Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 244
Filter
1.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003066

ABSTRACT

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Subject(s)
Arsenic , Environmental Monitoring , Rivers , Water Pollutants, Chemical , Arsenic/analysis , China , Water Pollutants, Chemical/analysis , Rivers/chemistry , Environmental Monitoring/methods , Models, Chemical , Models, Theoretical
2.
J Environ Sci (China) ; 149: 551-563, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181666

ABSTRACT

The increased frequency and intensity of heavy rainfall events due to climate change could potentially influence the movement of nutrients from land-based regions into recipient rivers. However, little information is available on how the rainfall affect nutrient dynamics in subtropical montane rivers with complex land use. This study conducted high-frequency monitoring to study the effects of rainfall on nutrients dynamics in an agricultural river draining to Lake Qiandaohu, a montane reservoir of southeast China. The results showed that riverine total nitrogen (TN) and total phosphorus (TP) concentrations increased continuously with increasing rainfall intensity, while TN:TP decreased. The heavy rainfall and rainstorm drove more than 30% of the annual N and P loading in only 5.20% of the total rainfall period, indicating that increased storm runoff is likely to exacerbate eutrophication in montane reservoirs. NO3--N is the primary nitrogen form lost, while particulate phosphorus (PP) dominated phosphorus loss. The main source of N is cropland, and the main source of P is residential area. Spatially, forested watersheds have better drainage quality, while it is still a potential source of nonpoint pollution during rainfall events. TN and TP concentrations were significantly higher at sites dominated by cropland and residential area, indicating their substantial contributions to deteriorating river water quality. Temporally, TN and TP concentrations reached high values in May-August when rainfall was most intense, while they were lower in autumn and winter than that in spring and summer under the same rainfall intensities. The results emphasize the influence of rainfall-runoff and land use on dynamics of riverine N and P loads, providing guidance for nutrient load reduction planning for Lake Qiandaohu.


Subject(s)
Environmental Monitoring , Nitrogen , Phosphorus , Rain , Rivers , Water Pollutants, Chemical , Phosphorus/analysis , Nitrogen/analysis , China , Rivers/chemistry , Water Pollutants, Chemical/analysis , Agriculture
3.
Environ Monit Assess ; 196(9): 803, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120619

ABSTRACT

High-quality development of water resources supports high-quality socio-economic development. High-quality development connects high-quality life, and clarifying the key management contents of small watersheds plays an important role in building ecologically clean small watersheds and promoting regional production and life. Previous research on pollution loads has focused on examining the impact of various external drivers on pollution loads but still lacks research on the impact of changes in pollution sources themselves on pollution loads. In this study, sensitivity analysis was used to determine the impact of changes from different sources on the total pollution loads, which can recognize the critical pollution sources. We first employed the pollutant discharge coefficient method to quantify non-point source pollution loads in the small watershed in the upstream Tuojiang River basin from 2010 to 2021. Then, combination sensitivity analysis with Getis-Ord Gi* was used to identify the critical sources and their crucial areas at the global, districts (counties), and towns (streets) scales, respectively. The results indicate: (1) The pollution loads of COD, NH3-N, TN, and TP all show a decreasing trend, reducing by 18.3%, 16.2%, 18.6%, and 28.1% from 2010 to 2021, respectively; (2) Livestock and poultry breeding pollution source is the most critical source for majority areas across watershed; (3) High-risk areas are mainly concentrated in Jingyang district and its subordinate towns (streets). There is a trend of low-pollution risk areas transitioning to high-pollution risk areas, with high-risk areas predominantly concentrated in the southeast and exhibiting a noticeable phenomenon of pollution load spilling around. This study can promote other similar small watersheds, holding significant importance for non-point source pollution control in small watersheds.


Subject(s)
Environmental Monitoring , Rivers , Water Pollutants, Chemical , China , Rivers/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Risk Assessment , Water Pollution, Chemical/statistics & numerical data , Nitrogen/analysis , Phosphorus/analysis , Spatio-Temporal Analysis
4.
Sci Total Environ ; 951: 175786, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197774

ABSTRACT

Environmental offsetting has been developed as a mechanism to facilitate the benefits from economic development while avoiding or minimizing environmental harm. This is achieved by compensating for environmental impacts at one location by generating equivalent environmental improvements elsewhere. However, experience with biodiversity and carbon offsetting indicates it can be difficult to ensure the integrity of offsets. Under recent legislation in the catchments of the Great Barrier Reef (GBR), Australia, it is mandatory for water quality emissions from new or expanded point source development to be offset by reducing pollution elsewhere, frequently through reducing non-point source pollution (NPSP). Therefore, informed by experience with biodiversity and carbon offsetting, we summarised sources of uncertainty in NPSP reduction that would influence water quality offset integrity; estimated the maximum potential demand for water quality offsets from sewage treatment plants, the largest point source emitter of total nitrogen (TN) in the GBR catchments, between 2018 and 2050; and discussed the implications of both on the ability of offsetting to counterbalance the impact of economic development in catchments where nitrogen loads have a large influence on the health of important GBR ecosystems. The catchments surrounding the population centres of Cairns and Mackay had both a potentially high future demand for nitrogen water quality offsets and nitrogen loads with a strong influence on the health of the GBR. Consequently, any low integrity water quality offsets in these catchments could jeopardise progress toward the water quality improvements needed to ensure the continued health of the GBR. Water quality offsetting has numerous strengths as a policy instrument however substantial uncertainties remain related to environmental outcomes. Until further research can reduce these uncertainties, water quality offsets that are implemented near increased point source emissions and have a high certainty of effectiveness may provide a balance between scientific rigour and policy workability.

5.
Environ Res ; 262(Pt 1): 119842, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39187148

ABSTRACT

Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.

6.
Water Sci Technol ; 90(1): 373-383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007325

ABSTRACT

This study investigated the characteristics of dissolved organic matter (DOM) in two distinct water bodies, through the utilization of three-dimensional fluorescence spectroscopy coupled with self-organizing map (SOM) methodology. Specifically, this analysis concentrated on neurons 3, 14, and 17 within the SOM model, identifying notable differences in the DOM compositions of a coal subsidence water body (TX) and the MaChang Reservoir (MC). The humic substance content of DOM TX exceeded that of MC. The origin of DOM in TX was primarily linked to agricultural inputs and rainfall runoff, whereas the DOM in MC was associated with human activities, displaying distinctive autochthonous features and heightened biological activity. Principal component analysis revealed that humic substances dominated the DOM in TX, while the natural DOM in MC was primarily autochthonous. Furthermore, a multiple linear regression model (MLR) determined that external pollution was responsible for 99.11% of variation in the humification index (HIX) of water bodies.


Subject(s)
Humic Substances , Humic Substances/analysis , Organic Chemicals/analysis , Organic Chemicals/chemistry , Environmental Monitoring/methods , Spectrometry, Fluorescence/methods , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Principal Component Analysis
7.
Huan Jing Ke Xue ; 45(7): 4014-4022, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022949

ABSTRACT

The influences of landscape pattern on water quality are dependent on spatial-temporal scales. However, the effects of landscape composition, landscape configuration, and landscape slope metrics on seasonal water quality at different spatial scales remain unclear. Based on the total nitrogen, total phosphorus, nitrate-N, and ammonium-N data from 26 sampling sites in the Qingshan Lake watershed, this study coupled landscape pattern analysis, redundancy analysis, and partial redundancy analysis to quantify the spatiotemporal scale effects of landscape pattern on riverine nitrogen (N) and phosphorus (P) concentrations. The results showed that: ① The explanatory ability of landscape pattern at the sub-watershed scale on riverine N and P concentrations was 6.8%-8.4% higher than that at the buffer scale, and this effect was more obvious in the dry season. ② At the sub-watershed scale, the percentage of forestland and the interspersion and juxtaposition degree of residential land had a greater influence on riverine N and P concentrations. At the buffer scale, the slope of farmland and residential land and the aggregation degree of forestland patches were the key factors affecting riverine N and P concentrations. ③ The contribution rate of landscape configuration to riverine N and P concentration variations (20.1%-36.5%) was the highest. The sensitivity of the effect of landscape configuration on riverine N and P concentrations to seasonal changes was the highest, and the effect of landscape slope on riverine N and P concentrations had the highest sensitivity to spatial scale changes. Therefore, landscape pattern-regulated non-point source pollution should be considered from a multi-scale perspective. These results can provide scientific basis for the formulation of landscape pattern optimization measures aiming at non-point source pollution control.

8.
Water Res ; 262: 122118, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39083901

ABSTRACT

Catchment-scale nitrate dynamics involve complex coupling of hydrological transport and biogeochemical transformations, imposing challenges for source control of diffuse pollution. The Damköhler number (Da) offers a dimensionless dual-lens concept that integrates the timescales of exposure and processing, but quantifying both timescales in heterogeneous catchments remains methodologically challenging. Here, we propose a novel spatio-temporal framework for catchment-scale quantification of Da based on the ecohydrological modeling platform EcH2O-iso that coupled isotope-aided water age tracking and nitrate modeling. We examined Da variability of soil denitrification in the heterogeneous Selke catchment (456 km2, central Germany). Results showed that warm-season soil denitrification was of catchment-wide significance (Da >1), while its high spatial variations were co-determined by varying exposure times and removal efficiencies (e.g., channel-connected lowland areas are hotspots). Moreover, Da seasonally shifted from processing-dominance to transport-dominance during the wet-spring season (from >1 to <1), implying important linkages between summer terrestrial denitrification and subsequent winter river water quality. Under the prolonged 2018-2019 droughts, denitrification removal generally reduced, resulting in further accumulation in agricultural soils. Moreover, the space-time responses of Da variability indicated important implications for catchment water quality. The older water in lowland areas exhibited extra risks of groundwater contamination, whilst agricultural areas in the hydrologically responsive uplands became sensitive hotspots for export and river water pollution. Importantly, the lowland pixels intersecting river channels exhibited high removal efficiencies, as well as high resilience to the disturbances (wet-spring Da shifted to >1 under drought conditions). The proposed catchment-wide Da framework is implied by mechanistic modeling, which is transferable across various environmental conditions. This could shed light on understanding of catchment N processes, and thus providing site-specific implications of non-point source pollution controls.


Subject(s)
Nitrates , Water Quality , Nitrates/analysis , Environmental Monitoring/methods , Denitrification , Seasons , Models, Theoretical , Water Pollutants, Chemical/analysis , Soil/chemistry , Germany , Rivers/chemistry
9.
Environ Sci Pollut Res Int ; 31(35): 48590-48607, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39034376

ABSTRACT

Maximizing the impact of agricultural wastewater conservation practices (CP) to achieve total maximum daily load (TMDL) scenarios in agricultural watersheds is a challenge for the practitioners. The complex modeling requirements of sophisticated hydrologic models make their use and interpretation difficult, preventing the inclusion of local watershed stakeholders' knowledge in the development of optimal TMDL scenarios. The present study develops a seamless modeling approach to transform the complex modeling outcomes of Hydrologic Simulation Program Fortran (HSPF) into a simplified participatory framework for developing optimized management scenarios. The study evaluates seven conservation practices in the Pomme de Terre watershed in Minnesota, USA, focusing on sediment and phosphorus pollutant load reductions incorporating farmers' opinions to guide practitioners toward implementing cost-effective CPs. Results show reduced tillage and filter strips are the most cost-effective practices for non-point source pollution reduction, followed by conservation cover perennials. The integration of SAM with HSPF is crucial for sustainable field-scale implementation of conservation practices through enhanced involvement of amateur-modeling stakeholders and farmers directly connected to fields.


Subject(s)
Agriculture , Conservation of Natural Resources , Hydrology , Agriculture/methods , Conservation of Natural Resources/methods , Minnesota
10.
Environ Res ; 259: 119547, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38964579

ABSTRACT

A thorough understanding of the geographical and spatial attributes of nonpoint source pollution risk in watersheds is crucial for conducting nonpoint source pollutant studies and implementing effective scientific administration strategies. The inclusion of a water-related functioning zone was considered during the nonpoint source's pollution risks assessment procedure. Nevertheless, there has not been a thorough investigation into the potential risk of nonpoint sources of pollution to adequately safeguard the quality of water in watersheds having varying capacities to handle contaminants in the water. This research presents an innovative approach for assessing the risk of nonpoint sources contamination. This allows for a quantitative evaluation of the effect of discharges of pollution from a sub-catchment on the quality of water bodies nearby. The nonpoint source losses of nutrients process, as modeled by the Water and Soil Assessment Tool, had been used to assess the hazard of nonpoint source contamination in Le 'a River Watersheds. This assessment happened on both yearly and monthly scales. The findings indicated that the risk of nonpoint source contamination exhibits both seasonal and regional variations and is significantly impacted by the ability of the fluid ecosystem. Elevated nonpoint sources pollutants do not always equate to elevated pollutant dangers. On the other hand, a small amount of nutrients in the nonpoint sources does not indicate an insignificant degree of susceptibility to region risk. Furthermore, by utilizing a risk assessment method that considers the capacity of the water's environment, it is possible to identify variations in risk levels that may be overlooked when solely considering nonpoint sources contaminant losses, and fluid functioning zone. This approach allows for precise regulation of nonpoint sources of pollution administration.


Subject(s)
Environmental Monitoring , Risk Assessment/methods , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Rivers/chemistry , Non-Point Source Pollution/analysis , Non-Point Source Pollution/prevention & control
11.
J Environ Manage ; 364: 121433, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878574

ABSTRACT

Lake eutrophication caused by nitrogen and phosphorus has led to frequent harmful algal blooms (HABs), especially under the unknown challenges of climate change, which have seriously damaged human life and property. In this study, a coupled SWAT-Bayesian Network (SWAT-BN) model framework was constructed to elucidate the mechanisms between non-point source nitrogen pollution in agricultural lake watersheds and algal activities. A typical agricultural shallow lake basin, the Taihu Basin (TB), China, was chosen in this study, aiming to investigate the effectiveness of best management practices (BMPs) in controlling HABs risks in TB. By modeling total nitrogen concentration of Taihu Lake from 2007 to 2022 with four BMPs (filter strips, grassed waterway, fertilizer application reduction and no-till agriculture), the results indicated that fertilizer application reduction proved to be the most effective BMP with 0.130 of Harmful Algal Blooms Probability Reduction (HABs-PR) when reducing 40% of fertilizer, followed by filter strips with 0.01 of HABs-PR when 4815ha of filter strips were conducted, while grassed waterway and no-till agriculture showed no significant effect on preventing HABs. Furthermore, the combined practice between 40% fertilizer application reduction and 4815ha filter strips construction showed synergistic effects with HABs-PR increasing to 0.171. Precipitation and temperature data were distorted to model scenarios of extreme events. As a result, the combined approach outperformed any single BMP in terms of robustness under extreme climates. This research provides a watershed-level perspective on HABs risks mitigation and highlights the strategies to address HABs under the influence of climate change.


Subject(s)
Agriculture , Bayes Theorem , Harmful Algal Bloom , Lakes , Agriculture/methods , Fertilizers/analysis , Nitrogen/analysis , China , Climate Change , Phosphorus/analysis , Eutrophication , Models, Theoretical
12.
Sci Total Environ ; 946: 174260, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38936719

ABSTRACT

Climate and land-use changes have an overlying impact on non-point source (NPS) pollution in river basins. However, the control effect of Best Management Practices (BMPs) for NPS pollution is not yet clear under future scenarios. The Soil and Water Assessment Tool (SWAT) model was coupled with the entropy-weighted method, global climate patterns and land-use data to explore the dynamic variations in total nitrogen (TN) and total phosphorus (TP) loads in the Jing River Basin during the baseline (2000-2020) and future periods (2021-2065), evaluate the pollution reduction effectiveness of individual and combined BMPs, and propose practical BMP configurations. Results indicate that a future trend of urban land expansion, particularly in the economic scenario (LU_SSP585), leads to weakened environmental ecosystems, while the sustainable scenario (LU_SSP126) exhibits more balanced land development. The MIROC-ES2L model demonstrates higher Taylor skill scores, forecasted significant increases in precipitation, maximum, and minimum temperatures under the SSP585 scenario. Spatial heterogeneity in TN and TP loads is notable, showing an upward trajectory in the future. The interaction between land-use and climate change has complex effects on TN and TP loads, with land-use-induced TN changes being relatively small (4.6 %) and TP changes substantial (24.3 %). The spatial distribution, under overlying effects, leans towards the influence of climate change, emphasizing its dominant role in TN and TP load variations. Distinct differences exist in the reduction of NPS pollution loads among different BMPs, with combined BMPs demonstrating superior effectiveness. The environmental-cost effectiveness trends of BMPs remain consistent across various future scenarios. RG (Return agricultural land to grass), RG + TT (Terracing), and RG + FR10 (Fertilizer reduction: 10 %) + GW (Grassed waterway) + FS (Filter strip) + TT emerge as the most effective single, double, and multiple BMP combinations, respectively. The results offer valuable insights for preventing and mitigating future NPS pollution risks, optimizing land-use layouts, and enhancing watershed management decisions.

13.
Environ Monit Assess ; 196(7): 633, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900342

ABSTRACT

The intensive global use of pesticides presents an escalating threat to human health, ecosystems, and water quality. To develop national and local environmental management strategies for mitigating pollution caused by pesticides, it is essential to understand the quantities, timing, and location of their application. This study aims to estimate the spatial distribution of pesticide use in an agricultural region of La Plata River basin in Uruguay. Estimates of pesticide use were made by surveying doses applied to each crop. This information was spatialized through identifying agricultural rotations using remote sensing techniques. The study identified the 60 major agricultural rotations in the region and mapped the use and application amount of the nine most significant active ingredients (glyphosate, 2,4-dichlorophenoxyacetic acid, flumioxazin, S-metolachlor, clethodim, flumetsulam, triflumuron, chlorantraniliprole, and fipronil). The results reveal that glyphosate is the most extensively used pesticide (53.5% of the area) and highest amount of use (> 1.44 kg/ha). Moreover, in 19% of the area, at least seven active ingredients are applied in crop rotations. This study marks the initial step in identifying rotations and estimating pesticide applications with high spatial resolution at a regional scale in agricultural regions of La Plata River basin. The results improve the understanding of pesticide spatial distribution based on data obtained from agronomists, technicians, and producers and provide a replicable methodological approach for other geographic and productive contexts. Generating baseline information is key to environmental management and decision making, towards the design of more robust monitoring systems and human exposure assessment.


Subject(s)
Agriculture , Crops, Agricultural , Environmental Monitoring , Pesticides , Rivers , Environmental Monitoring/methods , Uruguay , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis
14.
Environ Pollut ; 357: 124457, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38945196

ABSTRACT

The rapidly growing demand for food in human societies has led to the extensive use of fertilizers, significantly contributing to water pollution. Grey water footprints (GWF) serve as a crucial method for measuring Non-point Source (NPS) pollution, particularly in agriculture. Traditional assessments of agricultural GWF neglect biologically fixed nitrogen and the use of organic fertilizers. This research proposed a modified method to assess the GWF of Chinese agriculture from 2000 to 2020, considering the impact of Nitrogen fixation in crops and the use of organic fertilizer. We also analyzed the determinants of Agricultural Nitrogen Fixation Intensity (ANFI) using the Logarithmic Mean Divisia Index (LMDI) method to better understand factors influencing agricultural GWF. Our findings include (1) Grain cereals (e.g., maize, rice, and wheat) significantly contribute to nitrogen fixation in crop organs, accounting for 87.7%, whereas the other six economic crops contribute the rest of 12.3%. Human wastes account for Nitrogen emissions for 1.40%, and emissions by livestock product, red meat contributes 16.26%, while white meat, eggs, and milk collectively contribute 82.34%. (2) Across China, there is an overestimation of GWF by 22.4 hundred million m3 per year, about 5.13% of the total GWF measured by traditional methods. It appears that the overestimation of GWF in plain regions with more arable land tends to be somewhat more pronounced compared to plateau and coastal municipalities. Biotechnological advancements in the capacity of nitrogen fixation for key crops (e.g., maize, wheat, rice) can alleviate agricultural water pollution. The modified methodology provides a robust scientific basis for a more precise application of GWF assessments, highlighting the substantial overestimation by traditional methods in China.


Subject(s)
Agriculture , Crops, Agricultural , Fertilizers , Nitrogen Fixation , China , Crops, Agricultural/metabolism , Agriculture/methods , Fertilizers/analysis , Environmental Monitoring/methods , Nitrogen , Water Pollution/statistics & numerical data , Non-Point Source Pollution
15.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1112-1122, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884246

ABSTRACT

River water quality is influenced by natural processes and human activities. Multi-scale landscape patterns can affect river water quality by altering the generation and transport processes of pollutants at different spatial scales. Taking Taizi River Basin in Northeast China as an example, we analyzed the relationship between landscape patterns and non-point source pollution in rivers based on water quality monitoring data and land use data by using correlation analysis and redundancy analysis methods. We aimed to determine the key spatial scales for the responses of landscape patterns to non-point source pollution and identify the key landscape indices influencing river non-point source pollution. The results showed that water quality of Taizi River Basin had seasonal differences, with better water quality during the flood season than non-flood season. Spatially, total nitrogen (TN) and total phosphorus (TP) were higher at the confluence points of tributaries and downstream areas. The impact of landscape patterns on non-point source pollution was stronger during the non-flood season than the flood season, while the influence on TN was stronger than on TP. At the spatial scale of within 500 m buffer zone during the flood season and at the sub-watershed scale during the non-flood season, landscape patterns showed the highest explanatory power for the variations of TN and TP. At the type level, built-up land, cropland, and bare land were positively correlated with TN and TP, while forest was negatively correlated with TN and TP, which were the key types influencing non-point source pollution. At the landscape level, patch density, percentage of like adjacencies, and contagion index were key indicators affecting watershed water quality. Lower patch density was associated with better connectivity and aggregation of "sink" landscapes, leading to better purification effects on TN, but more pronounced retention effects on TP. Conversely, higher landscape diversity and denser pattern of multiple types would cause the deterioration of water quality. Our results suggested that rational allocation of landscape types within the watershed and riparian buffer zones, appropriately enriching landscape diversity, and optimizing landscape aggregation and connectivity would be effective measures for improving water quality and achieving sustainable ecological management.


Subject(s)
Environmental Monitoring , Phosphorus , Rivers , Water Pollutants, Chemical , China , Rivers/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Ecosystem , Nitrogen/analysis , Non-Point Source Pollution/analysis , Non-Point Source Pollution/prevention & control , Water Quality , Spatial Analysis
16.
Sci Rep ; 14(1): 14434, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38910171

ABSTRACT

Off-line leachate collection from agricultural landscapes cannot guarantee precise evaluation of agricultural non-point source (ANPS) due to geospatial variations, time, and transportation from the field to the laboratory. Implementing an in-situ nitrogen and phosphorous monitoring system with a robust photochemical flow analysis is imperative for precision agriculture, enabling real-time intervention to minimize non-point source pollution and overcome the limitations posed by conventional analysis in laboratory. A reliable, robust and in-situ approach was proposed to monitor nitrogen and phosphorous for determining ANPS pollution. In this study, a home-made porous ceramic probe and the frequency domain reflectometer (FDR) based water content sensors were strategically placed at different soil depths to facilitate the collection of leachates. These solutions were subsequently analyzed by in-situ photochemical flow analysis monitoring system built across the field to estimate the concentrations of phosphorus and nitrogen. After applying both natural and artificial irrigation to the agricultural landscape, at least 10 mL of soil leachates was consistently collected using the porous ceramic probe within 20 min, regardless of the depth of the soil layers when the volumetric soil water contents are greater than 19%. The experimental results showed that under different weather conditions and irrigation conditions, the soil water content of 50 cm and 90 cm below the soil surface was 19.58% and 26.08%, respectively. The average concentrations of NH4+-N, NO3--N, PO43- are 0.584 mg/L, 15.7 mg/L, 0.844 mg/L, and 0.562 mg/L, 16.828 mg/L and 0.878 mg/L at depths of 50 cm and 90 cm below the soil surface, respectively. Moreover, the comparison with conventional laboratory spectroscopic analysis confirmed R2 values of 0.9951, 0.9943, 0.9947 average concentration ranges of NH4+-N, NO3--N, and PO43-, showcasing the accuracy and reliability of robust photochemical flow analysis in-situ monitoring system. The suggested monitoring system can be helpful in the assessment of soil nutrition for precision agriculture.

17.
Plants (Basel) ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611454

ABSTRACT

The overuse of fertilizers in open-field tomato leads to soil deterioration through nutrient leaching and increases the risk of agricultural non-point source contamination. Currently, the combined effects of different fertilization methods on soil nitrogen leaching and tomato production are still unclear. Therefore, the most effective fertilization method for open-field tomato should be discovered by examining how different fertilization methods affected tomato yield and quality, nitrogen use efficiency (NUE), and soil nitrogen leaching. Compared with CK (no fertilization), fertilization significantly increased the yield, total sugar (TS), total soluble solids (TSS), and vitamin C (vC) contents of fruits (p < 0.05), and OPT (optimal fertilization, controlled release nitrogen application, 240 kg ha-1) had the largest effect on increasing yield, quality, and net profit. However, when the fertilizer application rate reached 375 kg ha-1, these indices decreased. Nitrogen leaching concentrations, leaching amount, and titratable acids (TAs) increased with increased nitrogen application rates. Compared with other treatments, OPT reduced the total leaching amounts of total nitrogen (TN), nitrate nitrogen (NO3--N), and ammonia nitrogen (NH4+-N) by 30.09-51.79%, 24.89-50.03%, and 30-65%, respectively. Principal component analysis (PCA) showed that OPT achieved the highest overall score in terms of yield, quality, and nitrogen leaching conditions. The partial least squares path modeling (PLS-PM) further reveals that applications of high amounts of nitorigen have a positive effect on soil nitrogen leaching. The amount of nitrogen leaching vegetatively affects tomato yield and quality, while plant uptake of nitrogen positively affects tomato production. These findings confirm the importance of using controlled-release fertilizers and reducing nitrogen inputs to control nitrogen leaching and enhance open-field tomato yields.

18.
Water Sci Technol ; 89(8): 1961-1980, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38678402

ABSTRACT

Agricultural non-point sources, as major sources of organic pollution, continue to flow into the river network area of the Jiangnan Plain, posing a serious threat to the quality of water bodies, the ecological environment, and human health. Therefore, there is an urgent need for a method that can accurately identify various types of agricultural organic pollution to prevent the water ecosystems in the region from significant organic pollution. In this study, a network model called RA-GoogLeNet is proposed for accurately identifying agricultural organic pollution in the river network area of the Jiangnan Plain. RA-GoogLeNet uses fluorescence spectral data of agricultural non-point source water quality in Changzhou Changdang Lake Basin, based on GoogLeNet architecture, and adds an efficient channel attention (ECA) mechanism to its A-Inception module, which enables the model to automatically learn the importance of independent channel features. ResNet are used to connect each A-Reception module. The experimental results show that RA-GoogLeNet performs well in fluorescence spectral classification of water quality, with an accuracy of 96.3%, which is 1.2% higher than the baseline model, and has good recall and F1 score. This study provides powerful technical support for the traceability of agricultural organic pollution.


Subject(s)
Agriculture , Environmental Monitoring , Neural Networks, Computer , Rivers , Rivers/chemistry , Environmental Monitoring/methods , China , Water Pollutants, Chemical/analysis , Water Pollution/analysis
19.
Environ Sci Pollut Res Int ; 31(20): 29549-29562, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38580875

ABSTRACT

Estimating the pollution loads in the Tuhai River is essential for developing a water quality standard scheme. This study utilized the improved output coefficient method to estimate the total pollution loads in the river basin while analyzing the influencing factors based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) model. Findings indicated that the projected point source pollution loads for total phosphorus (TP), chemical oxygen demand (COD), and ammonia nitrogen (AN) would amount to 3937.22 ton, 335,523.25 ton, and 13,946.92 ton in 2021, respectively. Among these, COD pollution would pose the greatest concern. The primary contributors to the pollution loads were rural scattered life, large-scale livestock and poultry breeding, and surface runoff. Per capita GDP emerged as the most influential factor affecting the pollution loads, followed by cultivated land area, while the urbanization rate demonstrated the least impact.


Subject(s)
Environmental Monitoring , Phosphorus , Rivers , China , Rivers/chemistry , Environmental Monitoring/methods , Phosphorus/analysis , Biological Oxygen Demand Analysis , Water Pollutants, Chemical/analysis , Water Pollution , Nitrogen/analysis
20.
Environ Sci Pollut Res Int ; 31(16): 23482-23504, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38483721

ABSTRACT

The contribution of urban non-point source (NPS) pollution to surface water pollution has gradually increased, analyzing the sources of urban NPS pollution is of great significance for precisely controlling surface water pollution. A bibliometric analysis of relevant research literature from 2000 to 2021 reveals that the main methods used in the source analysis research of urban NPS pollution include the emission inventory approach, entry-exit mass balance approach, principal component analysis (PCA), positive matrix factorization (PMF) model, etc. These methods are primarily applied in three aspects: source analysis of rainfall-runoff pollution, source analysis of wet weather flow (WWF) pollution in combined sewers, and analysis of the contribution of urban NPS to the surface water pollution load. The application of source analysis methods in urban NPS pollution research has demonstrated an evolution from qualitative to quantitative, and further towards precise quantification. This progression has transitioned from predominantly relying on on-site monitoring to incorporating model simulations and employing mathematical statistical analyses for traceability. This paper reviews the principles, advantages, disadvantages, and the scope of application of these methods. It also aims to address existing problems and analyze potential future development directions, providing valuable references for subsequent related research.


Subject(s)
Non-Point Source Pollution , Water Pollutants, Chemical , Non-Point Source Pollution/analysis , Environmental Monitoring/methods , Water Pollution/analysis , Weather , China , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL