Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Front Mol Biosci ; 11: 1390711, 2024.
Article in English | MEDLINE | ID: mdl-38737334

ABSTRACT

Despite an array of hypothesised implications for health, disease, and therapeutic development, antibodies against the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc) remain a subject of much debate. This systematic review of 114 publications aimed to generate a comprehensive overview of published studies in this field, addressing both the reported prevalence of anti-Neu5Gc antibodies in the human population and whether experimental variation accounts for the conflicting reports about the extent of this response. Absolute titres of anti-Neu5Gc antibodies, the reported prevalence of these antibodies, and the individual variation observed within experiments were analysed and grouped according to biological context ('inflammation', 'xenotransplantation', 'biotherapeutic use', 'cancer', and 'healthy populations'), detection method, target epitope selection, and choice of blocking agent. These analyses revealed that the experimental method had a notable impact on both the reported prevalence and absolute titres of anti-Neu5Gc antibodies in the general population, thereby limiting the ability to ascribe reported trends to genuine biological differences or the consequence of experimental design. Overall, this review highlights important knowledge gaps in the study of antibodies against this important xenoautoantigen and the need to establish a standardised method for their quantification if the extent of the importance of Neu5Gc in human health is to be fully understood.

2.
Nutrients ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542816

ABSTRACT

The meat derived from mammals such as cows, sheep, and pigs is commonly referred to as red meat. Recent studies have shown that consuming red meat can activate the immune system, produce antibodies, and subsequently develop into tumors and cancer. This is due to the presence of a potential carcinogenic compound in red meat called N-ethanol neuraminic acid (Neu5Gc). Neu5Gc is a common sialic monosaccharide in mammals, synthesized from N-acetylneuraminic acid (Neu5Ac) in the body and typically present in most mammals. However, due to the lack of the CMAH gene encoding the cytidine 5'-monophosphate Neu5Ac hydroxylase, humans are unable to synthesize Neu5Gc. Compared to primates such as mice or chimpanzees, the specific loss of Neu5Gc expression in humans is attributed to fixed genome mutations in CMAH. Although Neu5Gc cannot be produced, it can be introduced from specific dietary sources such as red meat and milk, so it is necessary to use mice or chimpanzees that knock out the CMAH gene instead of humans as experimental models. Further research has shown that early pregnancy factor (EPF) has the ability to regulate CD4+T cell-dependent immune responses. In this study, we established a simulated human animal model using C57/BL6 mice with CMAH gene knockout and analyzed the inhibitory effect of EPF on red meat Neu5Gc-induced CMAH-/- C57/BL6 mouse antibody production and chronic inflammation development. The results showed that the intervention of EPF reduced slow weight gain and shortened colon length in mice. In addition, EPF treatment significantly reduced the levels of anti Neu5Gc antibodies in the body, as well as the inflammatory factors IL-6 and IL-1ß, TNF-α and the activity of MPO. In addition, it also alleviated damage to liver and intestinal tissues and reduced the content of CD4 cells and the expression of B cell activation molecules CD80 and CD86 in mice. In summary, EPF effectively inhibited Neu5Gc-induced antibody production, reduced inflammation levels in mice, and alleviated Neu5Gc-induced inflammation. This will provide a new re-search concept and potential approach for developing immunosuppressants to address safety issues related to long-term consumption of red meat.


Subject(s)
Chaperonin 10 , Neoplasms , Pregnancy Proteins , Red Meat , Suppressor Factors, Immunologic , Female , Animals , Humans , Mice , Cattle , Swine , Sheep , Pan troglodytes , Antibody Formation , Primates , Inflammation , Mammals
3.
Molecules ; 29(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542909

ABSTRACT

N-glycolylneuraminic acid (Neu5Gc), a sialic acid predominantly found in the non-neurohumoral fluids of hind-mouthed animals, is incapable of synthesizing Neu5Gc due to a deletion in the CMAH exon of the gene encoding human CMP-Neu5Gc hydroxylase. But consumption of animal-derived foods that contain Neu5Gc, such as red meat, can instigate an immune response in humans, as Neu5Gc is recognized as a foreign substance by the human immune system. This recognition leads to the production of anti-Neu5Gc antibodies, subsequently resulting in chronic inflammation. When Neu5Gc is consumed excessively or frequently, it may contribute to the development of heart disease and cancer. This makes Neu5Gc, an endogenous pathogenic factor derived from red meat, a new hot topic in red meat safety research. In this study, aptamers obtained by the magnetic bead SELEX technique were subjected to homology and secondary structure prediction analysis as well as affinity determination. The result indicated that the aptamer 2B.N2A9 exhibited a robust binding affinity, with an affinity constant (Ka) of 1.87 × 108 L/mol. This aptamer demonstrated optimal binding specificity within a pH range of 5.4 to 7.4. Molecular docking analysis further revealed that aptamer 2B.N2A9 formed stable binding interactions with the target Neu5Gc at specific sites, namely G-14, C-15, G-13, G-58, G-60, and C-59. An Enzyme-Linked Oligonucleotide Sorbent Assay (ELOSA) methodology was established to detect the endogenous pathogenic factor Neu5Gc present in red meat. This method demonstrated a limit of detection (LOD) of 0.71 ng/mL, along with an average recovery rate of 92.23%. The aptamer obtained in this study exhibited favorable binding properties to Neu5Gc. The assay was relatively convenient and demonstrated good sensitivity. Further investigation into the distribution of Neu5Gc in various red meats is of public health significance and scientific potential. A practical detection method should be provided to guide red meat diets and ensure the nutrition and safety of meat products.


Subject(s)
N-Acetylneuraminic Acid , Red Meat , Animals , Humans , Molecular Docking Simulation , Inflammation , Oligonucleotides
4.
Compr Rev Food Sci Food Saf ; 23(2): e13314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38389429

ABSTRACT

One of the most consistent epidemiological associations between diet and human disease risk is the impact of consuming red meat and processed meat products. In recent years, the health concerns surrounding red meat and processed meat have gained worldwide attention. The fact that humans have lost the ability to synthesize N-glycolylneuraminic acid (Neu5Gc) makes red meat and processed meat products the most important source of exogenous Neu5Gc for humans. As our research of Neu5Gc has increased, it has been discovered that Neu5Gc in red meat and processed meat is a key factor in many major diseases. Given the objective evidence of the harmful risk caused by Neu5Gc in red meat and processed meat to human health, there is a need for heightened attention in the field of food. This updated review has several Neu5Gc aspects given including biosynthetic pathway of Neu5Gc and its accumulation in the human body, the distribution of Neu5Gc in food, the methods for detecting Neu5Gc, and most importantly, a systematic review of the existing methods for reducing the content of Neu5Gc in red meat and processed meat. It also provides some insights into the current status and future directions in this area.


Subject(s)
Meat Products , Neuraminic Acids , Red Meat , Neuraminic Acids/chemistry , Meat Products/analysis , Meat Products/adverse effects , Humans , Animals , Red Meat/analysis , Red Meat/adverse effects
5.
Front Immunol ; 15: 1331345, 2024.
Article in English | MEDLINE | ID: mdl-38370401

ABSTRACT

Chimeric antigen receptor (CAR) T cell technology has ushered in a new era of immunotherapy, enabling the targeting of a broad range of surface antigens, surpassing the limitations of traditional T cell epitopes. Despite the wide range of non-protein tumor-associated antigens, the advancement in crafting CAR T cells for these targets has been limited. Owing to an evolutionary defect in the CMP-Neu5Ac hydroxylase (CMAH) that abolishes the synthesis of CMP-Neu5Gc from CMP-Neu5Ac, Neu5Gc is generally absent in human tissues. Despite this, Neu5Gc-containing antigens, including the ganglioside GM3(Neu5Gc) have consistently been observed on tumor cells across a variety of human malignancies. This restricted expression makes GM3(Neu5Gc) an appealing and highly specific target for immunotherapy. In this study, we designed and evaluated 14F7-28z CAR T cells, with a targeting unit derived from the GM3(Neu5Gc)-specific murine antibody 14F7. These cells exhibited exceptional specificity, proficiently targeting GM3(Neu5Gc)-expressing murine tumor cells in syngeneic mouse models, ranging from B cell malignancies to epithelial tumors, without compromising safety. Notably, human tumor cells enhanced with murine Cmah were effectively targeted and eliminated by the 14F7 CAR T cells. Nonetheless, despite the detectable presence of GM3(Neu5Gc) in unmodified human tumor xenografts, the levels were insufficient to trigger a tumoricidal T-cell response with the current CAR T cell configuration. Overall, our findings highlight the potential of targeting the GM3(Neu5Gc) ganglioside using CAR T cells across a variety of cancers and set the stage for the optimization of 14F7-based therapies for future human clinical application.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use , G(M3) Ganglioside/therapeutic use , Antigens, Neoplasm
6.
J Virol ; 98(3): e0004224, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376198

ABSTRACT

Influenza D virus (IDV) utilizes bovines as a primary reservoir with periodical spillover to other hosts. We have previously demonstrated that IDV binds both 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac). Bovines produce both Neu5,9Ac2 and Neu5Gc9Ac, while humans are genetically unable to synthesize Neu5Gc9Ac. 9-O-Acetylation of sialic acids is catalyzed by CASD1 via a covalent acetyl-enzyme intermediate. To characterize the role of Neu5,9Ac2 and Neu5Gc9Ac in IDV infection and determine which form of 9-O-acetylated sialic acids drives IDV entry, we took advantage of a CASD1 knockout (KO) MDCK cell line and carried out feeding experiments using synthetic 9-O-acetyl sialic acids in combination with the single-round and multi-round IDV infection assays. The data from our studies show that (i) CASD1 KO cells are resistant to IDV infection and lack of IDV binding to the cell surface is responsible for the failure of IDV replication; (ii) feeding CASD1 KO cells with Neu5,9Ac2 or Neu5Gc9Ac resulted in a dose-dependent rescue of IDV infectivity; and (iii) diverse IDVs replicated robustly in CASD1 KO cells fed with either Neu5,9Ac2 or Neu5Gc9Ac at a level similar to that in wild-type cells with a functional CASD1. These data demonstrate that IDV can utilize Neu5,9Ac2- or non-human Neu5Gc9Ac-containing glycan receptor for infection. Our findings provide evidence that IDV has acquired the ability to infect and transmit among agricultural animals that are enriched in Neu5Gc9Ac, in addition to posing a zoonotic risk to humans expressing only Neu5,9Ac2.IMPORTANCEInfluenza D virus (IDV) has emerged as a multiple-species-infecting pathogen with bovines as a primary reservoir. Little is known about the functional receptor that drives IDV entry and promotes its cross-species spillover potential among different hosts. Here, we demonstrated that IDV binds exclusively to 9-O-acetylated N-acetylneuraminic acid (Neu5,9Ac2) and non-human 9-O-acetylated N-glycolylneuraminic acid (Neu5Gc9Ac) and utilizes both for entry and infection. This ability in effective engagement of both 9-O-acetylated sialic acids as functional receptors for infection provides an evolutionary advantage to IDV for expanding its host range. This finding also indicates that IDV has the potential to emerge in humans because Neu5,9Ac2 is ubiquitously expressed in human tissues, including lung. Thus, results of our study highlight a need for continued surveillance of IDV in humans, as well as for further investigation of its biology and cross-species transmission mechanism.


Subject(s)
Deltainfluenzavirus , Neuraminic Acids , Receptors, Virus , Animals , Cattle , Cell Membrane/metabolism , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/metabolism , Orthomyxoviridae/metabolism , Receptors, Virus/metabolism , Sialic Acids/metabolism
7.
Br J Nutr ; 131(9): 1506-1512, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38178715

ABSTRACT

This study compared the concentrations, types and distributions of sialic acid (SA) in human milk at different stages of the postnatal period with those in a range of infant formulas. Breast milk from mothers of healthy, full-term and exclusively breastfed infants was collected on the 2nd (n 246), 7th (n 135), 30th (n 85) and 90th (n 48) day after birth. The SA profiles of human milk, including their distribution, were analysed and compared with twenty-four different infant formulas. Outcome of this observational study was the result of natural exposure. Only SA of type Neu5Ac was detected in human milk. Total SA concentrations were highest in colostrum and reduced significantly over the next 3 months. Approximately 68·7­76·1 % of all SA in human milk were bound to oligosaccharides. Two types of SA, Neu5Ac and Neu5Gc, have been detected in infant formulas. Most SA was present in infant formulas combined with protein. Breastfed infants could receive more SA than formula-fed infants with the same energy intake. Overall, human milk is a preferable source of SA than infant formulas in terms of total SA content, dynamics, distribution and type. These SA profiles in the natural state are worth to be considered by the production of formulas because they may have a great effect on infant nutrition and development.


Subject(s)
Infant Formula , Milk, Human , N-Acetylneuraminic Acid , Female , Humans , Infant , Infant, Newborn , Male , Breast Feeding , China , Colostrum/chemistry , Infant Formula/chemistry , Infant Nutritional Physiological Phenomena , Milk, Human/chemistry , N-Acetylneuraminic Acid/analysis , Oligosaccharides/analysis
8.
Pathogens ; 12(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37242354

ABSTRACT

Porcine meat is the most consumed red meat worldwide. Pigs are also vital tools in biological and medical research. However, xenoreactivity between porcine's N-glycolylneuraminic acid (Neu5Gc) and human anti-Neu5Gc antibodies poses a significant challenge. On the one hand, dietary Neu5Gc intake has been connected to particular human disorders. On the other hand, some pathogens connected to pig diseases have a preference for Neu5Gc. The Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) catalyses the conversion of N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. In this study, we predicted the tertiary structure of CMAH, performed molecular docking, and analysed the protein-native ligand complex. We performed a virtual screening from a drug library of 5M compounds and selected the two top inhibitors with Vina scores of -9.9 kcal/mol for inhibitor 1 and -9.4 kcal/mol for inhibitor 2. We further analysed their pharmacokinetic and pharmacophoric properties. We conducted stability analyses of the complexes with molecular dynamic simulations of 200 ns and binding free energy calculations. The overall analyses revealed the inhibitors' stable binding, which was further validated by the MMGBSA studies. In conclusion, this result may pave the way for future studies to determine how to inhibit CMAH activities. Further in vitro studies can provide in-depth insight into these compounds' therapeutic potential.

9.
Pathogens ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111477

ABSTRACT

The sugar molecule N-glycolylneuraminic acid (Neu5Gc) is one of the most common sialic acids discovered in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) catalyses the conversion of N-acetylneuraminic acid (Neu5Ac) to Neu5Gc, and it is encoded by the CMAH gene. On the one hand, food metabolic incorporation of Neu5Gc has been linked to specific human diseases. On the other hand, Neu5Gc has been shown to be highly preferred by some pathogens linked to certain bovine diseases. We used various computational techniques to perform an in silico functional analysis of five non-synonymous single-nucleotide polymorphisms (nsSNPs) of the bovine CMAH (bCMAH) gene identified from the 1000 Bull Genomes sequence data. The c.1271C>T (P424L) nsSNP was predicted to be pathogenic based on the consensus result from different computational tools. The nsSNP was also predicted to be critical based on sequence conservation, stability, and post-translational modification site analysis. According to the molecular dynamic simulation and stability analysis, all variations promoted stability of the bCMAH protein, but mutation A210S significantly promoted CMAH stability. In conclusion, c.1271C>T (P424L) is expected to be the most harmful nsSNP among the five detected nsSNPs based on the overall studies. This research could pave the way for more research associating pathogenic nsSNPs in the bCMAH gene with diseases.

10.
Toxins (Basel) ; 15(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36828446

ABSTRACT

N-glycolylneuraminic acid (Neu5Gc) is a specific factor in red meat that induces intestinal disease. Our aim was to investigate the effect of Neu5Gc on the intestinal barrier as well as its mechanism of endocytosis and exocytosis. Ten specific inhibitors were used to explore the mechanism of Neu5Gc endocytosis and exocytosis by Caco-2 cells. Amiloride hydrochloride and cytochalasin D had the strongest inhibitory effect on the endocytosis of Neu5Gc. Sodium azide, dynasore, chlorpromazine hydrochloride, and nystatin also inhibited Neu5Gc endocytosis. Dynasore exhibited a stronger inhibitory effect than that of chlorpromazine hydrochloride or nystatin alone. Exocytosis inhibitors, including nocodazole, brefeldin A, monensin, and bafilomycin A, inhibited the transmembrane transport of Neu5Gc. Monensin promoted the exocytosis of Neu5Gc from Caco-2 cells. In another experiment, we observed no significant inhibitory effects of monensin and brefeldin A. Dietary concentrations of Neu5Gc induced prominent damage to intestinal tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 and promoted the phosphorylation of IκB-α and P65 to activate the canonical Nuclear Factor kappa-B (NF-κB) pathway. Neu5Gc increased the RNA levels of pro-inflammatory factors IL-1ß, IL-6, and TNF-α and inhibited those of anti-inflammatory factors TGF-ß and IL-10. BAY, an NF-κB signaling pathway inhibitor, attenuated these changes. Reductions in the levels of ZO-1, occludin, and claudin-1 were recovered in response to BAY. Our data reveal the endocytosis and exocytosis mechanism of Neu5Gc and prove that Neu5Gc can activate the canonical NF-κB signaling pathway, regulate the transcription of inflammatory factors, thereby damaging intestinal barrier function.


Subject(s)
Chlorpromazine , NF-kappa B , Humans , NF-kappa B/metabolism , Caco-2 Cells , Occludin , Claudin-1/metabolism , Brefeldin A/metabolism , Brefeldin A/pharmacology , Chlorpromazine/metabolism , Chlorpromazine/pharmacology , Monensin/metabolism , Monensin/pharmacology , Nystatin/metabolism , Nystatin/pharmacology , Signal Transduction , Intestinal Mucosa
11.
J Virol ; 97(3): e0146322, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36779754

ABSTRACT

Entry of influenza A viruses (IAVs) into host cells is initiated by binding to sialic acids (Sias), their primary host cell receptor, followed by endocytosis and membrane fusion to release the viral genome into the cytoplasm of the host cell. Host tropism is affected by these entry processes, with a primary factor being receptor specificity. Sias exist in several different chemical forms, including the hydroxylated N-glycolylneuraminic acid (Neu5Gc), which is found in many hosts; however, it has not been clear how modified Sias affect viral binding and entry. Neu5Gc is commonly found in many natural influenza hosts, including pigs and horses, but not in humans or ferrets. Here, we engineered HEK293 cells to express the hydoxylase gene (CMAH) that converts Neu5Ac to Neu5Gc, or knocked out the Sia-CMP transport gene (SLC35A1), resulting in cells that express 95% Neu5Gc or minimal level of Sias, respectively. H3N2 (X-31) showed significantly reduced infectivity in Neu5Gc-rich cells compared to wild-type HEK293 (>95% Neu5Ac). To determine the effects on binding and fusion, we generated supported lipid bilayers (SLBs) derived from the plasma membranes of these cells and carried out single particle microscopy. H3N2 (X-31) exhibited decreased binding to Neu5Gc-containing SLBs, but no significant difference in H3N2 (X-31)'s fusion kinetics to either SLB type, suggesting that reduced receptor binding does not affect subsequent membrane fusion. This finding suggests that for this virus to adapt to host cells rich in Neu5Gc, only receptor affinity changes are required without further adaptation of virus fusion machinery. IMPORTANCE Influenza A virus (IAV) infections continue to threaten human health, causing over 300,000 deaths yearly. IAV infection is initiated by the binding of influenza glycoprotein hemagglutinin (HA) to host cell sialic acids (Sias) and the subsequent viral-host membrane fusion. Generally, human IAVs preferentially bind to the Sia N-acetylneuraminic acid (Neu5Ac). Yet, other mammalian hosts, including pigs, express diverse nonhuman Sias, including N-glycolylneuraminic acid (Neu5Gc). The role of Neu5Gc in human IAV infections in those hosts is not well-understood, and the variant form may play a role in incidents of cross-species transmission and emergence of new epidemic variants. Therefore, it is important to investigate how human IAVs interact with Neu5Ac and Neu5Gc. Here, we use membrane platforms that mimic the host cell surface to examine receptor binding and membrane fusion events of human IAV H3N2. Our findings improve the understanding of viral entry mechanisms that can affect host tropism and virus evolution.


Subject(s)
Host Microbial Interactions , Influenza A Virus, H3N2 Subtype , Sialic Acids , Virus Internalization , Animals , Humans , HEK293 Cells , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Membrane Fusion , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism , Sialic Acids/chemistry , Sialic Acids/pharmacology , Single Molecule Imaging , Virus Attachment/drug effects , Virus Internalization/drug effects , Host Microbial Interactions/genetics , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology
12.
Transl Oncol ; 31: 101643, 2023 May.
Article in English | MEDLINE | ID: mdl-36805917

ABSTRACT

One of the forms of aberrant glycosylation in human tumors is the expression of N-glycolylneuraminic acid (Neu5Gc). The only known enzyme to biosynthesize Neu5Gc in mammals, cytidine-5'-monophosphate-N-acetylneuraminic acid (CMAH), appears to be genetically inactivated in humans. Regardless, low levels of Neu5Gc have been detected in healthy humans. Therefore, it is proposed that the presence of Neu5Gc in humans is from dietary acquisition, such as red meat. Notably, detection of elevated Neu5Gc levels has been repeatedly found in cancer tissues, cells and serum samples, thereby Neu5Gc-containing antigens may be exploited as a class of cancer biomarkers. Here we review the findings to date on using Neu5Gc-containing tumor glycoconjugates as a class of cancer biomarkers for cancer detection, surveillance, prognosis and therapeutic targets. We review the evidence that supports an emerging hypothesis of de novo Neu5Gc biosynthesis in human cancer cells as a source of Neu5Gc in human tumors, generated under certain metabolic conditions.

13.
Biochem Biophys Res Commun ; 642: 162-166, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36580827

ABSTRACT

Cutaneous melanoma is one of the most aggressive and deadly types of skin cancer and rates of disease are continuing to increase worldwide. Currently, no serum biomarkers exist for the early detection of cutaneous melanoma. Normal human cells cannot make the sialic acid sugar, Neu5Gc, yet human tumor cells express Neu5Gc and Neu5Gc-containing glycoconjugates have been proposed as tumor biomarkers. We engineered a Neu5Gc-specific lectin based on the pentameric B-subunit of the Shiga toxigenic Escherichia coli subtilase cytotoxin, termed SubB2M. We have detected elevated Neu5Gc-containing biomarkers in the sera of ovarian and breast cancer patients in a highly sensitive surface plasmon resonance (SPR)-based assay using our SubB2M lectin. Here, we used the SubB2M-SPR assay to investigate Neu5Gc-containing glycoconjugates in the serum of cutaneous melanoma patients. We found elevated total serum Neu5Gc levels in primary (n = 24) and metastatic (n = 38) patients compared to cancer-free controls (n = 34). Serum Neu5Gc levels detected with SubB2M can distinguish cutaneous melanoma patients from cancer-free controls with high sensitivity and specificity as determined by ROC curve analysis. These data indicate that serum Neu5Gc-containing glycoconjugates are a novel class of biomarkers for cutaneous melanoma, particularly for primary melanoma, and have the potential to contribute to the early diagnosis of this disease.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/diagnosis , Skin Neoplasms/diagnosis , Neuraminic Acids , Lectins , Biomarkers, Tumor , Glycoconjugates , Melanoma, Cutaneous Malignant
14.
Immunology ; 168(1): 18-29, 2023 01.
Article in English | MEDLINE | ID: mdl-36161654

ABSTRACT

Two human natural anti-carbohydrate antibodies appeared in critical evolutionary events that brought primates and hominins to brink of extinction. The first is the anti-Gal antibody, produced in Old-World monkeys (OWM), apes and humans. It binds the carbohydrate-antigen 'α-gal epitope' (Galα1-3Galß1-4GlcNAc-R) on carbohydrate-chains (glycans) synthesized by non-primate mammals, lemurs and New-World monkeys (NWM). The second is anti-N-glycolylneuraminic-acid (anti-Neu5Gc) antibody binding Neu5Gc on glycans synthesized by OWM, apes and most non-primate mammals. Ancestral OWM and apes synthesized α-gal epitopes and were eliminated ~20-30 million-years-ago (mya). Only few accidentally mutated offspring lacking α-gal epitopes, produced anti-Gal and survived. Hominin-populations living ~3 mya synthesized Neu5Gc and were eliminated, but few mutated offspring that accidently lost their ability to synthesize Neu5Gc, produced natural anti-Neu5Gc antibody. These hominins survived and ultimately evolved into present-day humans. It is argued that these two near-extinction events were likely to be the result of epidemics caused by highly virulent and lethal enveloped viruses that killed parental-populations. These viruses presented α-gal epitopes or Neu5Gc synthesized in host-cells of the parental-populations. Mutated offspring survived the epidemics because they were protected from the lethal virus by the natural anti-Gal or anti-Neu5Gc antibodies they produced due to loss of immune-tolerance to α-gal epitopes or to Neu5Gc, respectively.


Subject(s)
Hominidae , Viruses , Animals , Humans , Primates , Antibodies , Epitopes , Mammals
15.
Front Immunol ; 13: 994790, 2022.
Article in English | MEDLINE | ID: mdl-36439103

ABSTRACT

Cancer immunotherapy represents a promising approach to specifically target and treat cancer. The most common mechanisms by which monoclonal antibodies kill cells include antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity and apoptosis, but also other mechanisms have been described. 14F7 is an antibody raised against the tumor-associated antigen NeuGc GM3, which was previously reported to kill cancer cells without inducing apoptotic pathways. The antibody was reported to induce giant membrane lesions in tumor cells, with apparent changes in the cytoskeleton. Here, we investigated the effect of humanized 14F7 on HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC) in combination with LC-MS and live cell imaging. 14F7 did not kill the HeLa cells, however, it caused altered protein expression (MS data are available via ProteomeXchange with identifier PXD024320). Several cytoskeletal and nucleic-acid binding proteins were found to be strongly down-regulated in response to antibody treatment, suggesting how 14F7 may induce membrane lesions in cells that contain higher amounts of NeuGc GM3. The altered expression profile identified in this study thus contributes to an improved understanding of the unusual killing mechanism of 14F7.


Subject(s)
Neoplasms , Proteomics , Humans , HeLa Cells , Microscopy , Antibodies, Monoclonal
16.
Xenotransplantation ; 29(6): e12784, 2022 11.
Article in English | MEDLINE | ID: mdl-36250568

ABSTRACT

BACKGROUND: Antibody-mediated rejection has long been known to be one of the major organ failure mechanisms in xenotransplantation. In addition to the porcine α1,3-galactose (α1,3Gal) epitope, N-Glycolylneuraminic acid (Neu5Gc), a sialic acid, has been identified as an important porcine antigen against which most humans have pre-formed antibodies. Here we evaluate GalTKO.hCD46 lungs with an additional cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene knock-out (Neu5GcKO) in a xenogeneic ex vivo perfusion model METHODS: Eleven GalTKO.hCD46.Neu5GcKO pig lungs were perfused for up to 6 h with fresh heparinized human blood. Six of them were treated with histamine (H) blocker famotidine and 1-thromboxane synthase inhibitor Benzylimidazole (BIA) and five were left untreated. GalTKO.hCD46 lungs without Neu5GcKO (n = 18: eight untreated and 10 BIA+H treated) served as a reference. Functional parameters, blood, and tissue samples were collected at pre-defined time points throughout the perfusion RESULTS: All but one Neu5GcKO organs maintained adequate blood oxygenation and "survived" until elective termination at 6 h whereas two reference lungs failed before elective termination at 4 h. Human anti-Neu5Gc antibody serum levels decreased during the perfusion of GalTKO.hCD46 lungs by flow cytometry (∼40% IgM, 60% IgG), whereas antibody levels in Neu5GcKO lung perfusions did not fall (IgM p = .007; IgG p < .001). Thromboxane elaboration, thrombin generation, and histamine levels were significantly reduced with Neu5GcKO lungs compared to reference in the untreated groups (p = .007, .005, and .037, respectively); treatment with BIA+H masked these changes. Activation of platelets, measured as CD62P expression on circulating platelets, was lower in Neu5GcKO experiments compared to reference lungs (p = .023), whereas complement activation (as C3a rise in plasma) was not altered. MCP-1 and lactotransferin level elevations were blunted in Neu5GcKO lung perfusions (p = .007 and .032, respectively). Pulmonary vascular resistance (PVR) rise was significantly attenuated and delayed in untreated GalTKO.hCD46.Neu5GcKO lungs in comparison to the untreated GalTKO.hCD46 lungs (p = .003) CONCLUSION: Additional Neu5GcKO in GalTKO.hCD46 lungs significantly reduces parameters associated with antibody-mediated inflammation and activation of the coagulation cascade. Knock-out of the Neu5Gc sialic acid should be beneficial to reduce innate immune antigenicity of porcine lungs in future human recipients.


Subject(s)
Galactosyltransferases , Histamine , Animals , Swine , Humans , Transplantation, Heterologous , Animals, Genetically Modified , Galactosyltransferases/genetics , N-Acetylneuraminic Acid , Graft Survival , Immunoglobulin G , Graft Rejection
17.
J Dairy Res ; : 1-3, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36155637

ABSTRACT

This research communication reports concentrations of two sialic acids (SA), N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic (Neu5Gc), in fresh milk from different cow breeds throughout lactation. According to published studies, the two SA types found in animal-derived products have diverse and conflicting effects on human health, but SA content is not routinely analysed in individual milk cows samples. We measured the content of Neu5Ac and Neu5Gc in milk from Holstein Friesian (HO), Simmental (SM), Simmental × Holstein crossbred (SM×HO), and Podolica (POD) cows at 60 and 120 d following calving. HO, SM and SM×HO were reared in an intensive production while POD were raised in an extensive system. Results showed that total Neu5Ac was overall thirty times more abundant than Neu5Gc, and their concentrations were higher at 120 d than at 60 d (P < 0.001). Neu5Gc values were greater in HO, SM, and SM × HO than in POD (P < 0.001), while HO had a higher Neu5Ac value than the other three breeds (P < 0.001). These findings shed light on the differences in SA content among cow breeds and lay the groundwork for future research to select animals that produce milk with desirable characteristics for human health.

19.
Biology (Basel) ; 11(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35741423

ABSTRACT

Humans frequently interact with pigs, whose meat is also one of the primary sources of animal protein. They are one of the main species at the center of sialic acid (Sia) research. Sias are sugars at terminals of glycoconjugates, are expressed at the cell surfaces of mammals, and are important in cellular interactions. N-glycolylneuraminic acid (Neu5Gc) and N-acetylneuraminic acid (Neu5Ac) are notable Sias in mammals. Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) encodes the CMAH enzyme that biosynthesizes Neu5Gc. Although humans cannot endogenously synthesize Neu5Gc due to the inactivation of this gene by a mutation, Neu5Gc can be metabolically incorporated into human tissues from red meat consumption. Interactions between Neu5Gc and human anti-Neu5Gc antibodies have been associated with certain diseases and disorders. In this review, we summarized the sialic acid metabolic pathway, its regulation and link to viral infections, as well as the importance of the pig as a model organism in Sia research, making it a possible source of Neu5Gc antigens affecting human health. Future research in solving the structures of crucial enzymes involved in Sia metabolism, as well as their regulation and interactions with other enzymes, especially CMAH, could help to understand their function and reduce the amount of Neu5Gc.

20.
Int J Mol Sci ; 23(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35743204

ABSTRACT

Although the full primary structures of the alfa and beta subunits of reference r-hFSH-alfa and its biosimilars are identical, cell context-dependent differences in the expressing cell lines and manufacturing process can lead to variations in glycosylation profiles. In the present study, we compared the structural features of reference r-hFSH-alfa with those of five biosimilar preparations approved in different global regions outside Europe (Primapur®, Jin Sai Heng®, Follitrope®, Folisurge®, and Corneumon®) with respect to glycosylation, macro- and microheterogeneity, and other post-translational modifications and higher order structure. The mean proportion of N-glycosylation-site occupancy was highest in reference r-hFSH-alfa, decreasing sequentially in Primapur, Jin Sai Heng, Corneumon, Follisurge and Follitrope, respectively. The level of antennarity showed slightly higher complexity in Corneumon, Primapur and Follitrope versus reference r-hFSH-alfa, whereas Jin Sai Heng and Folisurge were aligned with reference r-hFSH-alfa across all N-glycosylation sites. Sialylation level was higher in Corneumon and Follitrope, but small differences were detected in other biosimilar preparations compared with reference r-hFSH-alfa. Jin Sai Heng showed higher levels of N-glyconeuramic acid than the other preparations. Minor differences in oxidation levels were seen among the different products. Therefore, in summary, we identified var ious differences in N-glycosylation occupancy, antennarity, sialylation and oxidation between reference r-hFSH-alfa and the biosimilar preparations analyzed.


Subject(s)
Biosimilar Pharmaceuticals , Follicle Stimulating Hormone, Human , Glycosylation , Humans , Recombinant Proteins
SELECTION OF CITATIONS
SEARCH DETAIL