Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 203: 116398, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723548

ABSTRACT

Anthropogenic pollution poses a threat to marine conservation by causing chronic toxic effects. Seabirds have contact throughout their lives with pollutants like plastic, metals, polychlorinated biphenyls (PCBs), and organochlorine pesticides such as hexachlorocyclohexanes (HCHs). We assessed 155 Manx shearwaters (Puffinus puffinus) stranded along the Brazilian coast, analyzing associations between organic pollutants, plastic ingestion, biomarkers (transcript levels of aryl hydrocarbon receptor, cytochrome P450-1A-5 [CYP1A5], UDP-glucuronosyl-transferase [UGT1], estrogen receptor alpha-1 [ESR1], and heat shock protein-70 genes) and enzymes activity (ethoxy-resorufin O-deethylase and glutathione S-transferase [GST]). Plastic debris was found in 29 % of the birds. The transcription of UGT1 and CYP1A5 was significantly associated with hexachlorobenzene (HCB) and PCBs levels. ESR1 was associated with HCB and Mirex, and GST was associated with Drins and Mirex. While organic pollutants affected shearwaters more than plastic ingestion, reducing plastic availability remains relevant as xenobiotics are also potentially adsorbed onto plastics.


Subject(s)
Biomarkers , Environmental Monitoring , Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Biomarkers/metabolism , Water Pollutants, Chemical/toxicity , Birds , Glutathione Transferase/metabolism , Brazil , Plastics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A1/genetics , Pesticides/toxicity , Glucuronosyltransferase/metabolism , Glucuronosyltransferase/genetics , Receptors, Aryl Hydrocarbon/metabolism
2.
Mar Pollut Bull ; 196: 115624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37871459

ABSTRACT

After the oil spill disaster occurred in 2019, various events of tar balls reaching the Brazilian coast and archipelagos have been reported. The hypothesis here is that the oil/waste dumped in international waters by ships on-route to Cape of Good Hope is reaching the Brazilian coast. On that account, 30-year probabilistic simulations were used to estimate the probability of dumped oil residue reaching the Brazilian coast. The simulations considered three Zones following the South Atlantic route. The results have shown that up to 28.5 % of large ships could dump oil on-route. Inside the Brazilian Exclusive Economic Zone, the probability of dumped oil/waste reaching the coastline is about 62 % and quickly decreases for Dumping Zones 2 and 3. Equatorial and Northeast shores of Brazil are the most vulnerable to oceanic dumping when compared to other regions.


Subject(s)
Disasters , Petroleum Pollution , Brazil , Oceans and Seas , Petroleum Pollution/analysis , Ships
3.
Integr Environ Assess Manag ; 19(4): 870-895, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35893578

ABSTRACT

For decades, multiple anthropogenic stressors have threatened the Galápagos Islands. Widespread marine pollution such as oil spills, persistent organic pollutants, metals, and ocean plastic pollution has been linked to concerning changes in the ecophysiology and health of Galápagos species. Simultaneously, illegal, unreported, and unregulated fishing are reshaping the composition and structure of endemic and native Galápagos pelagic communities. In this novel review, we discuss the impact of anthropogenic pollutants and their associated ecotoxicological implications for Galápagos species in the face of climate change stressors. We emphasize the importance of considering fishing pressure and marine pollution, in combination with climate-change impacts, when assessing the evolutionary fitness of species inhabiting the Galápagos. For example, the survival of endemic marine iguanas has been negatively affected by organic hydrocarbons introduced via oil spills, and endangered Galápagos sea lions exhibit detectable concentrations of DDT, triggering potential feminization effects and compromising the species' survival. During periods of ocean warming (El Niño events) when endemic species undergo nutritional stress, climate change may increase the vulnerability of these species to the impacts of pollutants, resulting in the species reaching its population tipping point. Marine plastics are emerging as a deleterious and widespread threat to endemic species. The Galápagos is treasured for its historical significance and its unparalleled living laboratory and display of evolutionary processes; however, this unique and iconic paradise will remain in jeopardy until multidisciplinary and comprehensive preventative management plans are put in place to mitigate and eliminate the effects of anthropogenic stressors facing the islands today. We present a critical analysis and synthesis of anthropogenic stressors with some progress from local and international institutional efforts and call to action more precautionary measures along with new management philosophies focused on understanding the processes of change through research to champion the conservation of the Galápagos. Integr Environ Assess Manag 2023;19:870-895. © 2022 SETAC.


Subject(s)
Environmental Pollutants , Hunting , Climate Change , Ecuador , Anthropogenic Effects , Ecosystem
4.
Mar Pollut Bull ; 183: 114098, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36087483

ABSTRACT

In this study, density plume visualizations and statistical comparisons were made of enterococci bacteria (the main marine recreational microbial water quality indicator) densities, both before and after the upgrade of the discharge from the South Bay Ocean Outfall (SBOO) to secondary treatment level, so that the effect of this upgrade on ocean microbial water quality could be assessed. During the dry weather (bathing) season, reduction in enterococci densities was rather limited with only 2 shore stations and one kelp station showing significant reductions, and none showing increased compliance frequency. During the wet weather season, although the signature of land-based sources of bacterial pollution were evident, a majority of both shore (7 of the 11 stations) and kelp (4 of the 7 stations) stations showed statistically significant (p ≤ 0.05) reductions enterococci densities pointing to the role of the upgrade to secondary treatment in improving microbial water quality.


Subject(s)
Bays , Water Quality , Bathing Beaches , Enterococcus , Environmental Monitoring , Feces/microbiology , Mexico , Seawater/microbiology , Sewage/microbiology , Water Microbiology
5.
Mar Pollut Bull ; 174: 113144, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35090286

ABSTRACT

Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) were determined in abiotic samples from Concepción Bay in Central Chile. Samples were soxhlet extracted and injected in gas chromatography-mass spectrometry (GCMS). Polybrominated diphenyl ethers (PBDEs) showed the highest levels in air (3-1100 pg m-3), in water (2-64 pg L-1), in sediment, and soil (1-78 ng g-1 (dw)). PAHs were also high in the air (1-6 ng m-3), in water (1-7 ng L-1), in sediment (90-300 ng g-1 (dw)), and in soil (15-2300 ng g-1 (dw)). The polychlorinated biphenyls (PCBs) and chlorinated pesticides were generally low and did not show clear trends along the water column, with exception of PAHs. New data are presented in this work to assess the health status of a relevant coastal area in central Chile.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Bays , Chile , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons/analysis , Tsunamis
6.
Mar Pollut Bull ; 169: 112537, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34062323

ABSTRACT

Surface microplastics were sampled monthly in four tropical bays (Manzanillo, Santiago, Navidad and Cuastecomates) of the central Mexican Pacific during March 2017 to February 2018. Microplastic concentrations ranged between 0.01 and 1.05 particles/m2 with a median per bay ranging between 0.26 and 0.40 particles/m2. Raman spectroscopy registered polypropylene (40%), polyethylene (40%) and polyester (20%) polymers. Fibers dominated all samples, except for Manzanillo where fragments numerically dominated during the rainy season (Jun-Oct). Fiber concentration was not significantly different among bays or seasons, likely associated with continuous wastewater discharge. Fragment concentrations were significantly higher in Bahía Manzanillo and Santiago than the other two bays. Non-metric multidimensional scaling showed distinct distribution of Manzanillo samples (which has important port activities) as compared to Santiago, Navidad, Cuastecomates (where tourism economic activities predominate). This first direct comparison of sea surface microplastic concentration among four bays in Mexico provides a baseline to study impacts on marine zooplankton in this tropical ecosystem.


Subject(s)
Microplastics , Water Pollutants, Chemical , Bays , Ecosystem , Environmental Monitoring , Mexico , Plastics , Water Pollutants, Chemical/analysis
7.
Environ Monit Assess ; 187(11): 723, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26519077

ABSTRACT

Produced water from offshore oil platforms is a major source of oil and related chemicals into the sea. The large volume and high salinity of produced water could pose severe environmental impacts upon inadequate disposal. This study is based on direct field sampling of effluents released into the ocean in the years 2003 and 2013 at the Sonda de Campeche located in the southern part of the Gulf of Mexico. Metals and hydrocarbons were characterized in water, sediments, and fish tissues at the discharge site and compared with those obtained at two reference sites. Chemicals that exceeded risk-based concentrations in the discharge included the metals As, Pb, Cd, and Cr, and a variety of compounds polycyclic aromatic hydrocarbon (PAHs), including naphthalene, fluorenes, and low molecular weight PAHs. The values of low to high molecular weight polycyclic aromatic hydrocarbon (PAHs), and carbon preference index indicate that hydrocarbons in sediments of the discharge zone are originated from the produced water and combustion sources. Fish tissues at the discharge zone and reference site are contaminated with PAHs, dominated by 2- and 3-rings; 4-ring accounted for less than 1% of total PAHs (TPAHs) in 2003, but increased to 7% in 2013. Results suggest that, from 2003 to 2013, discharges of produced water have had a non-negligible impact on ecosystems at a regional level, so the possibility of subtle, cumulative effects from operational discharges should not be ignored.


Subject(s)
Environmental Monitoring , Petroleum Pollution/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Environment , Fishes , Gulf of Mexico , Hydrocarbons , Metals , Mexico , Oil and Gas Industry , Petroleum/analysis , Petroleum Pollution/statistics & numerical data , Polycyclic Aromatic Hydrocarbons/analysis , Time , Wastewater/statistics & numerical data , Water
SELECTION OF CITATIONS
SEARCH DETAIL