Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters











Publication year range
1.
Elife ; 132024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836552

ABSTRACT

Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.


Subject(s)
Mice, Knockout , Nuclear Proteins , Osteoclasts , Osteogenesis , Animals , Mice , Centrosome/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Osteoblasts/metabolism , Osteoclasts/metabolism
2.
EMBO J ; 42(17): e109738, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37401899

ABSTRACT

The centrosome linker joins the two interphase centrosomes of a cell into one microtubule organizing center. Despite increasing knowledge on linker components, linker diversity in different cell types and their role in cells with supernumerary centrosomes remained unexplored. Here, we identified Ninein as a C-Nap1-anchored centrosome linker component that provides linker function in RPE1 cells while in HCT116 and U2OS cells, Ninein and Rootletin link centrosomes together. In interphase, overamplified centrosomes use the linker for centrosome clustering, where Rootletin gains centrosome linker function in RPE1 cells. Surprisingly, in cells with centrosome overamplification, C-Nap1 loss prolongs metaphase through persistent activation of the spindle assembly checkpoint indicated by BUB1 and MAD1 accumulation at kinetochores. In cells lacking C-Nap1, the reduction of microtubule nucleation at centrosomes and the delay in nuclear envelop rupture in prophase probably cause mitotic defects like multipolar spindle formation and chromosome mis-segregation. These defects are enhanced when the kinesin HSET, which normally clusters multiple centrosomes in mitosis, is partially inhibited indicating a functional interplay between C-Nap1 and centrosome clustering in mitosis.


Subject(s)
Cell Cycle Proteins , Centrosome , Centrosome/metabolism , Cell Cycle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Interphase/physiology , Mitosis , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
3.
Biochem Biophys Res Commun ; 566: 75-79, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34118594

ABSTRACT

Anti-angiogenesis serves as an effective tumor therapy approach. In a previous study, we found that ß3-endonexin expressed in vascular endothelial cells was involved in promoting proliferation and angiogenesis partially by facilitating VEGF expression. However, it still remains unclear if ß3-endonexin in vascular endothelial cells also employs other mechanisms in regulating angiogenesis. In this study, we utilized a ß3-endonexin mutant (M2) carrying a defective nuclear localization sequence to disrupt its nuclear localization and evaluated its ability to promote HUVEC proliferation and formation of tube-like vascular structures. In addition, we performed yeast 2-hybrid assay to identify potential functional effectors of ß3-endonexin. We found that both wild type ß3-endonexin and the M2 mutant could localize to centrosomes in HUVECs and both were able to promote HUVEC proliferation and formation of vascular structures. However, the M2 mutant failed to promote VEGF expression in HUVECs. Further, we found that both wild type ß3-endonexin and the M2 mutant were capable of binding to ninein, a centrosomal protein with a proangiogenic effect. Knockdown of ninein in HUVECs impeded centrosome localization of wild type ß3-endonexin and the M2 mutant and inhibited HUVEC proliferation and formation of vascular structures. Taken together, these findings suggest that ß3-endonexin interacts with centrosome ninein and contributes to HUVEC proliferation and formation of vascular structures.


Subject(s)
Cytoskeletal Proteins/metabolism , Endothelial Cells/cytology , Nuclear Proteins/metabolism , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Physiologic , Protein Interaction Maps
4.
Cell Rep ; 33(11): 108495, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326788

ABSTRACT

Neurogenesis in the developing neocortex relies on extensive mitosis of radial glial cells (RGCs) in the apical surface. The nuclear migration of epithelial-like RGCs is fundamentally important for proper mitosis, but how the apical processes of RGCs are anchored to ensure the nucleokinetic behavior of RGCs remains unclear. Here we find that Talpid3, related to Joubert syndrome, is localized to the mother centriole of RGCs and is required for their apical mitosis. Genetic silencing of Talpid3 causes abnormal RGC delamination and thereby impairs their interkinetic nuclear migration in both cell-autonomous and non-autonomous manners. Further analyses reveal that Talpid3 associates with Ninein to regulate microtubule organization and maintain the integrity of adherens junctions to anchor RGCs. Moreover, genetic ablation of Talpid3 results in synchronized, ectopic mitosis of neural progenitors and dysregulated neurogenesis. Our study provides an intriguing perspective for the non-ciliogenic role of centriolar proteins in mediating cortical neurogenesis.


Subject(s)
Cell Cycle Proteins/metabolism , Centrosome/metabolism , Neurogenesis/immunology , Adherens Junctions/metabolism , Animals , Humans , Mice
5.
Biomed Rep ; 13(5): 45, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32934817

ABSTRACT

NINEIN serves an essential role in centrosome function as a microtubule organizing center, and in the reformation of the interphase centrosome architecture following mitosis. In the present study, the association between NINEIN Pro1111Ala (rs2236316), a missense single nucleotide polymorphism, and the risk of colorectal cancer (CRC), related to smoking and alcohol consumption habits in 200 patients with CRC and 1,141 cancer-free control participants were assessed in a case-control study performed in Japan. The results showed that the NINEIN Ala/Ala genotype compared with the Pro/Pro genotype was significantly more associated with an increased risk of CRC, and the males with the Ala/Ala genotype exhibited a significantly increased risk of CRC compared with those with Pro/Pro and Pro/Ala genotypes. Stratified analyses of the Ala/Ala genotype with CRC risk further showed an increased association in never/light drinkers (<23 g of ethanol/day), in male never/light drinkers and in male patients with rectal cancer. These findings suggest that the genetic variant of the NINEIN Pro1111Ala polymorphism has a significant effect on CRC susceptibility in the Japanese population.

6.
Elife ; 92020 04 03.
Article in English | MEDLINE | ID: mdl-32242819

ABSTRACT

Subdistal appendages (sDAPs) are centriolar elements that are observed proximal to the distal appendages (DAPs) in vertebrates. Despite the obvious presence of sDAPs, structural and functional understanding of them remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring, respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework for sDAPs that sheds light on functional understanding, surprisingly revealing coupling between DAPs and sDAPs.


Subject(s)
Centrioles/ultrastructure , Microscopy, Electron, Transmission/methods , Cell Cycle , Cell Cycle Proteins/chemistry , Cells, Cultured , Cytoskeletal Proteins/chemistry , Heat-Shock Proteins/chemistry , Humans , Microtubule-Associated Proteins/chemistry , Nuclear Proteins/chemistry
7.
J Steroid Biochem Mol Biol ; 194: 105445, 2019 11.
Article in English | MEDLINE | ID: mdl-31381969

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among reproductive-age women. Patients with non-alcoholic fatty liver disease (NAFLD) often suffer from metabolic syndrome, atherosclerosis, ischemic heart disease, and extrahepatic tumors, conferring a lower survival than the general population; therefore it is crucial to study the association between NAFLD and PCOS since it remains poorly understood. Insulin resistance (IR) plays a central role in the pathogenesis of NAFLD and PCOS; also, hyperandrogenism enhances IR in these patients. IR, present in the NAFLD-PCOS association could decrease the hepatic production of sex hormone-binding globulin through a possible regulation mediated by hepatocyte nuclear factor 4 alpha. On the other hand, apoptotic processes initiated by androgens actively contribute to the progression of NAFLD. Considering the association between the two conditions, the screening of women with PCOS for the presence of NAFLD appears reasonable. The pathophysiological mechanisms of PCOS-NAFLD association and the initial approach will be reviewed here.


Subject(s)
Non-alcoholic Fatty Liver Disease , Polycystic Ovary Syndrome , Disease Progression , Female , Humans , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Polycystic Ovary Syndrome/epidemiology , Polycystic Ovary Syndrome/metabolism , Risk Factors
8.
Int J Mol Sci ; 20(5)2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30813567

ABSTRACT

A set of tissue-specific splicing factors are thought to govern alternative splicing events during neural progenitor cell (NPC)-to-neuron transition by regulating neuron-specific exons. Here, we propose one such factor, RNA-binding protein Quaking 5 (Qki5), which is specifically expressed in the early embryonic neural stem cells. We performed mRNA-SEQ (Sequence) analysis using mRNAs obtained by developing cerebral cortices in Qk (Quaking) conditional knockout (cKO) mice. As expected, we found a large number of alternative splicing changes between control and conditional knockouts relative to changes in transcript levels. DAVID (The Database for Annotation, Visualization and Integrated Discovery) and Metascape analyses suggested that the affected spliced genes are involved in axon development and microtubule-based processes. Among these, the mRNA coding for the Ninein protein is listed as one of Qki protein-dependent alternative splicing targets. Interestingly, this exon encodes a very long polypeptide (2121 nt), and has been previously defined as a dynamic RNA switch during the NPC-to-neuron transition. Additionally, we validated that the regulation of this large exon is consistent with the Qki5-dependent alternative exon inclusion mode suggested by our previous Qki5 HITS-CLIP (high throughput sequencing-cross linking immunoprecipitation) analysis. Taken together, these data suggest that Qki5 is an important factor for alternative splicing in the NPC-to-neuron transition.


Subject(s)
Cytoskeletal Proteins/metabolism , Exons/genetics , Gene Expression Regulation , Neural Stem Cells/metabolism , Nuclear Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA/genetics , Alternative Splicing/genetics , Animals , Cytoskeleton/metabolism , Gene Ontology , Mice, Transgenic , RNA/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA
9.
Cells ; 7(9)2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30154378

ABSTRACT

The centrosome is the best-understood microtubule-organizing center (MTOC) and is essential in particular cell types and at specific stages during Drosophila development. The centrosome is not required zygotically for mitosis or to achieve full animal development. Nevertheless, centrosomes are essential maternally during cleavage cycles in the early embryo, for male meiotic divisions, for efficient division of epithelial cells in the imaginal wing disc, and for cilium/flagellum assembly in sensory neurons and spermatozoa. Importantly, asymmetric and polarized division of stem cells is regulated by centrosomes and by the asymmetric regulation of their microtubule (MT) assembly activity. More recently, the components and functions of a variety of non-centrosomal microtubule-organizing centers (ncMTOCs) have begun to be elucidated. Throughout Drosophila development, a wide variety of unique ncMTOCs form in epithelial and non-epithelial cell types at an assortment of subcellular locations. Some of these cell types also utilize the centrosomal MTOC, while others rely exclusively on ncMTOCs. The impressive variety of ncMTOCs being discovered provides novel insight into the diverse functions of MTOCs in cells and tissues. This review highlights our current knowledge of the composition, assembly, and functional roles of centrosomal and non-centrosomal MTOCs in Drosophila.

10.
Open Biol ; 7(2)2017 02.
Article in English | MEDLINE | ID: mdl-28179500

ABSTRACT

Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs.


Subject(s)
Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Neoplasm Proteins/metabolism , Animals , Cell Differentiation , Cell Line , Cell Polarity , Cell Shape , Dogs , Epithelial Cells/cytology , Gene Knockout Techniques , Humans , Madin Darby Canine Kidney Cells , Mice
11.
Cell ; 166(5): 1147-1162.e15, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27565344

ABSTRACT

Alternative splicing is prevalent in the mammalian brain. To interrogate the functional role of alternative splicing in neural development, we analyzed purified neural progenitor cells (NPCs) and neurons from developing cerebral cortices, revealing hundreds of differentially spliced exons that preferentially alter key protein domains-especially in cytoskeletal proteins-and can harbor disease-causing mutations. We show that Ptbp1 and Rbfox proteins antagonistically govern the NPC-to-neuron transition by regulating neuron-specific exons. Whereas Ptbp1 maintains apical progenitors partly through suppressing a poison exon of Flna in NPCs, Rbfox proteins promote neuronal differentiation by switching Ninein from a centrosomal splice form in NPCs to a non-centrosomal isoform in neurons. We further uncover an intronic human mutation within a PTBP1-binding site that disrupts normal skipping of the FLNA poison exon in NPCs and causes a brain-specific malformation. Our study indicates that dynamic control of alternative splicing governs cell fate in cerebral cortical development.


Subject(s)
Alternative Splicing , Cerebral Cortex/embryology , Neural Stem Cells/cytology , Neurogenesis/genetics , Neurons/cytology , Animals , Centrosome/metabolism , Cerebral Cortex/abnormalities , Cerebral Cortex/cytology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Exons , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Mice , Neural Stem Cells/metabolism , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splicing Factors
12.
Proc Natl Acad Sci U S A ; 113(26): 7177-82, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27298340

ABSTRACT

Foreign DNA molecules and chromosomal fragments are generally eliminated from proliferating cells, but we know little about how mammalian cells prevent their propagation. Here, we show that dividing human and canine cells partition transfected plasmid DNA asymmetrically, preferentially into the daughter cell harboring the young centrosome. Independently of how they entered the cell, most plasmids clustered in the cytoplasm. Unlike polystyrene beads of similar size, these clusters remained relatively immobile and physically associated to endoplasmic reticulum-derived membranes, as revealed by live cell and electron microscopy imaging. At entry of mitosis, most clusters localized near the centrosomes. As the two centrosomes split to assemble the bipolar spindle, predominantly the old centrosome migrated away, biasing the partition of the plasmid cluster toward the young centrosome. Down-regulation of the centrosomal proteins Ninein and adenomatous polyposis coli abolished this bias. Thus, we suggest that DNA clustering, cluster immobilization through association to the endoplasmic reticulum membrane, initial proximity between the cluster and centrosomes, and subsequent differential behavior of the two centrosomes together bias the partition of plasmid DNA during mitosis. This process leads to their progressive elimination from the proliferating population and might apply to any kind of foreign DNA molecule in mammalian cells. Furthermore, the functional difference of the centrosomes might also promote the asymmetric partitioning of other cellular components in other mammalian and possibly stem cells.


Subject(s)
DNA/metabolism , Endoplasmic Reticulum/metabolism , Animals , Cell Division , Centrosome/metabolism , Cytoskeletal Proteins/genetics , Dogs , HeLa Cells , Humans , Madin Darby Canine Kidney Cells , Mitosis , Nuclear Proteins/genetics , Plasmids , Transfection
13.
Genes Brain Behav ; 15(4): 367-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26948279

ABSTRACT

Genetic differences in acute behavioral responses to ethanol contribute to the susceptibility to alcohol use disorder and the reduction of anxiety is a commonly reported motive underlying ethanol consumption among alcoholics. Therefore, we studied the genetic variance in anxiolytic-like responses to ethanol across the BXD recombinant inbred (RI) mouse panel using the light-dark transition model of anxiety. Strain-mean genetic mapping and a mixed-model quantitative trait loci (QTL) analysis replicated several previously published QTL for locomotor activity and identified several novel anxiety-related loci. Significant loci included a chromosome 11 saline anxiety-like QTL (Salanq1) and a chromosome 12 locus (Etanq1) influencing the anxiolytic-like response to ethanol. Etanq1 was successfully validated by studies with BXD advanced intercross strains and fine-mapped to a region comprising less than 3.5 Mb. Through integration of genome-wide mRNA expression profiles of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens and ventral midbrain) across the BXD RI panel, we identified high priority candidate genes within Etanq1, the strongest of which was Ninein (Nin), a Gsk3ß-interacting protein that is highly expressed in the brain.


Subject(s)
Alcohol Drinking/genetics , Alcohol-Related Disorders/genetics , Ethanol/pharmacology , Quantitative Trait Loci , Animals , Anti-Anxiety Agents/pharmacology , Chromosome Mapping , Genetic Association Studies , Genetic Variation , Male , Mice
14.
Elife ; 4: e08649, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26371552

ABSTRACT

Non-centrosomal microtubule arrays assemble in differentiated tissues to perform mechanical and transport-based functions. In this study, we identify Caenorhabditis elegans NOCA-1 as a protein with homology to vertebrate ninein. NOCA-1 contributes to the assembly of non-centrosomal microtubule arrays in multiple tissues. In the larval epidermis, NOCA-1 functions redundantly with the minus end protection factor Patronin/PTRN-1 to assemble a circumferential microtubule array essential for worm growth and morphogenesis. Controlled degradation of a γ-tubulin complex subunit in this tissue revealed that γ-tubulin acts with NOCA-1 in parallel to Patronin/PTRN-1. In the germline, NOCA-1 and γ-tubulin co-localize at the cell surface, and inhibiting either leads to a microtubule assembly defect. γ-tubulin targets independently of NOCA-1, but NOCA-1 targeting requires γ-tubulin when a non-essential putatively palmitoylated cysteine is mutated. These results show that NOCA-1 acts with γ-tubulin to assemble non-centrosomal arrays in multiple tissues and highlight functional overlap between the ninein and Patronin protein families.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nuclear Proteins/metabolism , Protein Multimerization , Tubulin/metabolism , Animals
15.
Endocrinol Metab (Seoul) ; 30(1): 53-7, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25827458

ABSTRACT

BACKGROUND: Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis. METHODS: We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles. RESULTS: Ninein signals were significantly impaired in CPAP-depleted cells. CONCLUSION: The results suggest that CPAP is required for mother centriole maturation in mammalian cells. The selective absence of centriolar appendages in young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells.

16.
Article in English | WPRIM (Western Pacific) | ID: wpr-150119

ABSTRACT

BACKGROUND: Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis. METHODS: We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles. RESULTS: Ninein signals were significantly impaired in CPAP-depleted cells. CONCLUSION: The results suggest that CPAP is required for mother centriole maturation in mammalian cells. The selective absence of centriolar appendages in young mother centrioles may be responsible for asymmetric spindle pole formation in CPAP-depleted cells.


Subject(s)
Humans , Brain , Cell Cycle , Centrioles , Centrosome , Microcephaly , Mitosis , Mothers , Spindle Poles
17.
Biol Open ; 2(7): 739-49, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23862022

ABSTRACT

The mammalian cerebral cortex develops from proliferative apical progenitor cells (APs) that exhibit cell cycle-dependent nuclear movement (interkinetic nuclear migration; INM), which may be important for efficient and continuous production of neurons. The Pax6 transcription factor plays a major role in INM by regulating various downstream molecules. We have previously observed abnormal INM and unstable localization of the centrosome in APs of the Pax6 homozygous mutant rat embryo. To understand the mechanisms of INM, we focused on the centrosomes of APs. One of the centrosomal proteins, ninein, is specifically localized in the centrosome of APs. We observed a dramatic downregulation of ninein in APs of the Pax6 mutant. Moreover, knockdown of ninein by RNAi induced ectopic distribution of reduced numbers of BrdU-positive (S-phase) and PH3-positive (M-phase) cells. Furthermore, time-lapsed imaging demonstrated that knockdown of ninein in vivo induced abnormal INM. Finally, we observed impaired microtubule regrowth in neural progenitors taken from Pax6 homozygous mutant rat embryos, which was recovered by via ninein overexpression. We also found that ninein knockdown enlarged the surface size area of apical endfeet of the APs. Our results suggest that ninein plays a role in the molecular machinery essential for INM by connecting microtubules to the centrosome.

18.
Matrix Biol ; 32(7-8): 387-92, 2013.
Article in English | MEDLINE | ID: mdl-23665482

ABSTRACT

Spondyloepimetaphyseal dysplasia with joint laxity-leptodactylic type (SEMDJL2) is an autosomal dominant skeletal dysplasia which is characterized by midface hypoplasia, short stature, joint laxity with dislocations, genua valga, progressive scoliosis, and slender fingers. Recently, heterozygous missense mutations in KIF22, a gene which encodes a member of the kinesin-like protein family, have been identified in sporadic as well as familial cases of SEMDJL2. In the present study homozygosity mapping and whole-exome sequencing were combined to analyze a consanguineous family with a phenotype resembling SEMDJL2. We identified homozygous missense mutations in the two nearby genes NIN (Ninein) and POLE2 (DNA polymerase epsilon subunit B) which segregate with the disease in the family and were not present in 500 healthy control individuals and in the 1094 control individuals contained within the 1000-genomes database. We present several lines of evidence that mutant Ninein is most likely causative for the SEMDJL2-like phenotype. The centrosomal protein NIN shows a functional relationship with KIF22 and other proteins associated with chromosome congression/movement, centrosomal function, and ciliogenesis, which have been associated with skeletal dysplasias. Moreover, compound heterozygous missense mutations at more N-terminal positions of Ninein have very recently been identified in a family with microcephalic primordial dwarfism. Together with the present report this strongly supports a fundamental role of Ninein in skeletal development.


Subject(s)
Cytoskeletal Proteins/genetics , Joint Instability/genetics , Joint Instability/pathology , Mutation, Missense/genetics , Nuclear Proteins/genetics , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Amino Acid Sequence , Base Sequence , Chromosome Mapping , DNA Polymerase II/genetics , Gene Components , Humans , Molecular Sequence Data , Pedigree , Polymorphism, Single Nucleotide/genetics , Protein Isoforms/genetics , Sequence Alignment , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL