. The need for further improvement in the scope of the research and reducing the knowledge gap is also highlighted, which could be useful for the food industry to rationally select canola proteins and optimize the processing parameters to obtain products with desirable attributes.


Subject(s)
Brassica napus , Brassica rapa , Emulsions , Emulsifying Agents , Food , Plant Proteins
4.
Adv Food Nutr Res ; 101: 17-69, 2022.
Article in English | MEDLINE | ID: mdl-35940704

ABSTRACT

Concerns about sustainability and nutrition security have encouraged the food sector to replace animal proteins in food formulations with underutilized plant protein sources and their co-products. In this scenario, canola protein-rich materials produced after oil extraction, including canola cold-pressed cakes and meals, offer an excellent opportunity, considering their nutritional advantages such as a well-balanced amino acid composition and their potential bioactivity. However, radical differences among major proteins (i.e., cruciferin and napin) in terms of the physicochemical properties, and the presence of a wide array of antinutritional factors in canola, impede the production of a highly pure protein extract with a reasonable extraction yield. In this manuscript, principles regarding the extraction methods applicable for the production of canola protein concentrates and isolates are explored in detail. Alkaline and salt extraction methods are presented as the primary isolation methods, which result in cruciferin-rich and napin-rich isolates with different nutritional and functional properties. Since a harsh alkaline condition would result in an inferior functionality in protein isolates, strategies are recommended to reduce the required solvent alkalinity, including using a combination of salt and alkaline and employing membrane technologies, application of proteases and carbohydrases to facilitate the protein solubilization from biomass, and novel green physical methods, such as ultrasound and microwave treatments. In terms of the commercialization progress, several canola protein products have received a GRAS notification so far, which facilitates their incorporation in food formulations, such as bakery, beverages, salad dressings, meat products and meat analogues, and dairies.


Subject(s)
Brassica napus , Plant Proteins , Allergens , Amino Acids , Animals , Brassica napus/chemistry , Humans , Plant Proteins/chemistry
5.
Biochem Biophys Rep ; 29: 101208, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35079640

ABSTRACT

Proteins and peptides belonging to the plant immune system can possess natural antibacterial, antifungal and antiviral properties. Due to their broad range of activity and stability, they represent promising novel alternatives to commonly used antifungal agents to fight the emergence of resistant strains. An isolation protocol was optimised to target proteins found in plants' defence system, and it was applied to white mustard (Brassica hirta) seeds. Firstly, a ∼14 kDa protein with activity against S. cerevisiae was extracted and purified; secondly, the protein was identified as the mustard Napin protein named Allergen Sin a 1. Napin is the name given to seed storage (2S) albumin proteins belonging to the Brassicaceae family. While several Napins have been described for their antimicrobial potential, Sin a 1 has been mainly studied for its allergenic properties. The antimicrobial activity of Sin a 1 is described and characterised for the first time in this study; it possesses antifungal and antiyeast in vitro activity, but no antibacterial activity was recorded. The yeasts Zygosaccharomyces bailii Sa 1403 and Saccharomyces cerevisiae DSM 70449 along with the filamentous fungi Fusarium culmorum FST 4.05 were amongst the most senstitive strains to Sin a 1 (MICs range 3-6 µM). The antimicrobial mechanism of membrane permeabilisation was detected, and in general, the antifungal activity of Sin a 1 seemed to be expressed in a dose-dependent manner. Data collected confirmed Sin a 1 to be a stable and compact protein, as it displayed resistance to α-chymotrypsin digestion, heat denaturation and insensitivity to pH variations and the presence of salts. In addition, the protein did not show cytotoxicity towards mammalian cells.

6.
Biochem Genet ; 60(1): 415-432, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34282529

ABSTRACT

Seed storage proteins not just provide essential nutritional ingredients for growth of seedlings but also have their potential role in defense mechanisms of plants. Napin is a seed storage protein and belongs to 2S albumin family. Napin and napin-like protein have many biological defensive activities including antifungal, antimicrobial, trypsin inhibitor, and also act as antagonist of calmodulin. Napin protein possesses various isoforms with different biological activities. In this study, the protein sequence of napin from Momordica charantia was retrieved from GenPept database for characterization. A complete annotation of napin including its physicochemical properties was done. Three dimensional (3D) modeling and interactions of napin-like protein with other proteins were also predicted using various bioinformatics tools. A phylogram of napin-like protein from M. charantia with its homologs was also reconstructed to reveal its evolutionary relationships with napins and other 2S albumin proteins from various plants. The study has revealed the structural characterization, biological interactions, and evolutionary background which will play crucial role in exploring the medicinal and biological potentials of napin-like protein from M. charantia as well as worth of napin and napin-like protein has been disclosed.


Subject(s)
Momordica charantia , Amino Acid Sequence , Plant Proteins/genetics
7.
Molecules ; 26(7)2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33916405

ABSTRACT

The study aimed to investigate the antibacterial activity of Mustard (Brassica juncea) and Moringa (Moringa oleifera) leaf extracts and coagulant protein for their potential application in water treatment. Bacterial cell aggregation and growth kinetics studies were employed for thirteen bacterial strains with different concentrations of leaf extracts and coagulant protein. Moringa oleifera leaf extract (MOS) and coagulant protein showed cell aggregation against ten bacterial strains, whereas leaf extract alone showed growth inhibition of five bacterial strains for up to 6 h and five bacterial strains for up to 3 h. Brassica juncea leaf extract (BJS) showed growth inhibition for up to 6 h, and three bacterial strains showed inhibition for up to 3 h. The highest inhibition concentration with 2.5 mg/mL was 19 mm, and furthermore, the minimum inhibitory concentration (MIC) (0.5 mg/mL) and MBC (1.5 mg/mL) were determined to have a higher antibacterial effect for <3 KDa peptides. Based on LCMS analysis, napin was identified in both MOS and BJS; furthermore, the mode of action of napin peptide was determined on lipoprotein X complex (LpxC) and four-chained structured binding protein of bacterial type II topoisomerase (4PLB). The docking analysis has exhibited moderate to potent inhibition with a range of dock score -912.9 Kcal/mol. Thus, it possesses antibacterial-coagulant potential bioactive peptides present in the Moringa oleifera purified protein (MOP) and Brassica juncea purified protein (BJP) that could act as an effective antimicrobial agent to replace currently available antibiotics. The result implies that MOP and Brassica juncea purified coagulant (BJP) proteins may perform a wide degree of antibacterial functions against different pathogens.


Subject(s)
2S Albumins, Plant/chemistry , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Moringa oleifera/chemistry , Mustard Plant/chemistry , 2S Albumins, Plant/isolation & purification , 2S Albumins, Plant/pharmacology , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amidohydrolases/metabolism , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Binding Sites , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/growth & development , Microbial Sensitivity Tests , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Leaves/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs
8.
Crit Rev Food Sci Nutr ; 61(22): 3836-3856, 2021.
Article in English | MEDLINE | ID: mdl-32907356

ABSTRACT

Plant-based diet and plant proteins specifically are predestined to meet nutritional requirements of growing population of humans and simultaneously reduce negative effects of food production on the environment. While searching for new sources of proteins, special emphasis should be placed on oilseeds of Brassica family comprising varieties of rapeseed and canola as they contain nutritionally valuable proteins, which have potential to be used in food, but are now rarely or not used as food components. The purpose of the present work is to provide a comprehensive review of main canola/rapeseed proteins: cruciferin and napin, with the focus on their nutritional and functional features, putting special emphasis on their possible applications in food. Technological challenges to obtain rapeseed protein products that are free from anti-nutritional factors are also addressed. As molecular structure of cruciferin and napin differs, they exhibit distinct features, such as solubility, emulsifying, foaming or gelling properties. Potential allergenic effect of 2S napin has to be taken under consideration. Overall, rapeseed proteins demonstrate beneficial nutritional value and functional properties and are deemed to play important roles both in food, as well as, non-food and non-feed applications.


Subject(s)
Brassica napus , Brassica rapa , Nutritive Value , Plant Proteins , Seed Storage Proteins , Allergens
9.
Front Pharmacol ; 11: 1340, 2020.
Article in English | MEDLINE | ID: mdl-33013372

ABSTRACT

BACKGROUND: In addition to their use as an edible oil and condiment crop, mustard and rapeseed (Brassica napus L., B. juncea (L.) Czern., B. nigra (L.) W.D.J.Koch, B. rapa L. and Sinapis alba L.) have been commonly used in traditional medicine for relieving pain, coughs and treating infections. The seeds contain high amounts of oil, while the remaining by-product meal after oil extraction, about 40% of seed dry weight, has a low value despite its high protein-content (~85%). The seed storage proteins (SSP) 2S albumin-type napin and 12S globulin-type cruciferin are the two predominant proteins in the seeds and show potential for value adding to the waste stream; however, information on their biological activities is scarce. In this study, purified napin and cruciferin were tested using in silico, molecular docking, and in vitro approaches for their bioactivity as antimicrobial peptides. MATERIALS AND METHODS: The 3D-structure of 2S albumin and 12S globulin storage proteins from B. napus were investigated to predict antimicrobial activity employing an antimicrobial peptide database survey. To gain deeper insights into the potential antimicrobial activity of these SSP, in silico molecular docking was performed. The purified B. napus cruciferin and napin were then tested against both Gram-positive and Gram-negative bacteria for in vitro antimicrobial activity by disc diffusion and microdilution antimicrobial susceptibility testing. RESULTS: In silico analysis demonstrated both SSP share similar 3D-structure with other well studied antimicrobial proteins. Molecular docking revealed that the proteins exhibited high binding energy to bacterial enzymes. Cruciferin and napin proteins appeared as a double triplet and a single doublet, respectively, following SDS-PAGE. SDS-PAGE and Western blotting also confirmed the purity of the protein samples used for assessment of antimicrobial activity. Antimicrobial susceptibility testing provided strong evidence for antimicrobial activity for the purified napin protein; however, cruciferin showed no antimicrobial activity, even at the highest dose applied. DISCUSSION: In silico and molecular docking results presented evidence for the potential antimicrobial activity of rapeseed cruciferin and napin SSP. However, only the in vitro antimicrobial activity of napin was confirmed. These findings warrant further investigation of this SSP protein as a potential new agent against infectious disease.

10.
Ultrason Sonochem ; 67: 105136, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32380372

ABSTRACT

The in vitro protein digestibility (IVPD) of napin was studied using different pretreatment methods, including ultrasound, mixing napin with lactalbumin, and ultrasound-assisted protein mixing. The relationships between IVPD, molecular structure, and disulfide bonds were explored, showing that the IVPD of napin was the highest compared with the control when treated with 40% ultrasound power. When the proportion of napin to lactalbumin was 5:5, a synergistic influence between the two proteins was observed. Further investigation showed that the IVPD of napin was clearly improved by treatment with ultrasound-assisted protein mixing. Compared with the single protein in the control, the ß-sheet content in the secondary structure of the mixed protein after sonication was reduced from 45.02% to 37.16%. The ordered protein structure was also disrupted by ultrasound, as supported by fluorescence intensity and surface hydrophobicity analyses. The decreased number of disulfide bonds and conformational changes indicated that the IVPD of rapeseed napin was closely related to the disulfide bond content. This study provides a theoretical basis for improving protein digestibility by combining ultrasound with physical mixing.


Subject(s)
2S Albumins, Plant/metabolism , Brassica napus/metabolism , Sonication , Electrophoresis, Polyacrylamide Gel , In Vitro Techniques , Protein Structure, Secondary , Proteolysis , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
11.
Food Res Int ; 123: 346-354, 2019 09.
Article in English | MEDLINE | ID: mdl-31284985

ABSTRACT

Mixing of different protein sources can lead to either predictable, synergistic, or antagonistic effects on the protein digestibility. This study investigated the in vitro protein digestibility (IVPD) of protein mixtures between a napin-rich rapeseed (Brassica napus L.) protein concentrate (RP2) and bovine milk whey proteins (WPs; α-LA, alpha-lactalbumin; ß-LG, beta-lactoglobulin) at mixing ratios of 20:80, 40:60, 60:40, and 80:20 w/w protein. Enzymatic hydrolysis consisted of pepsin digestion (1 h) followed by short- (+1 h), medium- (+3 h), or long-term (+24 h) pancreatin digestion. IVPD was differentially affected by the WPs type, mixing ratios, and total hydrolysis times. RP2/ß-LG protein mixtures showed a partially synergistic effect at mixing ratios of 40:60 and 60:40 w/w, leading to an increased short-term IVPD of 7-10%. LC-MS analysis revealed a markedly improved short-term digestibility of the napin proteins when combined with bovine ß-LG. This study demonstrated that specific mixtures between animal and plant protein sources exhibit an improved digestibility due to synergistic protein-protein interactions.


Subject(s)
2S Albumins, Plant/metabolism , Digestion , Lactoglobulins/metabolism , Animals , Brassica napus/metabolism , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Hydrolysis , Lactalbumin/metabolism , Pepsin A/metabolism , Tandem Mass Spectrometry , Whey Proteins/metabolism
12.
J Agric Food Chem ; 67(13): 3679-3690, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30854852

ABSTRACT

Previously reported peptides derived from napin of rapeseed ( Brassica napus) have been shown to inhibit DPP-IV in silico. In the present study, napin extracted from rapeseed was hydrolyzed by commercial enzymes and filtered by an ultrafiltration membrane. The napin hydrolysate was then purified by a Sephadex G-15 gel-filtration column and preparative RP-HPLC. A two-enzyme-combination approach with alcalase and trypsin was the most favorable in terms of the DPP-IV-inhibitory activity (IC50 = 0.68 mg/mL) of the napin hydrolysate. Three peptides and one modified peptide (pyroglutamate mutation at the N-terminus) were identified using HPLC-triple-TOF-MS/MS. DPP-IV-inhibitory activity and the types of enzyme inhibition were also determined. Meanwhile, key residues associated with the interactions between the selected peptides and DPP-IV were investigated by molecular docking. IPQVS has key amino acid residues (Tyr547, Glu205, and Glu206) that are consistent with Diprotin A. ELHQEEPL could form a better covalent bond with Arg358 in the S3 pocket of DPP-IV.


Subject(s)
2S Albumins, Plant/chemistry , Brassica rapa/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Amino Acid Motifs , Chromatography, High Pressure Liquid , Dipeptidyl-Peptidase IV Inhibitors/isolation & purification , Hydrolysis , Molecular Docking Simulation , Peptides/isolation & purification , Protein Domains , Protein Hydrolysates/chemistry , Tandem Mass Spectrometry
13.
J Agric Food Chem ; 66(3): 711-719, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29264921

ABSTRACT

Partial replacement of animal protein sources with plant proteins is highly relevant for the food industry, but potential effects on protein digestibility need to be established. In this study, the in vitro protein digestibility (IVPD) of four protein sources and their mixtures (50:50 w/w ratio) was investigated using a transient pepsin hydrolysis (1 h) followed by pancreatin (1 h). The protein sources consisted of napin-rich rapeseed (Brassica napus L.) protein concentrates (RPCs; RP1, RP2) prepared in pilot scale and major bovine whey proteins (WPs; α-LA, alpha-lactalbumin; ß-LG, beta-lactoglobulin). IVPD of individual protein sources was higher for WPs compared to RPCs. The RP2/ß-LG mixture resulted in an unexpected high IVPD equivalent to ß-LG protein alone. Protein mixtures containing RP1 showed a new IVPD response type due to the negative influence of a high trypsin inhibitor activity (TIA) level. Improved IVPD of RP1 alone and in protein mixtures was obtained by lowering the TIA level using dithiothreitol (DTT). These results showed that napin-rich protein products prepared by appropriate processing can be combined with specific WPs in mixtures to improve the IVPD.


Subject(s)
Animal Feed/analysis , Brassica rapa/chemistry , Cattle/metabolism , Plant Proteins/chemistry , Whey Proteins/chemistry , Animals , Digestion , Hydrogen-Ion Concentration , Hydrolysis , Pepsin A/chemistry
14.
J Anim Physiol Anim Nutr (Berl) ; 101(4): 658-666, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27562881

ABSTRACT

Rapeseed proteins have been considered as being poorly digestible in the gut of non-ruminants. The aim of the study was to assess the digestibility of napin and cruciferin in ileal digesta of broiler chickens, testing sixteen samples of rapeseed co-products with protein levels ranging from 293 g/kg to 560 g/kg dry matter. Each sample was included into a semi-synthetic diet at a rate of 500 g/kg and evaluated with broiler chickens in a randomised design. Dietary and ileal digesta proteins were extracted and identified by gel-based liquid chromatography-tandem mass spectrometry (LC-MS/MS). Three isomers of napin (a 2S albumin) and nine cruciferins (an 11S globulin) were identified in the rapeseed co-products, whereas six endogenous enzymes such as trypsin (I-P1, II-P29), chymotrypsin (elastase and precursor), carboxypeptidase B and α-amylase were found in the ileal digesta. It is concluded that as none of the rapeseed proteins were detected in the ileal digesta, rapeseed proteins can be readily digested by broiler chickens, irrespective of the protein content in the diet.


Subject(s)
2S Albumins, Plant/metabolism , Animal Feed/analysis , Antigens, Plant/metabolism , Brassica rapa/chemistry , Chickens/metabolism , Seed Storage Proteins/metabolism , 2S Albumins, Plant/chemistry , Animal Nutritional Physiological Phenomena , Animals , Antigens, Plant/chemistry , Diet/veterinary , Male , Seed Storage Proteins/chemistry
15.
Plants (Basel) ; 5(3)2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27618118

ABSTRACT

The two major storage proteins identified in Brassica napus (canola) were isolated and studied for their molecular composition, structural characteristics and the responses of structural features to the changes in pH and temperature. Cruciferin, a complex of six monomers, has a predominantly ß-sheet-containing secondary structure. This protein showed low pH unstable tertiary structure, and distinctly different solubility behaviour with pH when intact in the seed cellular matrix. Cruciferin structure unfolds at pH 3 even at ambient temperature. Temperature-induced structure unfolding was observed above the maximum denaturation temperature of cruciferin. Napin was soluble in a wider pH range than cruciferin and has α-helices dominating secondary structure. Structural features of napin showed less sensitivity to the changes in medium pH and temperature. The surface hydrophobicity (S0) and intrinsic fluorescence of tryptophan residue appear to be good indicators of cruciferin unfolding, however they were not the best to demonstrate structural changes of napin. These two storage proteins of B. napus have distinct molecular characteristics, therefore properties and functionalities they provide are contrasting rather than complementary.

16.
Plants (Basel) ; 5(2)2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27135237

ABSTRACT

At present, canola meal is primarily streamlined into the animal feed market where it is a competitive animal feed source owing to its high protein value. Beyond animal feed lies a potential game-changer with regards to the value of canola meal, and its opportunity as a high quality food protein source. An economic and sustainable source of protein with high bioavailability and digestibility is essential to human health and well-being. Population pressures, ecological considerations, and production efficiency underscore the importance of highly bioavailable plant proteins, both for the developed and developing world. Despite decades of research, several technologies being developed, and products being brought to large scale production, there are still no commercially available canola protein products. The workshop entitled "Canola/Rapeseed Protein-Future Opportunities and Directions" that was held on 8 July 2015 during the 14th International Rapeseed Congress (IRC 2015) addressed the current situation and issues surrounding canola meal protein from the technological, nutritional, regulatory and genomics/breeding perspective. Discussions with participants and experts in the field helped to identify economic barriers and research gaps that need to be addressed in both the short and long term for the benefit of canola industry.

17.
J Proteomics ; 147: 177-186, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27185550

ABSTRACT

UNLABELLED: Seed storage albumins are abundant, water-soluble proteins that are degraded to provide critical nutrients for the germinating seedling. It has been established that the sunflower albumins encoded by SEED STORAGE ALBUMIN 2 (SESA2), SESA20 and SESA3 are the major components of the albumin-rich fraction of the common sunflower Helianthus annuus. To determine the structure of sunflowers most important albumins we performed a detailed chromatographic and mass spectrometric characterization to assess what post-translational processing they receive prior to deposition in the protein storage vacuole. We found that SESA2 and SESA20 each encode two albumins. The first of the two SESA2 albumins (SESA2-1) exists as a monomer of 116 or 117 residues, differing by a threonine at the C-terminus. The second of the two SESA2 albumins (SESA2-2) is a monomer of 128 residues. SESA20 encodes the albumin SESA20-2, which is a 127-residue monomer, whereas SESA20-1 was not abundant enough to be structurally described. SESA3, which has been partly characterized previously, was found in several forms with methylation of its asparagine residues. In contrast to other dicot albumins, which are generally matured into a heterodimer, all the dominant mature sunflower albumins SESA2, SESA20-2, SESA3 and its post-translationally modified analogue SESA3-a are monomeric. BIOLOGICAL SIGNIFICANCE: Sunflower plants have been bred to thrive in various climate zones making them favored crops to meet the growing worldwide demand by humans for protein. The abundance of seed storage proteins makes them an important source of protein for animal and human nutrition. This study explores the structures of the dominant sunflower napin-type seed storage albumins to understand what structures evolution has favored in the most abundant proteins in sunflower seed.


Subject(s)
Albumins/analysis , Helianthus/chemistry , Proteomics/methods , Seed Storage Proteins/analysis , Chromatography , Mass Spectrometry , Plant Proteins/analysis , Protein Processing, Post-Translational , Seed Storage Proteins/metabolism
18.
Appl Microbiol Biotechnol ; 100(15): 6703-6713, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27020281

ABSTRACT

Napin and napin-like proteins belong to the 2S albumin seed storage family of proteins and have been shown to display a variety of biological activities. However, due to a high degree of polymorphism, purification of a single napin or napin-like protein exhibiting biological activity is extremely difficult. In the present study, we have produced the napin-like protein of Momordica charantia using the methylotrophic Pichia pastoris expression system. The recombinant napin-like protein (rMcnapin) secreted in the extracellular culture supernatant was enriched by ammonium sulfate precipitation, and purified using size exclusion chromatography at a yield of ∼290 mg/L of culture. Secondary structure analysis of the purified rMcnapin revealed it to be predominantly α-helical with minimal ß strand content. CD spectroscopic and fluorescence spectroscopic analyses revealed the rMcnapin to be stable at a wide range of temperatures and pH. The rMcnapin exhibited antifungal activity against Trichoderma viride with an IC50 of ∼3.7 µg/ml and trypsin inhibitor activity with an IC50 of 4.2 µM. Thus, large amounts of homogenous preparations of the biologically active rMcnapin could be obtained at shake flask level, which is otherwise difficult from its natural source.


Subject(s)
Antifungal Agents/pharmacology , Momordica charantia/genetics , Pichia/genetics , Pichia/metabolism , Plant Proteins/biosynthesis , Plant Proteins/pharmacology , Recombinant Proteins/biosynthesis , Trichoderma/drug effects , Cloning, Molecular , Microbial Sensitivity Tests , Plant Proteins/genetics , Recombinant Proteins/genetics
19.
Gene ; 563(2): 160-4, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25797503

ABSTRACT

Rapeseed (Brassica napus L.) has become an important crop during the last 30years. In addition to a high lipid level, the seeds also have a significant protein content, which constitutes 20-25% of the dry seed weight. The synthesis of storage proteins is primarily controlled at transcriptional level and seed-specific expression has been shown to be conferred upon the promoter regions of many storage protein genes. Napin is one of the main storage proteins in rapeseed(')s embryo that is produced in seed developing stage. Its promoter region located at 5' upstream of the napin gene has already been isolated (GenBank number, EU416279.1). In current research, seed-specific promoter (napin) of Iranian B. napus L. was isolated from the genomic DNA and cloned into pBI121 plant binary vector to use in future researches. For this purpose, the napin promoter was amplified by PCR method using specific primers, cloned in pSK(+) vector and sequenced. Sequencing analysis showed that the cloned promoter contained all of conserved motifs such as TATA box (TATAAA), RY repeats (CATGCA), dist-B (TCAAACACC) and prox-B elements (GCCACTTGTC), G-box (CACGTG) and CAAT Motifs, which constituted the seed-specific promoter activity and according to this analysis, the seed-specific promoter activity of cloned sequence was predicted. Based on sequence distances of nucleotide sequences, our sequence had the highest similarity (99.8%) whit B. napus sequence (with EU416279.1 accession number). Finally the promoter obtained might be interesting not only as a useful tool for biotechnological application but also for fundamental research.


Subject(s)
Brassica napus/genetics , Seeds/genetics , Base Sequence , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Promoter Regions, Genetic , Sequence Analysis
20.
Protein Expr Purif ; 95: 162-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24394588

ABSTRACT

Seeds are capable of accumulating high levels of seed storage proteins (SSP), as well as heterologous proteins under certain conditions. Arabidopsis thaliana was used to develop a strategy to deplete seeds of an endogenous SSP and then replenish them with the same protein fused to a heterologous protein. In several other studies, competition with endogenous SSP for space and metabolic resources was shown to affect the accumulation of recombinant proteins in seeds. We used RNAi to reduce the expression of the five napin genes and deplete the seeds of this SSP. Targeting a recombinant protein to a vacuole or structure within the seed where it can be protected from cytosolic proteases can also promote its accumulation. To achieve this, a synthetic Brassica napus napin gene (Bn napin) was designed that was both impervious to the A. thaliana napin (At napin) RNAi construct and permitted fusion to a heterologous protein, in this case green fluorescent protein (GFP). GFP was placed in several strategic locations within Bn napin with consideration to maintaining structure, processing sites and possible vacuolar targeting signals. In transgenic A. thaliana plants, GFP was strongly localized to the seed protein storage vacuole in all Bn napin fusion configurations tested, but not when expressed alone. This SSP depletion-replenishment strategy outlined here would be applicable to expression of recombinant proteins in industrial crops that generally have large repertoires of endogenous SSP genes.


Subject(s)
2S Albumins, Plant/genetics , 2S Albumins, Plant/metabolism , Brassica napus/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Seeds/metabolism , 2S Albumins, Plant/chemistry , Amino Acid Sequence , Brassica napus/genetics , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Protein Engineering , RNA Interference , Recombinant Fusion Proteins/chemistry , Seeds/chemistry , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL