Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26.843
Filter
1.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003069

ABSTRACT

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Nitrification , Nitrogen/metabolism , Soil/chemistry , Denitrification , Wastewater/chemistry , Sewage/microbiology , Soil Microbiology , Zeolites/chemistry , Phosphorus/metabolism , Bioreactors/microbiology , Bacteria/metabolism
2.
J Phycol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980982

ABSTRACT

Phaeocystis globosa is an important bloom-forming marine phytoplankton species that often accumulates to large levels in temperate and tropical waters and has significant impacts on food webs and biogeochemical cycles. It can form "giant" colonies that reach 3 cm in diameter. Microscopic observations, colony elemental composition, and pigment composition were analyzed to assess the characteristics of colonies as a function of colony size. Particulate organic carbon (POC) per unit surface area, colonial cell density, and chlorophyll a per unit surface area all increased with colony size, in contrast to results from temperate waters. Cellular chl a averaged 0.85 pg chl · cell-1. Colonies had both photosynthetic and protective pigments, with fucoxanthin being the dominant accessory pigment. Based on chl a and pigment levels, it appears colonies were acclimated to relatively low irradiances, likely due to their life cycle and the extremely turbulent environment in which they grew. Mucous carbon ranged from 16.2% to 79.2% of the total POC, and mucous carbon per unit surface area increased with colony size, suggesting that the mucous envelope did not thin as the colony grew. Based on elemental composition, nitrogen did not appear to limit growth, but phosphorus:carbon ratios were similar to those of P-limited cultures. Giant colonies represent an extreme response to the environment, but they do not appear to have greatly different characteristics than other tropical strains.

4.
New Phytol ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970455

ABSTRACT

The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.

5.
Mycologia ; : 1-12, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949868

ABSTRACT

Fungi occupy important environmental, cultural, and socioeconomic roles. However, biological research of this diverse kingdom has lagged behind that of other phylogenetic groups. This is partially the result of the notorious difficulty in culturing a diverse array of filamentous fungal species due to their (i) often unpredictable growth, (ii) unknown preferences for culturing conditions, and (iii) long incubation times compared with other microorganisms such as bacteria and yeasts. Given the complexity associated with concurrently culturing diverse fungal species, developing practical methods for preserving as many species as possible for future research is vital. The widely accepted best practice for preserving fungal tissue is the use of cryogenic biobanking at -165 C, allowing for the preservation and documentation of stable genetic lineages, thus enabling long-term diversity-centered research. Despite the extensive literature on fungal cryopreservation, substantial barriers remain for implementation of cryogenic biobanks in smaller mycological laboratories. In this work, we present practical considerations for the establishment of a fungal culture biobank, as well as provide evidence for the viability of 61 fungal genera in cryogenic storage. By providing a pragmatic methodology for cryogenically preserving and managing many filamentous fungi, we show that creating a biobank can be economical for independently owned and operated mycology laboratories, which can serve as a long-term resource for biodiversity, conservation, and strain maintenance.

6.
Angew Chem Int Ed Engl ; : e202410107, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949951

ABSTRACT

Diazoalkenes readily react with tert­butylphosphaalkyne (tBuCP) and white phosphorus (P4) to afford novel phosphorus heterocycles, 3H­1,2,4-diazamonophospholes and 1,2,3,4-diazadiphospholes. Both species represent rare examples of neutral heterophospholes. The mechanism of formation and the electronic structures of these formal (3+2) cycloaddition products were analyzed computationally. The new phospholes form structurally diverse coordination compounds with transition metal and main group elements. Given the growing number of stable diazoalkenes, this work offers a straightforward route to neutral aza(di-)phospholes as a new ligand class.

7.
PeerJ ; 12: e17461, 2024.
Article in English | MEDLINE | ID: mdl-38952992

ABSTRACT

Agricultural soils contaminated with heavy metals poison crops and disturb the normal functioning of rhizosphere microbial communities. Different crops and rhizosphere microbial communities exhibit different heavy metal resistance mechanisms. Here, indoor pot studies were used to assess the mechanisms of grain and soil rhizosphere microbial communities on chromium (Cr) stress. Millet grain variety 'Jingu 21' (Setaria italica) and soil samples were collected prior to control (CK), 6 hours after (Cr_6h), and 6 days following (Cr_6d) Cr stress. Transcriptomic analysis, high-throughput sequencing and quantitative polymerase chain reaction (qPCR) were used for sample determination and data analysis. Cr stress inhibited the expression of genes related to cell division, and photosynthesis in grain plants while stimulating the expression of genes related to DNA replication and repair, in addition to plant defense systems resist Cr stress. In response to chromium stress, rhizosphere soil bacterial and fungal community compositions and diversity changed significantly (p < 0.05). Both bacterial and fungal co-occurrence networks primarily comprised positively correlated edges that would serve to increase community stability. However, bacterial community networks were larger than fungal community networks and were more tightly connected and less modular than fungal networks. The abundances of C/N functional genes exhibited increasing trends with increased Cr exposure. Overall, these results suggest that Cr stress primarily prevented cereal seedlings from completing photosynthesis, cell division, and proliferation while simultaneously triggering plant defense mechanisms to resist the toxic effects of Cr. Soil bacterial and fungal populations exhibited diverse response traits, community-assembly mechanisms, and increased expression of functional genes related to carbon and nitrogen cycling, all of which are likely related to microbial survival during Cr stress. This study provides new insights into resistance mechanisms, microbial community structures, and mechanisms of C/N functional genes responses in cereal plants to heavy metal contaminated agricultural soils. Portions of this text were previously published as part of a preprint (https://www.researchsquare.com/article/rs-2891904/v1).


Subject(s)
Chromium , Edible Grain , Rhizosphere , Soil Microbiology , Soil Pollutants , Chromium/toxicity , Chromium/adverse effects , Chromium/metabolism , Soil Pollutants/toxicity , Soil Pollutants/adverse effects , Edible Grain/microbiology , Stress, Physiological/drug effects , Fungi/drug effects , Fungi/genetics , Microbiota/drug effects , Bacteria/genetics , Bacteria/drug effects , Bacteria/metabolism
8.
Am J Bot ; : e16363, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956859

ABSTRACT

PREMISE: Legumes establish mutualistic interactions with pollinators and nitrogen (N)-fixing bacteria that are critical for plant reproduction and ecosystem functioning. However, we know little about how N-fixing bacteria and soil nutrient availability affect plant attractiveness to pollinators. METHODS: In a two-factorial greenhouse experiment to assess the impact of N-fixing bacteria and soil types on floral traits and attractiveness to pollinators in Chamaecrista latistipula (Fabaceae), plants were inoculated with N-fixing bacteria (NF+) or not (NF-) and grown in N-rich organic soil (+N organic soil) or N-poor sand soil (-N sand soil). We counted buds and flowers and measured plant size during the experiment. We also measured leaf, petal, and anther reflectance with a spectrophotometer and analyzed reflectance curves. Using the bee hexagon model, we estimated chromatic contrasts, a crucial visual cues for attracting bees that are nearby and more distant. RESULTS: NF+ plants in -N sand soil had a high floral display and color contrasts. On the other hand, NF- plants and/or plants in +N organic soil had severely reduced floral display and color contrasts, decreasing floral attractiveness to bee pollinators. CONCLUSIONS: Our findings indicate that the N-fixing bacteria positively impact pollination, particularly when nutrients are limited. This study provides insights into the dynamics of plant-pollinator interactions and underscores the significant influence of root symbionts on key floral traits within tropical ecosystems. These results contribute to understanding the mechanisms governing mutualisms and their consequences for plant fitness and ecological dynamics.

9.
Vet Med Sci ; 10(4): e1497, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952252

ABSTRACT

BACKGROUND: Annually, a massive amount of broiler litter (BL) is produced in the world, which causes soil and surface water pollution due to its high nitrogen content and microbial count. While ruminants can use this non-protein nitrogen (NPN) source for microbial protein synthesis. This issue becomes more critical when protein sources are unavailable or very expensive. One of the sources of NPN is BL which is produced at a considerable amount in the world yearly. OBJECTIVES: This aim of this research was to conduct a survey of non-thermal technologies such as electrocoagulation (EC), ultraviolet (UV) radiation, and ultrasound (US) waves on the microbial safety and nutritional value of BL samples as a protein source in ruminant diets. MATERIALS AND METHODS: The methodology of this study was based on the use of an EC device with 24 V for 60 min, UV-C light radiation (249 nm) for 1 and 10 min, and US waves with a frequency of 28 kHz for 5, 10 and 15 min to process BL samples compared with shade-dried samples. Chemical composition and nutritional values of processed samples were determined by gas production technique and measurement of fermentation parameters in vitro. RESULTS: Based on the results, microbial safety increased in the samples processed with the US (15 min). The EC method had the best performance in reducing the number of fungi and mould. However, none of the methods could remove total bacteria and fungi. Digestibility of BL was similar in shade-dried, EC, and US (10 min) treatments. In general, the use of EC and US15 without having adverse effects on gas production caused a decrease in the concentration of ammonia nitrogen. In contrast, it caused a decrease in neutral detergent fibre (NDF) in the investigated substrate. CONCLUSIONS: In general, it can be concluded that the use of US5 and EC methods without having a negative effect on the parameters of gas production and fermentation in vitro, while reducing NDF, causes a significant reduction in the microbial load, pathogens, yeast, and mould. Therefore, it is suggested to use these two methods to improve feed digestibility for other protein and feed sources.


Subject(s)
Chickens , Fermentation , Nutritive Value , Ultraviolet Rays , Animals , Ultrasonic Waves , Manure/analysis , Manure/microbiology
10.
Physiol Mol Biol Plants ; 30(6): 1029-1046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974356

ABSTRACT

Faba bean wilt disease is a key factor limiting its production. Intercropping of faba bean with wheat has been adopted as a prevalent strategy to mitigate this disease. Nitrogen fertilizer improves faba bean yield, yet wilt disease imposes limitations. However, faba bean-wheat intercropping is effective in controlling wilt disease. To investigate the effect of intercropping under varying nitrogen levels on the incidence of faba bean wilt disease, nutrient uptake, and biochemical resistance in faba bean. Field and pot experiments were conducted in two cropping systems: faba bean monocropping (M) and faba bean-wheat intercropping (I). At four nitrogen levels, we assessed the incidence rate of wilt disease, quantified nutrient uptake, and evaluated biochemical resistance indices of plants. The application of N decreased the incidence rate of wilt disease, with the lowest reduction observed in intercropping at the N2 level. N application at levels N1, N2, and N3 enhanced the content of N, P, K, Fe, and Mn as well as superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) activities and defense gene expression in monocultured plants. Additionally, these levels increased the contents of total phenols, flavonoids, soluble sugars, and soluble proteins, and all reached their maximum in intercropping at the N2 level. The application of intercropping and N effectively controlled the occurrence of faba bean wilt disease by promoting nutrient absorption, alleviating peroxidation stress, and enhancing resistance in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01466-1.

11.
Sci Total Environ ; 946: 174461, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964380

ABSTRACT

Inoculation is widely used in composting to improve the mineralization process, however, the link of fungal inoculant to humification is rarely proposed. The objective of this study was to investigate the effect of compound fungal inoculation on humification process and fungal community dynamics in corn straw composting with two different kinds of nitrogen sources [pig manure (PM) and urea (UR)]. Structural equation modeling and random forest analysis were conducted to identify key fungi and explore the fungi-mediated humification mechanism. Results showed that fungal inoculation increased the content of humic acids in PM and UR by 71.76 % and 53.01 % compared to control, respectively. High-throughput sequencing indicated that there were more key fungal genera for lignin degradation in PM especially in the later stage of composting, but a more complex fungal (genera) connections with lower humification degree was found in UR. Network analysis and random forest suggested that inoculation promoted dominant genus such as Coprinus, affecting lignocellulose degradation. Structural equation modeling indicated that fungal inoculation could promote humification by direct pathway based on lignin degradation and indirect pathway based on stimulating the indigenous microbes such as Scedosporiu and Coprinus for the accumulation of carboxyl and polyphenol hydroxyl groups. In summary, fungal inoculation is suitable to be used combining with complex nitrogen source such as pig manure in straw composting.

12.
Sci Total Environ ; 946: 174422, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964400

ABSTRACT

Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.

13.
Environ Res ; 259: 119552, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964584

ABSTRACT

BACKGROUND: Long-term exposure to ambient air pollution has been linked with all-cause mortality and cardiovascular and respiratory diseases. Suggestive associations between ambient air pollutants and neurodegeneration have also been reported, but due to the small effect and relatively rare outcomes evidence is yet inconclusive. Our aim was to investigate the associations between long-term air pollution exposure and mortality from neurodegenerative diseases. METHODS: A Dutch national cohort of 10.8 million adults aged ≥30 years was followed from 2013 until 2019. Annual average concentrations of air pollutants (ultra-fine particles (UFP), nitrogen dioxide (NO2), fine particles (PM2.5 and PM10) and elemental carbon (EC)) were estimated at the home address at baseline, using land-use regression models. The outcome variables were mortality due to amyotrophic lateral sclerosis (ALS), Parkinson's disease, non-vascular dementia, Alzheimer's disease, and multiple sclerosis (MS). Hazard ratios (HR) were estimated using Cox models, adjusting for individual and area-level socio-economic status covariates. RESULTS: We had a follow-up of 71 million person-years. The adjusted HRs for non-vascular dementia were significantly increased for NO2 (1.03; 95% confidence interval (CI) 1.02-1.05) and PM2.5 (1.02; 95%CI 1.01-1.03) per interquartile range (IQR; 6.52 and 1.47 µg/m3, respectively). The association with PM2.5 was also positive for ALS (1.02; 95%CI 0.97-1.07). These associations remained positive in sensitivity analyses and two-pollutant models. UFP was not associated with any outcome. No association with air pollution was found for Parkinson's disease and MS. Inverse associations were found for Alzheimer's disease. CONCLUSION: Our findings, using a cohort of more than 10 million people, provide further support for associations between long-term exposure to air pollutants (PM2.5 and particularly NO2) and mortality of non-vascular dementia. No associations were found for Parkinson and MS and an inverse association was observed for Alzheimer's disease.

14.
Natl Sci Rev ; 11(6): nwae201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38966072

ABSTRACT

Nitrogen is a vital element for life on Earth. Its cycling between the surface (atmosphere + crust) and the mantle has a profound influence on the atmosphere and climate. However, our understanding of the origin and evolution of Earth's nitrogen is still incomplete. This review presents an overview of the current understanding of Earth's nitrogen budget and the isotope composition of different reservoirs, laboratory constraints on deep nitrogen geochemistry, and our understanding of the origin of Earth's nitrogen and the deep nitrogen cycle through plate subduction and volcanism. The Earth may have acquired its nitrogen heterogeneously during the main accretion phase, initially from reduced, enstatite-chondrite-like impactors, and subsequently from increasingly oxidized impactors and minimal CI-chondrite-like materials. Like Earth's surface, the mantle and core are also significant nitrogen reservoirs. The nitrogen abundance and isotope composition of these three reservoirs may have been fundamentally established during the main accretion phase and have been insignificantly modified afterwards by the deep nitrogen cycle, although there is a net nitrogen ingassing into Earth's mantle in modern subduction zones. However, it is estimated that the early atmosphere of Earth may have contained ∼1.4 times the present-day atmospheric nitrogen (PAN), with ∼0.4 PAN being sequestered into the crust via biotic nitrogen fixation. In order to gain a better understanding of the origin and evolution of Earth's nitrogen, directions for future research are suggested.

15.
Food Chem ; 458: 140169, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38968713

ABSTRACT

This study was aimed to investigate the effectiveness of activated carbon on reduction in biogenic amines (BAs) via two-stage adsorption process at industrial scale, and the consequent effect was evaluated by the taste and aroma of anchovy fish sauce. Through reaction surface methodology, the optimal working paratmeters were determined to adsorbent composition of 2% activated carbon and 0.9% diatomite under temperature of 27 °C for 97 min. Upon optimized settings at industrial scale, there were effective reductions in tryptamine (by 100%), cadaverine (by 10%), histamine (by 61%), and tyramine (by 96%), while the changes in taste-related amino nitrogen, total nitrogen, free amino acids, and color were minimum. In addition, off-flavor-causing compounds, such as alcohols and acids, were removed by the developed method. From the obtained results, the activated carbon-based two-stage adsorption approach can provide the framework for control of BAs contents in fish-based sauces or stocks at commercial and industrial scales.

16.
Water Res ; 261: 121993, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38968732

ABSTRACT

Microbial electrolysis cells (MECs) have been proven effective for oxidizing ammonium (NH4+), where the anode acts as an electron acceptor, reducing the energy input by substituting oxygen (O2). However, O2 has been proved to be essential for achieving high removal rates MECs. Thus, precise control of oxygen supply is crucial for optimizing treatment performance and minimizing energy consumption. Unlike previous studies focusing on dissolved oxygen (DO) levels, this study introduces the O2/NH4+-N ratio as a novel control parameter for balancing oxidation rates and the selectivity of NH4+ oxidation towards dinitrogen gas (N2) under limited oxygen condition. Our results demonstrated that the O2/NH4+-N ratio is a more relevant oxygen supply indicator compared to DO level. Oxygen served as a more favorable electron acceptor than the electrode, increasing NH4+ oxidation rates but also resulting in more oxidized products such as nitrate (NO3-). Additionally, nitrous oxide (N2O) and N2 production were higher with the electrode as the electron acceptor compared to oxygen alone. An O2/NH4+-N ratio of 0.5 was found to be optimal, achieving a balance between product selectivity for N2 (51.4 % ± 4.5 %) and oxidation rates (344.6 ± 14.7 mg-N/L*d), with the columbic efficiency of 30.7 % ± 2.0 %. Microbial community analysis revealed that nitrifiers and denitrifiers were the primary bacteria involved, with oxygen promoting the growth of nitrite-oxidizing bacteria, thus facilitating complete NH4+ oxidation to NO3-. Our study provides new insights and guidelines on the appropriate oxygen dosage, offering strategies into optimizing operational conditions for NH4+ removal using MECs.

17.
Bioresour Technol ; : 131066, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969240

ABSTRACT

In constructed wetlands (CWs), carbon source availability profoundly affected microbial metabolic activities engaged in both iron cycle and nitrogen metabolism. However, research gaps existed in understanding the biotransformation of nitrogen and iron in response to fluctuations in organic carbon content under day-night alterations. Results demonstrated increased removal efficiency of NO3--N (95.7 %) and NH4+-N (75.70 %) under light conditions, attributed to increased total organic carbon (TOC). This enhancement promoted the relative abundance of bacteria involved in nitrogen and iron processes, establishing a more stable microbial network. Elevated TOC content also upregulated genes for iron metabolism and glycolysis, facilitating denitrification. Spearman correlation analysis supported the synergistic mechanisms between FeS2-based autotrophic denitrification and TOC-mediated heterotrophic denitrification under light conditions. The significant impact of carbon sources on microbial activities underscores the critical role of organic carbon availability in enhancing nitrogen removal efficiency, providing valuable insights for optimizing FeS2-based CWs design and operation strategies.

18.
J Environ Sci (China) ; 146: 3-14, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38969459

ABSTRACT

Bacillus velezensis M3-1 strain isolated from the sediment of Myriophyllum aquatium constructed wetlands was found to efficiently convert NO3--N to NO2--N, and the requirements for carbon source addition were not very rigorous. This work demonstrates, for the first time, the feasibility of using the synergy of anammox and Bacillus velezensis M3-1 microorganisms for nitrogen removal. In this study, the possibility of M3-1 that converted NO3--N produced by anammox to NO2--N was verified in an anaerobic reactor. The NO3--N reduction ability of M3-1 and denitrifying bacteria in coupling system was investigated under different C/N conditions, and it was found that M3-1 used carbon sources preferentially over denitrifying bacteria. By adjusting the ratio of NH4+-N to NO2--N, it was found that the NO2--N converted from NO3--N by M3-1 participated in the original anammox.The nitrogen removal efficacy (NRE) of the coupled system was increased by 12.1%, compared to the control group anammox system at C/N = 2:1. Functional gene indicated that it might be a nitrate reducing bacterium.This study shows that the nitrate reduction rate achieved by the Bacillus velezensis M3-1 can be high enough for removing nitrate produced by anammox process, which would enable improve nitrogen removal from wastewater.


Subject(s)
Ammonia , Bacillus , Nitrates , Nitrogen , Oxidation-Reduction , Bacillus/metabolism , Nitrogen/metabolism , Nitrates/metabolism , Ammonia/metabolism , Anaerobiosis , Waste Disposal, Fluid/methods , Denitrification
19.
Front Plant Sci ; 15: 1400309, 2024.
Article in English | MEDLINE | ID: mdl-38984159

ABSTRACT

Background: Grass-legume mixture can effectively improve productivity and stimulate overyielding in artificial grasslands, but may be N-limited in semi-arid regions. This study investigated the effects of N addition on chlorophyll fluorescence and production in the grass-legume mixtures community. Methods: An N addition experiment was conducted in the Bothriochloa ischaemum and Lespedeza davurica mixture community, with seven mixture ratios (B0L10, B2L8, B4L6, B5L5, B6L4, B8L2, and B10L0) according to the sowing abundance of B.ischaemum and L.davurica and four N addition levels, N0, N25, N50, and N75 (0,25,50,75kgNhm-2 a-1), respectively. We analyzed the response of chlorophyll fluorescence parameters of the two species, the rapid light-response curves of chlorophyll fluorescence, as well as aboveground biomass (AGB) and overyielding. Results: Our results showed that the two species showed different photosynthetic strategies, with L.davurica having significantly higher initial fluorescence (Fo), effective photochemical quantum yield of PSII (ΦPSII), and coefficient of photochemical fluorescence quenching (qP) than B. ischaemum, consisting with results of rapid light-response curves. N addition and mixture ratio both had significant effects on chlorophyll fluorescence and AGB (p<0.001). The ΦPSII and qP of L.davurica were significantly lowest in B5L5 and B6L4 under N addition, and the effect of N varied with mixture ratio. The photosynthetic efficiency of B. ischaemum was higher in mixture than in monoculture (B10L0), and ΦPSII was significantly higher in N50 than in N25 and N50 at mixture communities except at B5L5. The community AGB was significantly higher in mixture communities than in two monocultures and highest at B6L4. In the same mixture ratio, the AGB was highest under the N50. The overyielding effects were significantly highest under the N75 and B6L4 treatments, mainly attributed to L.davurica. The partial least squares path models demonstrated that adding N increased soil nutrient content, and complementary utilization by B.ischaemum and L.davurica increased the photosynthetic efficiency. However, as the different photosynthetic strategies of these two species, the effect on AGB was offset, and the mixture ratio's effects were larger than N. Our results proposed the B6L4 and N50 treatments were the optimal combination, with the highest AGB and overyielding, moderate grass-legume ratio, optimal community structure, and forage values.

20.
Plant Biol (Stuttg) ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985647

ABSTRACT

Nitrogen (N) content affects aboveground maize growth and nutrient absorption by altering the belowground rhizospheric ecosystem, impacting both yield and quality. However, the mechanisms through which different N supply methods (chemical and biological N supplies) regulate the belowground rhizospheric ecosystem to enhance maize yield remain unclear. To address this issue, we conducted a field experiment in northeast China, comprising three treatments: maize monocropping without N fertilizer application (MM), maize/alfalfa intercropping without N fertilizer application (BNF), and maize monocropping with N fertilizer application (CNS). The MM treatment represents the control, while the BNF treatment represents the biological N supply form, and CNS treatment represents the chemical N supply form. In the autumn of 2019, samples of maize and rhizospheric soil were collected to assess parameters including yield, rhizospheric soil characteristics, and microbial indicators. Both BNF and MM significantly increased maize yield and different yield components compared with MM, with no statistically significant difference in total yield between BNF and CNS. Furthermore, BNF significantly improved N by 12.61% and available N (AN) by 13.20% compared with MM. Furthermore, BNF treatment also significantly increased the Shannon index by 1.90%, while the CNS treatment significantly increased the Chao1 index by 28.1% and ACE index by 29.49%, with no significant difference between CNS and BNF. However, CNS had a more pronounced impact on structure of the rhizosphere soil bacterial community compared to BNF, inducing more significant fluctuations within the microbial network (modularity index and negative cohesion index). Regarding N transformation pathways predicted by bacterial functions, BNF significantly increased the N fixation pathway, while CNS significantly increased assimilatory nitrate reduction. In CNS, AN, NO3-N, NH4-N, assimilatory nitrate reduction, and community structure contributed significantly to maize yield, whereas in BNF, N fixation, community structure, community stability, NO3-N, and NH4-N played significant roles in enhancing maize yield. While CNS and BNF can achieve comparable maize yields in practical agricultural production, they have significantly different impacts on the belowground rhizosphere ecosystem, leading to different mechanisms of yield enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...