Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 460(Pt 3): 140689, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39116767

ABSTRACT

Residues of pesticides in milk may pose a threat to human health. This study aimed to develop a liquid-phase microextraction (LPME) method using hexafluoroisopropanol (HFIP)-based supramolecular solvent (SUPRAS) for the simultaneous extraction and purification of four pesticides (boscalid, novaluron, cypermethrin and bifenthrin) in milk. Pesticides were extracted using SUPRAS prepared with nonanol and HFIP, and the extraction efficiency was analyzed. Results showed satisfactory recoveries ranging from 80.8%-111.0%, with relative standard deviations (RSDs) of <6.4%. Additionally, satisfactory linearities were observed, with correlation coefficients >0.9952. The limits of quantification (LOQs) were in the range of 1.8 µg·L-1-14.0 µg·L-1. The established method demonstrated high extraction efficiency with a short operation time (15 mins) and low solvent consumption (2.7 mL). The HFIP-based SUPRAS LPME method offers a convenient and efficient approach for the extraction of pesticides from milk, presenting a promising alternative to conventional techniques.

2.
Food Chem ; 419: 136036, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37003052

ABSTRACT

Industrial use of ginger after peeling results in large amounts of agro-waste. To provide a basic reference for the sustainable processing of ginger products as a spice, we investigated the differences between unpeeled ginger, peeled ginger, and corresponding ginger peel, in terms of aroma, sensory profiles, and nutrition relevant physicochemical properties. The results showed that the total concentrations of identified odor-active compounds in unpeeled ginger, peeled ginger, and ginger peel were 876.56, 672.73, and 105.39 mg/kg, respectively. Unpeeled ginger exhibited more intense citrus-like and fresh impressions compared to peeled ginger, revealed by descriptive sensory analyses. This is relevant to the high odor activity values of odorants such as ß-myrcene (pungent, citrus-like), geranial (citrus-like), citronellal (citrus-like, sourish), and linalool (floral, fresh). In parallel, unpeeled ginger contained higher total polyphenol (84.49 mg/100 g) and total sugar content (33.4 g/kg) in comparison with peeled ginger (76.53 mg/100 g and 28.6 g/kg).


Subject(s)
Citrus , Volatile Organic Compounds , Zingiber officinale , Odorants/analysis , Zingiber officinale/chemistry , Gas Chromatography-Mass Spectrometry/methods , Spices/analysis , Polyphenols/analysis , Volatile Organic Compounds/analysis
3.
Antioxidants (Basel) ; 12(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36978848

ABSTRACT

Phytopathogens are well known for their devastating activity that causes worldwide significant crop losses. However, their exploitation for crop welfare is relatively unknown. Here, we show that the microbial volatile organic compound (mVOC) profile of the bacterial phytopathogen, Erwinia amylovora, enhances Arabidopsis thaliana shoot and root growth. GC-MS head-space analyses revealed the presence of typical microbial volatiles, including 1-nonanol and 1-dodecanol. E. amylovora mVOCs triggered early signaling events including plasma transmembrane potential Vm depolarization, cytosolic Ca2+ fluctuation, K+-gated channel activity, and reactive oxygen species (ROS) and nitric oxide (NO) burst from few minutes to 16 h upon exposure. These early events were followed by the modulation of the expression of genes involved in plant growth and defense responses and responsive to phytohormones, including abscisic acid, gibberellin, and auxin (including the efflux carriers PIN1 and PIN3). When tested, synthetic 1-nonanol and 1-dodecanol induced root growth and modulated genes coding for ROS. Our results show that E. amylovora mVOCs affect A. thaliana growth through a cascade of early and late signaling events that involve phytohormones and ROS.

4.
Appl Microbiol Biotechnol ; 106(5-6): 2091-2106, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35179628

ABSTRACT

The exploitation of plant volatile organic compounds as biofumigants to control postharvest decaying of agro-products has received considerable research attention. Our previous study reported that 1-nonanol, the main constituent of cereal volatiles, can inhibit Aspergillus flavus growth and has the potential as a biofumigant to control the fungal spoilage of cereal grains. However, the antifungal mechanism of 1-nonanol against A. flavus is still unclear at the molecular level. In this study, the minimum inhibitory concentration and minimum fungicidal concentration of 1-nonanol against A. flavus spores were 2 and 4 µL/mL, respectively. Scanning electron microscopy revealed that the 1-nonanol can distort the morphology of A. flavus spore. Annexin V-FITC/PI double staining showed that 1-nonanol induced phosphatidylserine eversion and increased membrane permeability of A. flavus spores. Transcriptional profile analysis showed that 1-nonanol treatment mainly affected the expression of genes related to membrane damage, oxidative phosphorylation, blockage of DNA replication, and autophagy in A. flavus spores. Flow cytometry analysis showed that 1-nonanol treatment caused hyperpolarization of mitochondrial membrane potential and accumulation of reactive oxygen species in A. flavus spores. 4',6-diamidino-2-phenylindole staining showed that treatment with 1-nonanol destroyed the DNA. Biochemical analysis results confirmed that 1-nonanol exerted destructive effects on A. flavus spores by decreasing intracellular adenosine triphosphate content, reducing mitochondrial ATPase activity, accumulating hydrogen peroxide and superoxide anions, and increasing catalase and superoxide dismutase enzyme activities. This study provides new insights into the antifungal mechanisms of 1-nonanol against A. flavus. KEY POINTS: • 1-Nonanol treatment resulted in abnormal morphology of A. flavus spores. • 1-Nonanol affects the expression of key growth-related genes of A. flavus. • The apoptosis of A. favus spores were induced after exposed to 1-nonanol.


Subject(s)
Aspergillus flavus , Transcriptome , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Aspergillus flavus/metabolism , Fatty Alcohols/metabolism , Spores, Fungal
5.
Appl Microbiol Biotechnol ; 105(20): 7871-7888, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34550439

ABSTRACT

Chemical control of fungal spoilage of postharvest cereal grains is an important strategy for the management of grain storage. Here, the potential antifungal activity of 1-nonanol, a main component of cereal volatiles, against Aspergillus flavus was studied. The growth of A. flavus was completely inhibited by 0.11 and 0.20 µL/mL 1-nonanol at vapor and liquid contact phases, respectively. Metabolomic analysis identified 135 metabolites whose expression was significantly different between 1-nonanol-treated and untreated A. flavus. These metabolites were involved in the tricarboxylic acid cycle, amino acid biosynthesis, protein degradation and absorption, aminoacyl-tRNA biosynthesis, mineral absorption, and in interactions with ABC transporters. Biochemical validation confirmed the disruptive effect of 1-nonanol on A. flavus growth, as indicated by the leakage of intracellular electrolytes, decreased succinate dehydrogenase, mitochondrial dehydrogenase, and ATPase activity, and the accumulation of reactive oxygen species. We speculated that 1-nonanol could disrupt cell membrane integrity and mitochondrial function and might induce apoptosis of A. flavus mycelia. Simulated grain storage experiments showed that 1-nonanol vapor, at a concentration of 264 µL/L, completely inhibited A. flavus growth in wheat, corn, and paddy grain with an 18% moisture content. This study provides new insights into the antifungal mechanism of 1-nonanol against A. flavus, indicating that it has a promising potential as a bio-preservative to prevent fungal spoilage of postharvest grains. KEY POINTS: • 1-Nonanol showed higher antifungal activity against A. flavus. • The antifungal mechanisms of 1-nonanol against A. flavus were revealed. • 1-Nonanol could damage cell membrane integrity and mitochondrial function.


Subject(s)
Antifungal Agents , Aspergillus flavus , Antifungal Agents/pharmacology , Fatty Alcohols , Metabolomics
6.
J Insect Physiol ; 130: 104210, 2021 04.
Article in English | MEDLINE | ID: mdl-33610542

ABSTRACT

Eurosta solidaginis males produce large amounts of putative sex pheromone compared to other insect species; however, neither the site of pheromone production nor the release mechanism has been characterized. We compared E. solidaginis males and females, focusing on sexually dimorphic structures that are known to be involved in pheromone production in other tephritid species. Morphological and chemical analyses indicated that the rectum and pleural epidermis are involved in male E. solidaginis pheromone production, storage, or emission. We detected large quantities of pheromone in the enlarged rectum, suggesting that it stores pheromone for subsequent release through the anus. However, pheromone might also discharge through the pleural cuticle with the involvement of unusual pleural attachments of the tergosternal muscles, which, when contracted in males, realign specialized cuticular surface elements and expose less-sclerotized areas of cuticle. In males, pheromone components were also detected in epidermal cells of the pleuron. These cells were 60-100 times larger in mature males than in females and, to our knowledge, are the largest animal epithelial cells ever recorded. Furthermore, because these large cells in males are multinucleated, we presume that they develop through somatic polyploidization by endomitosis. Consequently, the pheromone-associated multinuclear pleural epidermal cells of Eurosta solidaginis may provide an interesting new system for understanding polyploidization.


Subject(s)
Epidermal Cells/cytology , Polyploidy , Sex Attractants/biosynthesis , Tephritidae/physiology , Animals , Female , Male , Tephritidae/cytology
7.
Article in English | MEDLINE | ID: mdl-31499218

ABSTRACT

Dacini fruit flies (Tephritidae: Diptera), including destructive pest species, are strongly affected in their reproductive behaviors by semiochemicals. Notably, male lures have been developed for pest management e.g., aromatic compounds for the Oriental fruit fly Bactrocera dorsalis and the melon fruit fly Zeugodacus cucurbitae; terpenic α-ionone analogs for the solanaceous fruit fly, B. latifrons. Other than those specific male attractants, 1-nonanol analogs have been noticed as major aliphatic components in the male rectal gland, which is considered as a secretory organ of male sex pheromones. Although multiple semiochemicals associated with the life cycle of Dacini fruit flies have been identified, their behavioral role(s) and chemosensory mechanisms by which the perception occurs have not been fully elucidated. In this study, we conducted RNA sequencing analysis of the chemosensory organs of B. latifrons and Z. cucurbitae to identify the genes coding for chemosensory receptors. Because the skeletons of male attractants are different among Dacini fruit fly species, we analyzed phylogenetic relationships of candidate olfactory receptors (ORs) among the three species. We found that the OR phylogeny reflects the taxonomic relationships of the three species. We further characterized functional properties of OR74a in the three Dacini species to the 1-nonanol analogs related to components in the rectal glands. The three OR74a homologs responded to 1-nonanol, but their sensitivities differed from each other. The OR74a homologs identified from B. dorsalis and Z. cucurbitae responded significantly to 6-oxo-1-nonanol, but not to 1,3-nonanediol and nonyl acetate, indicating similar binding properties of the homologous ORs.


Subject(s)
Fatty Alcohols/pharmacology , Insect Proteins/metabolism , Receptors, Odorant/metabolism , Salt Gland/metabolism , Tephritidae/metabolism , Animals , Receptors, Odorant/genetics , Species Specificity , Tephritidae/genetics
8.
J Chem Ecol ; 45(4): 366-370, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30931507

ABSTRACT

Insect pheromones have rarely been exploited in surveys or studies of rare and endangered species, despite their potential as effective and highly selective attractants for target species. Here, we report the identification, synthesis, and field bioassays of a male-produced aggregation-sex pheromone blend of a rare false click beetle species endemic to southern California, Dohrn's elegant eucnemid beetle, Palaeoxenus dohrni Horn (Coleoptera: Eucnemidae). This species is the only extant species in its genus and subfamily. Analyses of extracts of headspace volatiles collected from adult beetles revealed several male-specific compounds. Two of these compounds, identified as (E)-2-nonen-4-one and (R)-2-nonanol, elicited electroantennographic responses from antennae of beetles of both sexes. In field bioassays, a blend of the two compounds attracted both sexes, whereas the individual compounds were not attractive. The identification of an attractant pheromone should provide a useful tool for bioconservation and ecological studies of this iconic species.


Subject(s)
Alkenes/metabolism , Coleoptera/metabolism , Fatty Alcohols/metabolism , Sex Attractants/metabolism , Animals , Arthropod Antennae/physiology , Biological Assay , Female , Gas Chromatography-Mass Spectrometry , Male , Volatile Organic Compounds/metabolism
9.
Pest Manag Sci ; 73(1): 223-231, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27060471

ABSTRACT

BACKGROUND: The optimisation of the lure is essential for the implementation of trapping systems to control insect pests. In this work, the response of the red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, to increasing emission rates of its aggregation pheromone (ferrugineol) and the efficacy of a convenient synthetic kairomone based on fermentation odours (ethyl acetate and ethanol) have been evaluated in different years and locations along the Mediterranean basin. RESULTS: In general, although capture data and emission had noticeable variability among locations, significantly fewer RPW were captured in pyramidal Picusan® traps with the lowest ferrugineol emission rates tested (0.6-3.8 mg day-1 ). Captures increased rapidly with ferrugineol emission up to 4-5 mg day-1 ; then, higher emission rates did not improve or reduce captures, up to the highest emission rate tested of 50.9 mg day-1 . Thus, there is no evidence of an optimum release rate corresponding to a maximum of RPW catches. Traps baited with the synthetic kairomone (1:3 ethyl acetate/ethanol) captured 1.4-2.2 times more total weevils than traps baited only with ferrugineol. Moreover, in most of the locations, the synthetic blend was at least as effective as the local coattractants used (plant material + molasses). CONCLUSIONS: Ferrugineol emission rate can vary in a wide range without significantly affecting RPW response. Coattractants based on fermenting compounds, ethyl acetate and ethanol, are able to improve the attractant level of ferrugineol and could be employed to replace non-standardised natural kairomones in RPW trapping systems after further optimisation of their proportions and doses. © 2016 Society of Chemical Industry.


Subject(s)
Behavior, Animal/drug effects , Insect Hormones/pharmacology , Pest Control, Biological/methods , Pheromones/pharmacology , Weevils/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL