Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
1.
J Tradit Complement Med ; 14(4): 435-445, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035688

ABSTRACT

Background and aim: Tradescantia spathacea (T. spathacea) is a traditional medicinal plant from Central America and its tea, obtained by infusion, has been recognized as a functional food. The aim of this work was to investigate the effects of dry tea containing biocompounds from T. spathacea tea on motor and emotional behavior, as well as tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) expression in 6-hydroxydopamine (6-OHDA)-lesioned rats. Experimental procedure: Bioactives were identified by Ultra Performance Liquid Chromatography (UPLC) and an in vivo study in male Wistar rats was run as proof of concept of neuroprotective effects of DTTS. Results and conclusion: We found 15 biocompounds that had not been previously reported in T. spathacea: the UPLC-QTOF-MS/MS allowed identification five phenolic acids, one coumarin, two flavonoids, one iridoid, one phenylpropanoid glycoside, and six fatty acid derivatives. The dry tea of T. spathacea (DTTS) presented significant antioxidant activity and high contents of phenolic compounds and flavonoids. Doses of 10, 30, and 100 mg/kg of DTTS were protective against dopaminergic neurodegeneration and exhibited modulatory action on the astrocyte-mediated neuroinflammatory response. Behavioral tests showed that 30 mg/kg of DTTS counteracted motor impairment, while 100 mg/kg produced an anxiolytic effect. The DTTS could be, therefore, a promising strategy for the management of Parkinson's disease.

2.
Bull Exp Biol Med ; 176(5): 576-580, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38724808

ABSTRACT

We performed a comparative in vitro study of the involvement of NF-κB, PI3K, cAMP, ERK1/2, p38, JAKs, STAT3, JNK, and p53-dependent intracellular signaling in the functioning of neural stem cells (NSC) under the influence of basic fibroblast growth factor (FGF) and FGF receptor agonist, diterpene alkaloid songorine. The significant differences in FGFR-mediated intracellular signaling in NSC were revealed for these ligands. In both cases, stimulation of progenitor cell proliferation occurs with the participation of NF-κB, PI3K, ERK1/2, JAKs, and STAT3, while JNK and p53, on the contrary, inhibit cell cycle progression. However, under the influence of songorin, cAMP- and p38-mediated cascades are additionally involved in the transmission of the NSC division-activating signal. In addition, unlike FGF, the alkaloid stimulates progenitor cell differentiation by activating ERK1/2, p38, JNK, p53, and STAT3.


Subject(s)
Cell Differentiation , Cell Proliferation , Diterpenes , Neural Stem Cells , Receptors, Fibroblast Growth Factor , STAT3 Transcription Factor , Signal Transduction , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Animals , STAT3 Transcription Factor/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Fibroblast Growth Factor/agonists , Signal Transduction/drug effects , Cell Proliferation/drug effects , Diterpenes/pharmacology , Cell Differentiation/drug effects , NF-kappa B/metabolism , Fibroblast Growth Factor 2/metabolism , Fibroblast Growth Factor 2/pharmacology , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/agonists , Phosphatidylinositol 3-Kinases/metabolism , Alkaloids/pharmacology , MAP Kinase Signaling System/drug effects , Janus Kinases/metabolism , Cyclic AMP/metabolism , Cells, Cultured , Rats
3.
Stroke ; 55(6): 1468-1476, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747162

ABSTRACT

BACKGROUND: Normobaric hyperoxia (NBO) has neuroprotective effects in acute ischemic stroke. Thus, we aimed to identify the optimal NBO treatment duration combined with endovascular treatment. METHODS: This is a single-center, randomized controlled, open-label, blinded-end point dose-escalation clinical trial. Patients with acute ischemic stroke who had an indication for endovascular treatment at Tianjin Huanhu Hospital were randomly assigned to 4 groups (1:1 ratio) based on NBO therapy duration: (1) control group (1 L/min oxygen for 4 hours); (2) NBO-2h group (10 L/min for 2 hours); (3) NBO-4h group (10 L/min for 4 hours); and (4) NBO-6h group (10 L/min for 6 hours). The primary outcome was cerebral infarction volume at 72 hours after randomization using an intention-to-treat analysis model. The primary safety outcome was the 90-day mortality rate. RESULTS: Between June 2022 and September 2023, 100 patients were randomly assigned to the following groups: control group (n=25), NBO-2h group (n=25), NBO-4h group (n=25), and NBO-6h group (n=25). The 72-hour cerebral infarct volumes were 39.4±34.3 mL, 30.6±30.1 mL, 19.7±15.4 mL, and 22.6±22.4 mL, respectively (P=0.013). The NBO-4h and NBO-6h groups both showed statistically significant differences (adjusted P values: 0.011 and 0.027, respectively) compared with the control group. Compared with the control group, both the NBO-4h and NBO-6h groups showed significant differences (P<0.05) in the National Institutes of Health Stroke Scale scores at 24 hours, 72 hours, and 7 days, as well as in the change of the National Institutes of Health Stroke Scale scores from baseline to 24 hours. Additionally, there were no significant differences among the 4 groups in terms of 90-day mortality rate, symptomatic intracranial hemorrhage, early neurological deterioration, or severe adverse events. CONCLUSIONS: The effectiveness of NBO therapy was associated with oxygen administration duration. Among patients with acute ischemic stroke who underwent endovascular treatment, NBO therapy for 4 and 6 hours was found to be more effective. Larger-scale multicenter studies are needed to validate these findings. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT05404373.


Subject(s)
Endovascular Procedures , Ischemic Stroke , Humans , Male , Female , Middle Aged , Endovascular Procedures/methods , Aged , Ischemic Stroke/therapy , Hyperoxia , Treatment Outcome , Combined Modality Therapy , Oxygen Inhalation Therapy/methods
4.
Stroke ; 55(6): 1660-1671, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38660789

ABSTRACT

BACKGROUND: Activation of the acid-sensing ion channels (ASICs) by tissue acidosis, a common feature of brain ischemia, contributes to ischemic brain injury, while blockade of ASICs results in protection. Cholestane-3ß,5α,6ß-triol (Triol), a major cholesterol metabolite, has been demonstrated as an endogenous neuroprotectant; however, the mechanism underlying its neuroprotective activity remains elusive. In this study, we tested the hypothesis that inhibition of ASICs is a potential mechanism. METHODS: The whole-cell patch-clamp technique was used to examine the effect of Triol on ASICs heterogeneously expressed in Chinese hamster ovary cells and ASICs endogenously expressed in primary cultured mouse cortical neurons. Acid-induced injury of cultured mouse cortical neurons and middle cerebral artery occlusion-induced ischemic brain injury in wild-type and ASIC1 and ASIC2 knockout mice were studied to examine the protective effect of Triol. RESULTS: Triol inhibits ASICs in a subunit-dependent manner. In Chinese hamster ovary cells, it inhibits homomeric ASIC1a and ASIC3 without affecting ASIC1ß and ASIC2a. In cultured mouse cortical neurons, it inhibits homomeric ASIC1a and heteromeric ASIC1a-containing channels. The inhibition is use-dependent but voltage- and pH-independent. Structure-activity relationship analysis suggests that hydroxyls at the 5 and 6 positions of the A/B ring are critical functional groups. Triol alleviates acidosis-mediated injury of cultured mouse cortical neurons and protects against middle cerebral artery occlusion-induced brain injury in an ASIC1a-dependent manner. CONCLUSIONS: Our study identifies Triol as a novel ASIC inhibitor, which may serve as a new pharmacological tool for studying ASICs and may also be developed as a potential drug for treating stroke.


Subject(s)
Acid Sensing Ion Channels , Acidosis , Cricetulus , Mice, Knockout , Animals , Acid Sensing Ion Channels/metabolism , Acid Sensing Ion Channels/genetics , Mice , CHO Cells , Acidosis/metabolism , Acidosis/drug therapy , Brain Ischemia/metabolism , Brain Ischemia/drug therapy , Neurons/drug effects , Neurons/metabolism , Cricetinae , Neuroprotective Agents/pharmacology , Cholestanols/pharmacology , Mice, Inbred C57BL , Acid Sensing Ion Channel Blockers/pharmacology , Male , Cells, Cultured
5.
Cureus ; 16(2): e54665, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38524067

ABSTRACT

OBJECTIVES: Citicoline and cerebrolysin are two unique yet contentious medications because of inconsistencies in efficacy as well as the mystery surrounding their mode of action. The current study aimed to re-validate the neuroprotective benefits of these medications and investigate the possible molecular mechanism. METHODS: Neuro-2A cells were exposed to tert-butyl hydroperoxide, a consistent in vitro model of neuronal damage caused by oxidative stress. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, acridine orange/ethidium bromide (AO-EtBr) staining, and phase-view examinations were utilized to evaluate cell survival and cytotoxicity. Real-time reverse transcription-polymerase chain reaction (RT-PCR)-based gene expression studies were conducted. KEY FINDING: Observations revealed that these two medications had modest but considerable neuroprotective effects. While the majority of the genes' expressions remained unchanged, cerebrolysin upregulated Neuregulin 1, and both upregulated brain-derived neurotrophic factor (BDNF) expression. CONCLUSION: The findings of the current study may be the first to suggest that citicoline and cerebrolysin may increase host cells' defense mechanisms (secretion neurotrophic factors) rather than carrying nutrients for cell survival. Because of its simplicity, the current study can readily be repeated to learn more about these two disputed medications for treating ischemic stroke.

6.
Biomedicines ; 12(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38540162

ABSTRACT

In light of the unsuccessful traditional therapies for Parkinson's disease (PD) overmany years, there is an unmet need for the development of novel therapies to alleviate the symptoms of PD retardation or halt the progression of the disease itself. This systematic review aims to critically update some of the most promising novel treatments including gene therapy, cell-based therapies, targeted drug delivery, and neuroprotective agents, focusing on their challenges, limitations and future directions in PD research. Gene therapy in PD is encouraging, with AAV-based approaches targeting neurotrophic factors, dopamine production, and neuronal circuits in animal and clinical trials. A promising approach to targeted drug delivery for PD involves the use of nanotechnology to create drug delivery vehicles that can traverse the blood-brain barrier and deliver medications specifically to the regions of the brain affected by PD. Neuroprotective agents are compounds that have the ability to protect neurons from degeneration and death, and they hold great promise for the evolution of disease-modifying treatments for PD. Magnetic field therapy is a promising non-invasive method that promotes neural plasticity in PD. The establishment of standardized protocols for animal and human studies, safety, ethical considerations, and cost-effectiveness are the major challenges for the future research of novel PD therapies. The development of novel therapies for PD represents a promising path toward to effective personalized disease-modifying treatments for PD.

7.
ACS Chem Neurosci ; 15(4): 783-797, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38320262

ABSTRACT

The most frequent type of age-related dementia is Alzheimer's disease. To discover novel therapeutic agents for Alzheimer's disease, a series of substituted pyrimidine derivatives were synthesized and evaluated for anti-Alzheimer's activity. All the synthesized compounds were validated by 1HNMR, 13CNMR, and HRMS to assess the structural conformance of the newly synthesized compounds. The synthesized compounds were then evaluated for their in vivo acute toxicity study. Evaluation of acute toxicity showed that none of the synthesized compounds showed toxicity up to 1000 mg/kg. After in vivo acute toxicity studies, the compounds were subjected to behavioral and biochemical studies. Compound N4-(4-chlorophenyl)-N2-(2-(piperidin-1-yl)ethyl)pyrimidine-2,4-diamine 5b (SP-2) displayed an excellent anti-Alzheimer's profile, while the rest of the compounds showed satisfactory results in comparison to donepezil. Docking studies confirmed the results obtained through in vivo experiments and showed that 5b (SP-2) showed a similar interaction to that of donepezil. Further, in silico molecular property predictions showed that 5b (SP-2) possesses favorable drug-likeness and ADME properties for CNS activity. These results implied that 5b could serve as an appropriate lead molecule for the development of anti-Alzheimer's agent.


Subject(s)
Alzheimer Disease , Humans , Donepezil/pharmacology , Donepezil/therapeutic use , Molecular Docking Simulation , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Structure-Activity Relationship
8.
Article in English | MEDLINE | ID: mdl-38091077

ABSTRACT

Polymyxin E or colistin is an effective antibiotic against MDR Gram-negative bacteria. Due to unwanted side effects, the use of this antibiotic has been limited for a long time, but in recent years, the widespread of MDR Gram-negative bacteria infections has led to its reintroduction. Neurotoxicity and nephrotoxicity are the significant dose-limiting adverse effects of colistin. Several agents with anti-inflammatory and antioxidant properties have been used for the prevention of colistin-induced neurotoxicity. This study aims to review the preclinical studies in this field to prepare guidance for future human studies. The data was achieved by searching PubMed, Scopus, and Google Scholar databases. All eligible pre-clinical studies performed on neuroprotective agents against colistin-induced neurotoxicity, which were published up to September 2023, were included. Finally, 16 studies (ten in vitro and eight in vivo) are reviewed. Apoptosis (in 13 studies), inflammatory (in four studies), and oxidative stress (in 14 studies) pathways are the most commonly reported pathways involved in colistin-induced neurotoxicity. The assessed compounds include non-herbal (e.g., ascorbic acid, rapamycin, and minocycline) and herbal (e.g., curcumin, rutin, baicalein, salidroside, and ginsenoside) agents. Besides these compounds, some other measures like transplantation of mitochondria and the use of nerve growth factor and mesenchymal stem cells could be motivating subjects for future research. Based on the data from experimental (in vitro and animal) studies, a combination of colistin with neuroprotective agents could prevent or decrease colistin-induced neurotoxicity. However, well-designed randomized clinical trials and human studies are essential for demonstrating efficacy.

9.
Transl Neurodegener ; 12(1): 50, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37946307

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly, resulting in gradual destruction of cognitive abilities. Research on the development of various AD treatments is underway; however, no definitive treatment has been developed yet. Herein, we present induced pluripotent stem cell (iPSC)-derived cortical neural stem cell secretome (CNSC-SE) as a new treatment candidate for AD and explore its efficacy. METHODS: We first assessed the effects of CNSC-SE treatment on neural maturation and electromagnetic signal during cortical nerve cell differentiation. Then to confirm the efficacy in vivo, CNSC-SE was administered to the 5×FAD mouse model through the nasal cavity (5 µg/g, once a week, 4 weeks). The cell-mediated effects on nerve recovery, amyloid beta (Aß) plaque aggregation, microglial and astrocyte detection in the brain, and neuroinflammatory responses were investigated. Metabolomics analysis of iPSC-derived CNSC-SE revealed that it contained components that could exert neuro-protective effects or amplify cognitive restorative effects. RESULTS: Human iPSC-derived CNSC-SE increased neuronal proliferation and dendritic structure formation in vitro. Furthermore, CNSC-SE-treated iPSC-derived cortical neurons acquired electrical network activity and action potential bursts. The 5×FAD mice treated with CNSC-SE showed memory restoration and reduced Aß plaque accumulation. CONCLUSIONS: Our findings suggest that the iPSC-derived CNSC-SE may serve as a potential, non-invasive therapeutic option for AD in reducing amyloid infiltration and restoring memory.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Neural Stem Cells , Humans , Mice , Animals , Aged , Alzheimer Disease/therapy , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Induced Pluripotent Stem Cells/metabolism , Administration, Intranasal , Secretome , Neural Stem Cells/metabolism
10.
Eur J Med Chem ; 261: 115871, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37852031

ABSTRACT

Aberrant activation of N-methyl-d-aspartate receptors (NMDAR) and the resulting neuronal nitric oxide synthase (nNOS) excessive activation play crucial pathogenic roles in neuronal damage caused by stroke. Disrupting postsynaptic density protein 95 (PSD95)-nNOS protein-protein interaction (PPI) has been proposed as a potential therapeutic strategy for ischemic stroke without incurring the unwanted side effects of direct NMDAR antagonism. Based on a specific PSD95-nNOS PPI inhibitor (SCR4026), we conducted a detailed study on structure-activity relationship (SAR) to discover a series of novel benzyloxy benzamide derivatives. Here, our efforts resulted in the best 29 (LY836) with improved neuroprotective activities in primary cortical neurons from glutamate-induced damage and drug-like properties. Whereafter, co-immunoprecipitation experiment demonstrated that 29 significantly blocked PSD95-nNOS association in cultured cortical neurons. Furthermore, 29 displayed good pharmacokinetic properties (T1/2 = 4.26 and 4.08 h after oral and intravenous administration, respectively) and exhibited powerful therapeutic effects in rats subjected to middle cerebral artery occlusion (MCAO) by reducing infarct size and neurological deficit score. These findings suggested that compound 29 may be a promising neuroprotection agent for the treatment of ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Stroke , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Ischemic Stroke/drug therapy , Intracellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Rats, Sprague-Dawley , Disks Large Homolog 4 Protein , Stroke/drug therapy , Stroke/metabolism , Benzamides/pharmacology , Benzamides/therapeutic use , Nitric Oxide Synthase Type I/metabolism , Brain Ischemia/drug therapy
11.
Nutr Res ; 119: 1-20, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708600

ABSTRACT

Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.


Subject(s)
Flavin-Adenine Dinucleotide , Riboflavin , Humans , Flavin-Adenine Dinucleotide/metabolism , Flavin Mononucleotide/metabolism , Pyridoxine , Coenzymes
12.
Arq. neuropsiquiatr ; 81(8): 748-755, Aug. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1513723

ABSTRACT

Abstract Astrocytes are the most abundant cell subtypes in the central nervous system. Previous studies believed that astrocytes are supporting cells in the brain, which only provide nutrients for neurons. However, recent studies have found that astrocytes have more crucial and complex functions in the brain, such as neurogenesis, phagocytosis, and ischemic tolerance. After an ischemic stroke, the activated astrocytes can exert neuroprotective or neurotoxic effects through a variety of pathways. In this review, we will discuss the neuroprotective mechanisms of astrocytes in cerebral ischemia, and mainly focus on reactive astrocytosis or glial scar, neurogenesis, phagocytosis, and cerebral ischemic tolerance, for providing new strategies for the clinical treatment of stroke.


Resumo Os astrócitos são os subtipos de células mais abundantes no sistema nervoso central. Estudos anteriores acreditavam que os astrócitos são células de suporte no cérebro, que apenas fornecem nutrientes para os neurônios. No entanto, estudos recentes descobriram que os astrócitos têm funções mais cruciais e complexas no cérebro, como neurogênese, fagocitose e tolerância isquêmica. Após um acidente vascular cerebral isquêmico, os astrócitos ativados podem exercer efeitos neuroprotetores ou neurotóxicos através de uma variedade de vias. Nesta revisão, discutiremos os mecanismos neuroprotetores dos astrócitos na isquemia cerebral, e focaremos principalmente na astrocitose reativa ou cicatriz glial, neurogênese, fagocitose e tolerância isquêmica cerebral, para fornecer novas estratégias para o tratamento clínico do acidente vascular cerebral.

13.
Molecules ; 28(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37110664

ABSTRACT

Neurodegeneration is a slow and progressive loss of neuronal cells or their function in specific regions of the brain or in the peripheral system. Among several causes responsible for the most common neurodegenerative diseases (NDDs), cholinergic/dopaminergic pathways, but also some endogenous receptors, are often involved. In this context, sigma 1 receptor (S1R) modulators can be used as neuroprotective and antiamnesic agents. Herein, we describe the identification of novel S1R ligands endowed with antioxidant properties, potentially useful as neuroprotective agents. We also computationally assessed how the most promising compounds might interact with the S1R protein's binding sites. The in silico predicted ADME properties suggested that they could be able to cross the brain-blood-barrier (BBB), and to reach the targets. Finally, the observation that at least two novel ifenprodil analogues (5d and 5i) induce an increase of the mRNA levels of the antioxidant NRF2 and SOD1 genes in SH-SY5Y cells suggests that they might be effective agents for protecting neurons against oxidative damage.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Receptors, sigma , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Ligands , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Receptors, sigma/metabolism
14.
Iran J Basic Med Sci ; 26(5): 492-503, 2023.
Article in English | MEDLINE | ID: mdl-37051107

ABSTRACT

Chemical and natural toxic compounds can harm human health through a variety of mechanisms. Nowadays, herbal therapy is widely accepted as a safe method of treating toxicity. Garcinia mangostana (mangosteen) is a tree in the Clusiaceae family, and isoprenylated xanthones, its main constituents, are a class of secondary metabolites having a variety of biological properties, such as anti-inflammatory, anti-oxidant, pro-apoptotic, anti-proliferative, antinociceptive, neuroprotective, hypoglycemic, and anti-obesity. In this review, the protective activities of mangosteen and its major components against natural and chemical toxicities in both in vivo and in vitro experiments were evaluated. The protective effects of mangosteen and its components are mediated primarily through oxidative stress inhibition, a decrease in the number of inflammatory cells such as lymphocytes, neutrophils, and eosinophils, reduction of inflammatory mediators such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), cyclooxygenase-2 (COX-2), prostaglandin (PG) E2, inducible nitric oxide synthase, and nuclear factor-ĸB (NF-ĸB), modulation of apoptosis and mitogen-activated protein kinase (MAPK) signaling pathways, reducing p65 entrance into the nucleus, α-smooth muscle actin (α-SMA), transforming growth factor ß1 (TGFß1), improving histological conditions, and inhibition in acetylcholinesterase activity.

15.
Int J Mol Sci ; 24(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37047062

ABSTRACT

Cerebellar ataxia is a neurodegenerative disorder with no definitive treatment. Although previous study demonstrated the neuroprotective effects of Hericium erinaceus (H.E.), the mechanisms of H.E. treatment on the neuroinflammatory response, neurotransmission, and related metabolites remain largely unknown. We demonstrated that 3-AP rats treated with 25 mg/kg H.E. extracts had improved motor coordination and balance in the accelerated rotarod and rod tests. We showed that the H.E. treatment upregulated the expression of Tgfb1, Tgfb2, and Smad3 genes to levels comparable to those in the non-3-AP control group. Interestingly, we also observed a significant correlation between Tgfb2 gene expression and rod test performance in the 3-AP saline group, but not in the non-3-AP control or H.E.+3-AP groups, indicating a relationship between Tgfb2 gene expression and motor balance in the 3-AP rat model. Additionally, we also found that the H.E. treatment increased mitochondrial COX-IV protein expression and normalized dopamine-serotonin neurotransmission and metabolite levels in the cerebellum of the H.E.+3-AP group compared to the 3-AP saline group. In conclusion, our findings suggest that the H.E. treatment improved motor function in the 3-AP rat model, which was potentially mediated through neuroprotective mechanisms involving TGFB2-Smad3 signaling via normalization of neurotransmission and metabolic pathways.


Subject(s)
Cerebellar Ataxia , Rats , Animals , Cerebellar Ataxia/drug therapy , Cerebellar Ataxia/genetics , Cerebellar Ataxia/metabolism , Hericium , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use
16.
Front Aging Neurosci ; 15: 1137197, 2023.
Article in English | MEDLINE | ID: mdl-36949774

ABSTRACT

Background: Recent studies on renin-angiotensin system (RAS) inhibitors have reported a reduced risk of Alzheimer's disease (AD). Nevertheless, the effect of RAS inhibitor type and blood-brain barrier (BBB) permeability on the risk of AD is still unknown. Objectives: To assess the effects of RAS inhibitors on the risk of AD based on the type and BBB permeability and investigate the cumulative duration-response relationship. Methods: This was a population-based retrospective cohort study using the Korean Health Insurance Review and Assessment database records from 2008 to 2019. The data of patients diagnosed with ischemic heart disease between January 2009 and June 2009 were identified for inclusion in the analyses. Propensity score matching was used to balance RAS inhibitor users with non-users. The association between the use of RAS inhibitors and incident AD was evaluated using a multivariate Cox proportional hazard regression model. The results are presented in adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs). Results: Among the 57,420 matched individuals, 7,303 developed AD within the follow-up period. While the use of angiotensin-converting enzyme inhibitors (ACEIs) was not significantly associated with AD risk, the use of angiotensin II receptor blockers (ARBs) showed a significant association with reduced risk of incident AD (aHR = 0.94; 95% CI = 0.90-0.99). Furthermore, the use of BBB-crossing ARBs was associated with a lower risk of AD (aHR = 0.83; 95% CI = 0.78-0.88) with a cumulative duration-response relationship. A higher cumulative dose or duration of BBB-crossing ARBs was associated with a gradual decrease in AD risk (P for trend < 0.001). No significant association between the use of ACEIs and the risk of AD was observed regardless of BBB permeability. Conclusion: Long-term use of BBB-crossing ARBs significantly reduced the risk of AD development. The finding may provide valuable insight into disease-modifying drug options for preventing AD in patients with cardiovascular diseases.

17.
Clin Ophthalmol ; 17: 321-327, 2023.
Article in English | MEDLINE | ID: mdl-36741078

ABSTRACT

Age-related macular degeneration (AMD) is characterized as a chronic, multifactorial disease and is the leading cause of irreversible blindness. Advanced AMD is classified as neovascular (wet) AMD and non-neovascular (dry) AMD. Dry AMD can progress to a more advanced form that manifests as geographic atrophy (GA), which significantly threatens vision, leading to progressive and irreversible loss of visual function. There are currently no approved therapeutics commercially available for GA patients. However, data from various clinical trials have demonstrated favorable results with significant reduction in GA lesion growth. This review furthers the understanding of the pathophysiology of GA, as well as current clinical trial data on investigational therapeutics.

18.
Neurodegener Dis Manag ; 13(1): 47-70, 2023 02.
Article in English | MEDLINE | ID: mdl-36314777

ABSTRACT

The multiple sclerosis (MS) neurotherapeutic landscape is rapidly evolving. New disease-modifying therapies (DMTs) with improved efficacy and safety, in addition to an expanding pipeline of agents with novel mechanisms, provide more options for patients with MS. While treatment of MS neuroinflammation is well tailored in the existing DMT armamentarium, concerted efforts are currently underway for identifying neuropathological targets and drug discovery for progressive MS. There is also ongoing research to develop agents for remyelination and neuroprotection. Further insights are needed to guide DMT initiation and sequencing as well as to determine the role of autologous stem cell transplantation in relapsing and progressive MS. This review provides a summary of these updates.


The range of treatment options available for multiple sclerosis (MS) is growing, with the aim of developing safer and more effective therapies. There are ongoing efforts to discover additional mechanisms of MS and create drugs that can target these pathways. A more tailored approach will allow better personalization of drug selection for patients. There is currently a special focus on identifying treatment targets for progressive MS, where there are only a limited number of therapeutic options available to date. In addition, there is ongoing research aimed at developing stem cell therapies, drugs that provide neuroprotection and agents that can potentially reverse the damage caused by MS through remyelination. In this review, these topics are summarized.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Transplantation, Autologous , Neuroprotection , Multiple Sclerosis, Relapsing-Remitting/drug therapy
19.
Med Gas Res ; 13(2): 72-77, 2023.
Article in English | MEDLINE | ID: mdl-36204786

ABSTRACT

Diabetic peripheral neuropathy (DPN) is a complex disorder caused by long-standing diabetes. Oxidative stress was considered the critical creed in this DPN pathophysiology. Hydrogen has antioxidative effects on diabetes mellitus and related complications. However, there is still no concern on the beneficial effects of hydrogen in DPN. This paper aimed to evaluate the effects of exogenous hydrogen to reduce the severity of DPN in streptozotocin-induced diabetic rats. Compared with hydrogen-rich saline treatment, hydrogen inhalation significantly reduced blood glucose levels in diabetic rats in the 4th and 8th weeks. With regard to nerve function, hydrogen administration significantly attenuated the decrease in the velocity of motor nerve conduction in diabetic animals. In addition, hydrogen significantly attenuated oxidative stress by reducing the level of malondialdehyde, reactive oxygen species, and 8-hydroxy-2-deoxyguanosine and meaningfully enhanced the antioxidant capability by partially restoring the activities of superoxide dismutase. Further studies showed that hydrogen significantly upregulated the expression of nuclear factor erythroid-2-related factor 2 and downstream proteins such as catalase and hemeoxygenase-1 in the nerves of diabetic animals. Our paper showed that hydrogen exerts significant protective effects in DPN by downregulating oxidative stress via the pathway of nuclear factor erythroid-2-related factor 2, which suggests its potential value in clinical applications.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Neuroprotective Agents , Animals , Rats , Antioxidants/metabolism , Antioxidants/pharmacology , Blood Glucose , Catalase/metabolism , Catalase/pharmacology , Catalase/therapeutic use , Deoxyguanosine/metabolism , Deoxyguanosine/pharmacology , Deoxyguanosine/therapeutic use , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Hydrogen , Malondialdehyde , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress , Reactive Oxygen Species , Streptozocin , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Superoxide Dismutase/therapeutic use
20.
CNS Neurosci Ther ; 29(1): 104-110, 2023 01.
Article in English | MEDLINE | ID: mdl-36184822

ABSTRACT

AIMS: The objective of this article is to summarize the state of the literature surrounding the use of ketamine as a neuroprotective agent following cardiac arrest. METHODS: Five electronic databases were used to search for studies related to the use of ketamine for neuroprotection following cardiac arrest. This search was performed once in May 2020, and an updated search was conducted in May 2021 and March 2022. RESULTS: All searches combined retrieved 181 results; no clinical trials were identified. As such, the authors were limited to writing a scoping review of the literature rather than a systematic review. CONCLUSIONS: The current state of the literature describes the mechanism of action of ketamine as a neuroprotective agent through its action as an NMDA antagonist. There is evidence of its efficacy as a neuroprotective agent in preclinical models of cardiac arrest. Current published clinical work supports the use of ketamine ameliorating neurologic outcomes in other conditions such as epilepsy, traumatic brain injury, and depression. The current state of the literature is reflective of the notion that the use of ketamine following cardiac arrest may result in improved neurologic outcomes. Future research directions should focus on the use of ketamine as a possible clinical intervention following cardiac arrest.


Subject(s)
Brain Injuries, Traumatic , Heart Arrest , Ketamine , Neuroprotective Agents , Humans , Ketamine/therapeutic use , Ketamine/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Heart Arrest/complications , Heart Arrest/drug therapy , Neuroprotection , Brain Injuries, Traumatic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL