Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters











Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39125797

ABSTRACT

Nitrogen is the primary nutrient for plants. Low nitrogen generally affects plant growth and fruit quality. Melon, as an economic crop, is highly dependent on nitrogen. However, the response mechanism of its self-rooted and grafted seedlings to low-nitrogen stress has not been reported previously. Therefore, in this study, we analyzed the transcriptional differences between self-rooted and grafted seedlings under low-nitrogen stress using fluorescence characterization and RNA-Seq analysis. It was shown that low-nitrogen stress significantly inhibited the fluorescence characteristics of melon self-rooted seedlings. Analysis of differentially expressed genes showed that the synthesis of genes related to hormone signaling, such as auxin and brassinolide, was delayed under low-nitrogen stress. Oxidative stress response, involved in carbon and nitrogen metabolism, and secondary metabolite-related differentially expressed genes (DEGs) were significantly down-regulated. It can be seen that low-nitrogen stress causes changes in many hormonal signals in plants, and grafting can alleviate the damage caused by low-nitrogen stress on plants, ameliorate the adverse effects of nitrogen stress on plants, and help them better cope with environmental stresses.


Subject(s)
Cucurbitaceae , Gene Expression Profiling , Gene Expression Regulation, Plant , Nitrogen , Stress, Physiological , Transcriptome , Nitrogen/metabolism , Stress, Physiological/genetics , Cucurbitaceae/genetics , Cucurbitaceae/growth & development , Cucurbitaceae/metabolism , Gene Expression Profiling/methods , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism
2.
Int J Mol Sci ; 25(15)2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39125807

ABSTRACT

(1) The development of sweet potato storage roots is impacted by nitrogen (N) levels, with excessive nitrogen often impeding development. Starch synthesis enzymes such as sucrose synthase (SUS) and ADP-glucose pyrophosphorylase (AGPase) are pivotal in this context. Although the effects of excessive nitrogen on the formation of sweet potato storage roots are well documented, the specific responses of IbSUSs and IbAGPases have not been extensively reported on. (2) Pot experiments were conducted using the sweet potato cultivar "Pushu 32" at moderate (MN, 120 kg N ha-1) and excessive nitrogen levels (EN, 240 kg N ha-1). (3) Nine IbSUS and nine IbAGPase genes were categorized into three and two distinct subgroups based on phylogenetic analysis. Excessive nitrogen significantly (p < 0.05) suppressed the expression of IbAGPL1, IbAGPL2, IbAGPL4, IbAGPL5, IbAGPL6, IbAGPS1, and IbAGPS2 in fibrous roots and IbSUS2, IbSUS6, IbSUS7, IbSUS8, IbSUS9, IbAGPL2, and IbAGPL4 in storage roots, and then significantly (p < 0.05) decreased the SUS and AGPase activities and starch content of fibrous root and storage root, ultimately reducing the storage root formation of sweet potato. Excessive nitrogen extremely significantly (p < 0.01) enhanced the expression of IbAGPL3, which was strongly negatively correlated with the number and weight of storage roots per plant. (4) IbAGPL3 may be a key gene in the response to excessive nitrogen stress and modifying starch synthesis in sweet potato.


Subject(s)
Gene Expression Regulation, Plant , Glucose-1-Phosphate Adenylyltransferase , Glucosyltransferases , Ipomoea batatas , Nitrogen , Phylogeny , Plant Roots , Stress, Physiological , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Ipomoea batatas/growth & development , Nitrogen/metabolism , Plant Roots/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Glucose-1-Phosphate Adenylyltransferase/metabolism , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Multigene Family
3.
Bioresour Technol ; 410: 131291, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153698

ABSTRACT

Overexpression of Dunaliella parva (D. parva) malic enzyme (ME) gene (DpME) significantly increased DpME expression and ME enzyme activity in transgenic D. parva. Nitrogen limitation had an inhibitory effect on protein content, and DpME overexpression could improve protein content. Nitrogen limitation increased carbohydrate content, and Dunaliella parva overexpressing malic enzyme gene under nitrogen limitation (DpME-N-) group showed the lowest starch content among all groups. Dunaliella parva overexpressing malic enzyme gene under nitrogen sufficient condition (DpME) and DpME-N- groups showed considerably high mRNA levels of DpME. ME activity was significantly enhanced by DpME overexpression, and nitrogen limitation caused a smaller increase. DpME overexpression and nitrogen limitation obviously enhanced lipid accumulation, and DpME overexpression had more obvious effect. Compared with control (wild type), lipid content (68.97%) obviously increased in DpME-N- group. This study indicated that the combination of DpME overexpression and nitrogen limitation was favorable to the production of microalgae biodiesel.


Subject(s)
Lipid Metabolism , Malate Dehydrogenase , Nitrogen , Nitrogen/metabolism , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Chlorophyceae/genetics , Chlorophyceae/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791539

ABSTRACT

Nitrogen is one of the important factors restricting the development of sesame planting and industry in China. Cultivating sesame varieties tolerant to low nitrogen is an effective way to solve the problem of crop nitrogen deficiency. To date, the mechanism of low nitrogen tolerance in sesame has not been elucidated at the transcriptional level. In this study, two sesame varieties Zhengzhi HL05 (ZZ, nitrogen efficient) and Burmese prolific (MD, nitrogen inefficient) in low nitrogen were used for RNA-sequencing. A total of 3964 DEGs (differentially expressed genes) and 221 DELs (differentially expressed lncRNAs) were identified in two sesame varieties at 3d and 9d after low nitrogen stress. Among them, 1227 genes related to low nitrogen tolerance are mainly located in amino acid metabolism, starch and sucrose metabolism and secondary metabolism, and participate in the process of transporter activity and antioxidant activity. In addition, a total of 209 pairs of lncRNA-mRNA were detected, including 21 pairs of trans and 188 cis. WGCNA (weighted gene co-expression network analysis) analysis divided the obtained genes into 29 modules; phenotypic association analysis identified three low-nitrogen response modules; through lncRNA-mRNA co-expression network, a number of hub genes and cis/trans-regulatory factors were identified in response to low-nitrogen stress including GS1-2 (glutamine synthetase 1-2), PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase, CHS), CAB21 (chlorophyll a-b binding protein 21) and transcription factors MYB54, MYB88 and NAC75 and so on. As a trans regulator, lncRNA MSTRG.13854.1 affects the expression of some genes related to low nitrogen response by regulating the expression of MYB54, thus responding to low nitrogen stress. Our research is the first to provide a more comprehensive understanding of DEGs involved in the low nitrogen stress of sesame at the transcriptome level. These results may reveal insights into the molecular mechanisms of low nitrogen tolerance in sesame and provide diverse genetic resources involved in low nitrogen tolerance research.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Nitrogen , RNA, Long Noncoding , RNA, Messenger , Sesamum , Stress, Physiological , Sesamum/genetics , Sesamum/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Nitrogen/metabolism , Stress, Physiological/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling/methods , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Gene ; 924: 148589, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38777108

ABSTRACT

Nitrogen is the principal nutrient deficiency that increases lipids and carbohydrate content in diatoms but negatively affects biomass production. Marine diatom Chaetoceros muelleri is characterized by lipid and carbohydrate accumulation under low nitrogen concentration without affecting biomass. To elucidate the molecular effects of nitrogen concentrations, we performed an RNA-seq analysis of C. muelleri grown under four nitrogen concentrations (3.53 mM, 1.76 mM, 0.44 mM, and 0.18 mM of NaNO3). This research revealed that changes in global transcription in C. muelleri are differentially expressed by nitrogen concentration. "Energetic metabolism", "Carbohydrate metabolism" and "Lipid metabolism" pathways were identified as the most upregulated by N deficiency. Due to N limitation, alternative pathways to self-supply nitrogen employed by microalgal cells were identified. Additionally, nitrogen limitation decreased chlorophyll content and caused a greater response at the transcriptional level with a higher number of unigenes differentially expressed. By contrast, the highest N concentration (3.53 mM) recorded the lowest number of differentially expressed genes. Amt1, Nrt2, Fad2, Skn7, Wrky19, and Dgat2 genes were evaluated by RT-qPCR. In conclusion, C. muelleri modify their metabolic pathways to optimize nitrogen utilization and minimize nitrogen losses. On the other hand, the assembled transcriptome serves as the basis for metabolic engineering focused on improving the quantity and quality of the diatom for biotechnological applications. However, proteomic and metabolomic analysis is also required to compare gene expression, protein, and metabolite accumulation.


Subject(s)
Diatoms , Nitrogen , Transcriptome , Nitrogen/metabolism , Diatoms/metabolism , Diatoms/genetics , Gene Expression Profiling/methods , Lipid Metabolism/genetics , Carbohydrate Metabolism/genetics , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Biomass
6.
Plant Physiol Biochem ; 212: 108737, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763003

ABSTRACT

Over evolutionary time, plants have developed sophisticated regulatory mechanisms to adapt to fluctuating nitrogen (N) environments, ensuring that their growth is balanced with their responses to N stress. This study explored the potential of L-tryptophan (Trp) in regulating sorghum root growth under conditions of N limitation. Here, two distinct sorghum genotypes (low-N tolerance 398B and low-N sensitive CS3541) were utilized for investigating effect of low-N stress on root morphology and conducting a comparative transcriptomics analysis. Our foundings indicated that 398B exhibited longer roots, greater root dry weights, and a higher Trp content compared to CS3541 under low-N conditions. Furthermore, transcriptome analysis revealed substantial differences in gene expression profiles related to Trp pathway and carbon (C) and N metabolism pathways between the two genotypes. Additional experiments were conducted to assess the effects of exogenous Trp treatment on the interplay between sorghum root growth and low-N tolerance. Our observations showed that Trp-treated plants developed longer root and had elevated levels of Trp and IAA under low-N conditons. Concurrently, these plants demonstrated stronger physiological activities in C and N metabolism when subjected to low-N stress. These results underscored the pivotal role of Trp on root growth and low-N stress responses by balancing IAA levels and C and N metabolism. This study not only deepens our understanding of how plants maintain growth plasticity during environmental stress but also provides valuable insights into the availability of amino acid in crops, which could be instrumental in developing strategies for promoting crop resilience to N deficiency.


Subject(s)
Nitrogen , Plant Roots , Sorghum , Tryptophan , Sorghum/growth & development , Sorghum/metabolism , Sorghum/genetics , Sorghum/drug effects , Nitrogen/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/drug effects , Tryptophan/metabolism , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Carbon/metabolism , Stress, Physiological
7.
Planta ; 259(5): 122, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619628

ABSTRACT

MAIN CONCLUSION: Overexpression of BnaC02.TPS8 increased low N and high sucrose-induced anthocyanin accumulation. Anthocyanin plays a crucial role in safeguarding photosynthetic tissues against high light, UV radiation, and oxidative stress. Their accumulation is triggered by low nitrogen (N) stress and elevated sucrose levels in Arabidopsis. Trehalose-6-phosphate (T6P) serves as a pivotal signaling molecule, sensing sucrose availability, and carbon (C) metabolism. However, the mechanisms governing the regulation of T6P synthase (TPS) genes responsible for anthocyanin accumulation under conditions of low N and high sucrose remain elusive. In a previous study, we demonstrated the positive impact of a cytoplasm-localized class II TPS protein 'BnaC02.TPS8' on photosynthesis and seed yield improvement in Brassica napus. The present research delves into the biological role of BnaC02.TPS8 in response to low N and high sucrose. Ectopic overexpression of BnaC02.TPS8 in Arabidopsis seedlings resulted in elevated shoot T6P levels under N-sufficient conditions, as well as an increased carbon-to-nitrogen (C/N) ratio, sucrose accumulation, and starch storage under low N conditions. Overexpression of BnaC02.TPS8 in Arabidopsis heightened sensitivity to low N stress and high sucrose levels, accompanied by increased anthocyanin accumulation and upregulation of genes involved in flavonoid biosynthesis and regulation. Metabolic profiling revealed increased levels of intermediate products of carbon metabolism, as well as anthocyanin and flavonoid derivatives in BnaC02.TPS8-overexpressing Arabidopsis plants under low N conditions. Furthermore, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses demonstrated that BnaC02.TPS8 interacts with both BnaC08.TPS9 and BnaA01.TPS10. These findings contribute to our understanding of how TPS8-mediated anthocyanin accumulation is modulated under low N and high sucrose conditions.


Subject(s)
Arabidopsis , Brassica napus , Sugar Phosphates , Trehalose , Anthocyanins , Arabidopsis/genetics , Brassica napus/genetics , Carbon , Flavonoids , Nitrogen , Trehalose/analogs & derivatives , Two-Hybrid System Techniques
8.
Front Plant Sci ; 15: 1382790, 2024.
Article in English | MEDLINE | ID: mdl-38654900

ABSTRACT

The TCP gene family members play multiple functions in plant growth and development and were named after the first three family members found in this family, TB1 (TEOSINTE BRANCHED 1), CYCLOIDEA (CYC), and Proliferating Cell Factor 1/2 (PCF1/2). Nitrogen (N) is a crucial element for forage yield; however, over-application of N fertilizer can increase agricultural production costs and environmental stress. Therefore, the discovery of low N tolerance genes is essential for the genetic improvement of superior oat germplasm and ecological protection. Oat (Avena sativa L.), is one of the world's staple grass forages, but no genome-wide analysis of TCP genes and their roles in low-nitrogen stress has been performed. This study identified the oat TCP gene family members using bioinformatics techniques. It analyzed their phylogeny, gene structure analysis, and expression patterns. The results showed that the AsTCP gene family includes 49 members, and most of the AsTCP-encoded proteins are neutral or acidic proteins; the phylogenetic tree classified the AsTCP gene family members into three subfamilies, and each subfamily has different conserved structural domains and functions. In addition, multiple cis-acting elements were detected in the promoter of the AsTCP genes, which were associated with abiotic stress, light response, and hormone response. The 49 AsTCP genes identified from oat were unevenly distributed on 18 oat chromosomes. The results of real-time quantitative polymerase chain reaction (qRT-PCR) showed that the AsTCP genes had different expression levels in various tissues under low nitrogen stress, which indicated that these genes (such as AsTCP01, AsTCP03, AsTCP22, and AsTCP38) played multiple roles in the growth and development of oat. In conclusion, this study analyzed the AsTCP gene family and their potential functions in low nitrogen stress at the genome-wide level, which lays a foundation for further analysis of the functions of AsTCP genes in oat and provides a theoretical basis for the exploration of excellent stress tolerance genes in oat. This study provides an essential basis for future in-depth studies of the TCP gene family in other oat genera and reveals new research ideas to improve gene utilization.

9.
Sci Total Environ ; 925: 171536, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38461992

ABSTRACT

Environmental stress can disrupt the intricate interactions between the host and intestine microbiota, thereby impacting the host health. In this study, we aimed to elucidate the dynamic changes in the bacterial community within shrimp intestines under nitrite nitrogen (nitrite-N) stress and investigate potential host-related factors influencing these changes. Our results revealed a significant reduction in community diversity within the intestine exposed to nitrite-N compared to control conditions. Furthermore, distinct differences in community structures were observed between these two groups at 72 h and 120 h post-stress induction. Nitrite-N stress also altered the abundances of some bacterial species in the intestine dramatically. It is noteworthy that, in comparison to the 72 h, intestine bacterial community structure of stressed shrimp exhibited a significantly higher degree of dispersion after 120 h of nitrite-N stress when compared to control shrimp, and the relative abundance of numerous bacterial species experienced a substantial decrease or even reached 0 %. Moreover, it led to a reduction in bacterial community interactions and decreased competitiveness within the intestine microbiota. Notably, the influence of bacterial community assemblies in the shrimp intestine shifted from a stochastic process to a deterministic one after 24 h and 72 h of nitrite-N stress, returning to a stochastic process at 120 h. We further observed a close association between this phenomenon and host's response to nitrite-N stress. Expression levels of differentially expressed genes in the intestinal tissue significantly impact the intestine bacterial diversity and abundance of species. In particular, the significant decline in bacterial diversity and abundances of quite a few species in intestine was attributed to the up-regulation of peritrophin-48-like. Overall, nitrite-N stress indeed disrupted the intestine microbiota and changed the host-microbiota interactions of shrimp. This study offered novel insights into environment-host-microbiota interactions and also provided practical guidance for promoting healthy shrimp cultivation practices.


Subject(s)
Gastrointestinal Microbiome , Penaeidae , Animals , Nitrites/toxicity , Gastrointestinal Microbiome/physiology , Bacteria/genetics , Intestines/microbiology , Crustacea , Penaeidae/microbiology
10.
Antioxidants (Basel) ; 13(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38539850

ABSTRACT

In the dynamic field of intensive aquaculture, the strategic application of probiotics has become increasingly crucial, particularly for enhancing resistance to environmental stressors such as ammonia-nitrogen. Over a 42-day period, this study investigated the effects of different probiotic strains-Bacillus subtilis (BS, 6-3-1, and HAINUP40)-on the health and resilience of hybrid groupers. Each strain, distinct in its origin, was assessed for its influence on growth performance, antioxidant capacity, immune gene expressions, and ammonia-nitrogen stress response in the hybrid grouper. The experimental design included a control group and three experimental groups, each supplemented with 1 × 108 CFU/g of the respective probiotic strains, respectively. Our results demonstrated notable differences in growth parameters, including final body weight (FBW) and feed conversion ratio (FCR). The 6-3-1 strain, originating from grouper, exhibited significant improvements in growth, oxidative capacity, and intestinal health. Conversely, the BS strain achieved the highest survival rates under ammonia-nitrogen stress, indicating its superior ability to regulate inflammatory responses despite its less pronounced growth-promoting effects. The HAINUP40 strain was distinguished for its growth enhancement and improvements in intestinal health, though it also showed significant activation of inflammatory genes and decreased resistance to ammonia-nitrogen stress after extended feeding. The uniqueness of this study lies in its detailed examination of the strain-specific effects of probiotics on fish in the context of ammonia-nitrogen stress, a significant challenge in contemporary aquaculture. The research revealed that host-derived probiotics, particularly the 6-3-1 strain, provided more comprehensive benefits for growth performance and stress resilience. In contrast, the BS and HAINUP40 strains exhibited varying efficiencies, with BS excelling in stress resistance and HAINUP40 promoting growth and gut health. In conclusion, this study underscores the complex roles of different probiotic strains in aquaculture, contributing to the understanding of probiotic applications and presenting new approaches to address the challenges of intensive farming.

11.
New Phytol ; 242(3): 1218-1237, 2024 May.
Article in English | MEDLINE | ID: mdl-38481030

ABSTRACT

Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.


Subject(s)
Malus , Malus/genetics , Malus/metabolism , Nitrogen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Biological Transport , Citric Acid/metabolism , Gene Expression Regulation, Plant , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
12.
mSystems ; 9(1): e0119023, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38132569

ABSTRACT

The development of cereal crops with high nitrogen use efficiency (NUE) is a priority for worldwide agriculture. In addition to conventional plant breeding and genetic engineering, the use of the plant microbiome offers another approach to improving crop NUE. To gain insight into the bacterial communities associated with sorghum lines that differ in NUE, a field experiment was designed comparing 24 diverse Sorghum bicolor lines under sufficient and deficient nitrogen (N). Amplicon sequencing and untargeted gas chromatography-mass spectrometry were used to characterize the bacterial communities and the root metabolome associated with sorghum genotypes varying in sensitivity to low N. We demonstrated that N stress and sorghum type (energy, sweet, and grain sorghum) significantly impacted the root-associated bacterial communities and root metabolite composition of sorghum. We found a positive correlation between sorghum NUE and bacterial richness and diversity in the rhizosphere. The greater alpha diversity in high NUE lines was associated with the decreased abundance of a dominant bacterial taxon, Pseudomonas. Multiple strong correlations were detected between root metabolites and rhizosphere bacterial communities in response to low N stress. This indicates that the shift in the sorghum microbiome due to low N is associated with the root metabolites of the host plant. Taken together, our findings suggest that host genetic regulation of root metabolites plays a role in defining the root-associated microbiome of sorghum genotypes differing in NUE and tolerance to low N stress.IMPORTANCEThe development of crops that are more nitrogen use-efficient (NUE) is critical for the future of the enhanced sustainability of agriculture worldwide. This objective has been pursued mainly through plant breeding and plant molecular engineering, but these approaches have had only limited success. Therefore, a different strategy that leverages soil microbes needs to be fully explored because it is known that soil microbes improve plant growth through multiple mechanisms. To design approaches that use the soil microbiome to increase NUE, it will first be essential to understand the relationship among soil microbes, root metabolites, and crop productivity. Using this approach, we demonstrated that certain key metabolites and specific microbes are associated with high and low sorghum NUE in a field study. This important information provides a new path forward for developing crop genotypes that have increased NUE through the positive contribution of soil microbes.


Subject(s)
Sorghum , Sorghum/genetics , Edible Grain/chemistry , Nitrogen/analysis , Plant Breeding , Soil/chemistry , Crops, Agricultural/metabolism
13.
Sci Total Environ ; 912: 169659, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38159749

ABSTRACT

Microalgal biofilm is promising in simultaneous pollutants removal, CO2 fixation, and biomass resource transformation when wastewater is used as culturing medium. Nitric oxide (NO) often accumulates in microalgal cells under wastewater treatment relevant abiotic stresses such as nitrogen deficiency, heavy metals, and antibiotics. However, the influence of emerging contaminants such as microplastics (MPs) on microalgal intracellular NO is still unknown. Moreover, the investigated MPs concentrations among existing studies were mostly several magnitudes higher than in real wastewaters, which could offer limited guidance for the effects of MPs on microalgae at environment-relevant concentrations. Therefore, this study investigated three commonly observed MPs in wastewater at environment-relevant concentrations (10-10,000 µg/L) and explored their impacts on attached Chlorella sp. growth characteristics, nutrients removal, and anti-oxidative responses (including intracellular NO content). The nitrogen source NO3--N at 49 mg/L being 20 % of the nitrogen strength in classic BG-11 medium was selected for MPs exposure experiments because of least intracellular NO accumulation, so that disturbance of intracellular NO by nitrogen availability could be avoided. Under such condition, 10 µg/L polyethylene (PE) MPs displayed most significant microalgal growth inhibition comparing with polyvinyl chloride (PVC) and polyamide (PA) MPs, showing extraordinarily low chlorophyll a/b ratios, and highest superoxide dismutase (SOD) activity and intracellular NO content after 12 days of MPs exposure. PVC MPs exposed cultures displayed highest malonaldehyde (MDA) content because of the toxic characteristics of organochlorines, and most significant correlations of intracellular NO content with conventional anti-oxidative parameters of SOD, CAT (catalase), and MDA. MPs accelerated phosphorus removal, and the type rather than concentration of MPs displayed higher influences, following the trend of PE > PA > PVC. This study expanded the knowledge of microalgal biofilm under environment-relevant concentrations of MPs, and innovatively discovered the significance of intracellular NO as a more sensitive indicator than conventional anti-oxidative parameters under MPs exposure.


Subject(s)
Chlorella , Microalgae , Microplastics/toxicity , Plastics , Wastewater , Nitric Oxide , Chlorophyll A , Superoxide Dismutase , Biofilms , Nitrogen
14.
Plants (Basel) ; 12(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38068685

ABSTRACT

Nitrogen fertilizer input is the main determinant of wheat yield, and heavy nitrogen fertilizer application causes serious environmental pollution. It is important to understand the genetic response mechanism of wheat to nitrogen and select wheat germplasm with high nitrogen efficiency. In this study, 204 wheat species were used to conduct genome-wide association analysis. Nine phenotypic characteristics were obtained at the seedling stage in hydroponic cultures under low-, normal, and high-nitrogen conditions. A total of 765 significant loci were detected, including 438, 261, and 408 single nucleotide polymorphisms (SNPs) associated with high-, normal, and low-nitrogen conditions, respectively. Among these, 14 SNPs were identified under three conditions, for example, AX-10887638 and AX-94875830, which control shoot length and root-shoot ratio on chromosomes 6A and 6D, respectively. Additionally, 39 SNPs were pleiotropic for multiple traits. Further functional analysis of the genes near the 39 SNPs shows that some candidate genes play key roles in encoding proteins/enzymes, such as transporters, hydrolases, peroxidases, glycosyltransferases, oxidoreductases, acyltransferases, disease-resistant proteins, ubiquitin ligases, and sucrose synthetases. Our results can potentially be used to develop low-nitrogen-tolerant species using marker-assisted selection and provide a theoretical basis for breeding efficient nitrogen-using wheat species.

15.
Int J Mol Sci ; 24(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38068963

ABSTRACT

The jacalin-related lectins (JRLs) are widely distributed in plants and are involved in plant development and multiple stress responses. However, the characteristics of the HvJRL gene family at the genome-wide level and the roles of JRLs in barley's response to low-nitrogen (LN) stress have been rarely reported. In this study, 32 HvJRL genes were identified and unevenly distributed at both ends of the seven chromosomes in barley. HvJRL proteins generally exhibited low sequence similarity but shared conserved jacalin domains by multiple sequence analysis. These proteins were classified into seven subfamilies based on phylogenetic analysis, with a similar gene structure and conserved motifs in the same subfamily. The HvJRL promoters contained a large number of diverse cis-elements associated with hormonal response and stress regulation. Based on the phylogenetic relationships and functionally known JRL homologs, it was predicted that some HvJRLs have the potential to serve functions in multiple stress responses but not nutrition deficiency stress. Subsequently, nine differentially expressed genes (DEGs) encoding eight HvJRL proteins were identified in two barley genotypes with different LN tolerance by transcriptome analysis. Furthermore, 35S:HvHorcH transgenic Arabidopsis seedlings did enhance LN tolerance, which indicated that HvHorcH may be an important regulator of LN stress response (LNSR). The HvJRL DEGs identified herein could provide new candidate genes for LN tolerance studies.


Subject(s)
Arabidopsis , Hordeum , Arabidopsis/genetics , Arabidopsis/metabolism , Lectins/metabolism , Hordeum/metabolism , Nitrogen/metabolism , Phylogeny , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics
16.
Front Plant Sci ; 14: 1240675, 2023.
Article in English | MEDLINE | ID: mdl-37920713

ABSTRACT

Background: The bacterial communities of the root surface and rhizosphere play a crucial role in the decomposition and transformation of soil nitrogen (N) and are also affected by soil N levels and distribution, especially the composition and diversity, which are sensitive to changes in the environment with high spatial and temporal heterogeneity of ammonium N (NH4 +-N) and nitrate N (NO3 --N). Methods: One-year-old seedlings of Cunninghamia lanceolata and Schima superba were subjected to N stress (0.5 mmol L-1) and normal N supply (2 mmol L-1), and five different N form ratios (NH4 +-N to NO3 --N ratio of 10:0, 0:10, 8:2, 2:8, and 5:5) were created. We analyze the changes in composition and diversity of bacteria in the root surface and rhizosphere of two tree species by high-throughput sequencing. Results: Differences in the composition of the major bacteria in the root surface and rhizosphere of C.lanceolata and S. superba under N stress and N form ratios were not significant. The dominant bacterial phyla shared by two tree species included Proteobacteria and Bacteroidota. Compared to normal N supply, the patterns of diversity in the root surface and rhizosphere of two tree species under N stress were distinct for each at five N form ratios. Under N stress, the bacterial diversity in the root surface was highest at NH4 +-N to NO3 --N ratio of 10:0 of C. lanceolata, whereas in the root surface, it was highest at the NH4 +-N to NO3 --N ratio of 0:10 of S. superba. The NH4 +-N to NO3 --N ratio of 5:5 reduced the bacterial diversity in the rhizosphere of two tree species, and the stability of the bacterial community in the rhizosphere was decreased in C. lanceolata. In addition, the bacterial diversity in the root surface was higher than in the rhizosphere under the N stress of two tree species. Conclusion: The bacterial compositions were relatively conserved, but abundance and diversity changed in the root surface and rhizosphere of C. lanceolata and S. superba under N stress and different N form ratios. The heterogeneity of ammonium and nitrate N addition should be considered for N-stressed environments to improve bacterial diversity in the rhizosphere of two tree species.

17.
Antioxidants (Basel) ; 12(10)2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37891910

ABSTRACT

Maize (Zea mays L.) is one of the major staple crops providing human food, animal feed, and raw material support for biofuel production. For its growth and development, maize requires essential macronutrients. In particular, nitrogen (N) plays an important role in determining the final yield and quality of a maize crop. However, the excessive application of N fertilizer is causing serious pollution of land area and water bodies. Therefore, cultivating high-yield and low-N-tolerant maize varieties is crucial for minimizing the nitrate pollution of land and water bodies. Here, based on the analysis of the maize leaf transcriptome and proteome at the grain filling stage, we identified 3957 differentially expressed genes (DEGs) and 329 differentially abundant proteins (DAPs) from the two maize hybrids contrasting in N stress tolerance (low-N-tolerant XY335 and low-N-sensitive HN138) and screened four sets of low-N-responsive genes and proteins through Venn diagram analysis. We identified 761 DEGs (253 up- and 508 down-regulated) specific to XY335, whereas 259 DEGs (198 up- and 61 down-regulated) were specific to HN138, and 59 DEGs (41 up- and 18 down-regulated) were shared between the two cultivars under low-N-stress conditions. Meanwhile, among the low-N-responsive DAPs, thirty were unique to XY335, thirty were specific to HN138, and three DAPs were shared between the two cultivars under low-N treatment. Key among those genes/proteins were leucine-rich repeat protein, DEAD-box ATP-dependent RNA helicase family proteins, copper transport protein, and photosynthesis-related proteins. These genes/proteins were involved in the MAPK signaling pathway, regulating membrane lipid peroxidation, and photosynthesis. Our results may suggest that XY335 better tolerates low-N stress than HN138, possibly through robust low-N-stress sensing and signaling, amplified protein phosphorylation and stress response, and increased photosynthesis efficiency, as well as the down-regulation of 'lavish' or redundant proteins to minimize N demand. Additionally, we screened glutathione transferase 42 (ZmGST42) and performed physiological and biochemical characterizations of the wild-type (B73) and gst42 mutant at the seedling stage. Resultantly, the wild-type exhibited stronger tolerance to low N than the mutant line. Our findings provide a better understanding of the molecular mechanisms underlying low-N tolerance during the maize grain filling stage and reveal key candidate genes for low-N-tolerance breeding in maize.

18.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1592-1600, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694422

ABSTRACT

To investigate the efficacy of foliar application of GR24, a strigolactone analogue, in alleviating low-nitrogen stress in Malus baccata, we applied GR24 with different concentrations (0, 1, 5, 10, and 20 µmol·L-1) to leaves of plants under low nitrogen stress. We evaluated the changes in photosynthetic characteristics of leaves, reactive oxygen metabolism, and nitrogen assimilation in roots. The results showed that shoot biomass of seedling significantly decreased and root-shoot ratio increased under low-nitrogen stress. The chlorophyll contents decreased, the carotenoid content increased, and the photosynthetic activity decreased. The activities of superoxide dismutase and catalase enzymes in roots changed little, while the activities of peroxidase and ascorbic acid peroxidase enzymes, along with the levels of soluble sugar, free proline, and reactive oxygen species showed a significant increase, and the soluble protein content decreased. The NO3- content in roots decreased, the NH4+ content increased, while activities of nitrate reductase and glutamine synthase decreased. Compared to the control group without GR24 application, foliar sprays of 10 and 20 µmol·L-1 GR24 under both normal and low-nitrogen increased biomass and root-shoot ratio to varying degrees. Additionally, GR24 application increased chlorophyll content, photosynthesis indices (net photosynthetic rate, transpiration rate and stomatal conductance), and fluorescence (maximum photochemical efficiency of PSⅡ and quantum yield of electron transfer per unit area) performance parameters, as well as the contents of osmotic regulation substances (soluble protein, soluble sugar, and free proline) and glutamine synthase activity. Application of 10 and 20 µmol·L-1 GR24 under low-nitrogen stress decreased carotenoid, reactive oxygen species, and NH4+ contents, while increased the activities of antioxidases and key enzymes in nitrogen metabolism (nitrate reductase and glutamine synthase) and NO3- content. The 10 µmol·L-1 GR24 treatment was the most effective in alleviating low nitrogen stress, which has potential for application in apple orchards with low nitrogen soil.


Subject(s)
Lactones , Malus , Seedlings , Malus/drug effects , Malus/physiology , Nitrogen , Photosynthesis , Lactones/pharmacology , Seedlings/physiology , Plant Leaves/drug effects
19.
BMC Plant Biol ; 23(1): 353, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37420192

ABSTRACT

BACKGROUND: Wheat (Triticum aestivum L.) is a major cereal crop that is grown worldwide, and it is highly dependent on sufficient N supply. The molecular mechanisms associated with nitrate uptake and assimilation are still poorly understood in wheat. In plants, NRT2 family proteins play a crucial role in NO3- acquisition and translocation under nitrate limited conditions. However, the biological functions of these genes in wheat are still unclear, especially their roles in NO3- uptake and assimilation. RESULTS: In this study, a comprehensive analysis of wheat TaNRT2 genes was conducted using bioinformatics and molecular biology methods, and 49 TaNRT2 genes were identified. A phylogenetic analysis clustered the TaNRT2 genes into three clades. The genes that clustered on the same phylogenetic branch had similar gene structures and nitrate assimilation functions. The identified genes were further mapped onto the 13 wheat chromosomes, and the results showed that a large duplication event had occurred on chromosome 6. To explore the TaNRT2 gene expression profiles in wheat, we performed transcriptome sequencing after low nitrate treatment for three days. Transcriptome analysis revealed the expression levels of all TaNRT2 genes in shoots and roots, and based on the expression profiles, three highly expressed genes (TaNRT2-6A.2, TaNRT2-6A.6, and TaNRT2-6B.4) were selected for qPCR analysis in two different wheat cultivars ('Mianmai367' and 'Nanmai660') under nitrate-limited and normal conditions. All three genes were upregulated under nitrate-limited conditions and highly expressed in the high nitrogen use efficiency (NUE) wheat 'Mianmai367' under low nitrate conditions. CONCLUSION: We systematically identified 49 NRT2 genes in wheat and analysed the transcript levels of all TaNRT2s under nitrate deficient conditions and over the whole growth period. The results suggest that these genes play important roles in nitrate absorption, distribution, and accumulation. This study provides valuable information and key candidate genes for further studies on the function of TaNRT2s in wheat.


Subject(s)
Nitrates , Triticum , Nitrates/metabolism , Triticum/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Plant Roots/metabolism , Gene Expression Regulation, Plant , Nitrogen/metabolism
20.
Environ Sci Pollut Res Int ; 30(40): 92042-92052, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37480532

ABSTRACT

Ammonia-nitrogen is a common stress factor for aquatic organisms in their habitation environment, which is enriched in water due to high-density farming and environmental pollution. Ammonia nitrogen can enter fish body through gill, epidermis, digestive tract, and other tissues, causing fish ammonia poisoning. In the present study, juvenile blunt snout bream (average weight, 45 ± 5 g) were exposed to high concentrations of ammonia-nitrogen stress (25.0 ± 0.5 mg/L) for six different treatment times (0, 3, 6, 12, 24, 48, and 72 h); the tissue ultrastructure, mRNA levels of antioxidation system, and apoptosis patterns were studied. The antioxidant systems of malondialdehyde (MDA), catalase (CAT), acid phosphatase (ACP), and reduced glutathione (GSH) in various tissues were highly transcripted at 6 or 12 h (hpt) after treatment under high ammonia-nitrogen, which may play a role in preventing cells from being attacked by highly toxic reactive oxygen species (ROS). After 24 hpt, the antioxidant capacity threshold is breached, followed by the decline of antioxidant enzyme activity. Thus, with the prolonging of high ammonia-nitrogen processing time, ammonia-nitrogen stress caused irreversible damage of organs (gill, liver, and kidney). Furthermore, the expression of caspase-3 apoptotic pathway was highly induced in different tissues, implying the apoptotic system is activated, which causes extensive cell apoptosis in different tissues as shown using TUNEL analysis. In conclusion, we observed that, in response to acute ammonia-nitrogen stress, blunt snout bream enhances antioxidant capacity and cell apoptosis.


Subject(s)
Ammonia , Antioxidants , Animals , Acclimatization , Agriculture , Apoptosis
SELECTION OF CITATIONS
SEARCH DETAIL